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Abstract. Imbalanced data, a common occurrence in real-world datasets, presents a challenge for ma-
chine learning classification models. These models are typically designed with the assumption of balanced
class distributions, leading to lower predictive performance when faced with imbalanced data. To address
this issue, this paper employs data preprocessing techniques, including Synthetic Minority Oversampling
Technique (SMOTE) for oversampling and random undersampling, on unbalanced datasets. Additionally,
genetic programming is utilized for feature selection to enhance both performance and efficiency. In our
experiment, we leverage an imbalanced bank marketing dataset sourced from the UCI Machine Learning
Repository. To evaluate the effectiveness of our techniques, we implement it on four different classification
algorithms: Decision Tree, Logistic Regression, K-Nearest Neighbors (KNN), and Support Vector Machines
(SVM). We compare various evaluation metrics, such as accuracy, balanced accuracy, recall, F-score, Re-
ceiver Operating Characteristics (ROC) curve, and Precision-Recall (PR) curve, across different scenarios:
unbalanced data, oversampled data, undersampled data, and data cleaned with Tomek-Links. Our findings
reveal that all four algorithms demonstrate improved performance when the minority class is oversampled
to half the size of the majority class and the majority class is undersampled to match the minority class.
Subsequently, applying Tomek-Links on the balanced dataset further enhances performance.
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1 INTRODUCTION

Classification tasks are fundamental in machine learning, where algorithms are trained to
categorize new data into predefined classes or labels based on a given dataset or observa-
tions. These algorithms have evolved to excel in this task, assuming that the training data
is well-balanced, with an equal number of instances across different classes and identical
misclassification costs. The rapid advancements in science and technology have ushered
in an era of unprecedented data generation and accessibility. However, a recurring chal-
lenge emerges—much of the data collected from diverse sources is inherently imbalanced.
Imbalanced datasets exhibit a substantial disparity in the number of instances between
different classes [1].

In a classification dataset, when the distribution of examples across known classes is
skewed or biased, it qualifies as an imbalanced dataset. This class imbalance can manifest
in binary classification problems or extend to multi-class scenarios. For the purpose of
this paper, we focus on the binary imbalance problem, where one class (referred to as the
majority class) significantly outnumbers the other (referred to as the minority class).

The extent of class imbalance is quantified by the class imbalance ratio, computed as
the ratio of the sample size of the majority class to that of the minority class. A high class
imbalance ratio indicates a skew towards the majority class. However, machine learning
models are inherently designed to perform optimally on balanced datasets. When exposed
to skewed datasets, these models tend to make biased predictions, favoring the majority
class due to the limited exposure to the minority class during training. Furthermore,
conventional classification models typically assign an equal misclassification error for both
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false negatives and false positives, which is not conducive to training on imbalanced data.
When traditional metrics such as accuracy are used to evaluate model performance, they
often exhibit a strong bias toward the majority class. In such cases, the majority class
achieves accuracy close to 100%, while the minority class struggles to reach accuracy
levels above 10%.

Despite intensive research efforts spanning the past two decades, addressing the chal-
lenge of imbalanced learning remains an ongoing and crucial endeavor [2] . Each dataset
presents unique characteristics that demand tailored solutions. In this research, we aim to
contribute to the ongoing efforts by harnessing a combination of advanced preprocessing
techniques to rectify data imbalances. Additionally, we will leverage genetic program-
ming as a means of feature selection, enhancing the model’s capacity to navigate com-
plex datasets and further improving its performance. To address this challenge of imbal-
anced dataset, two common strategies are employed: data-level preprocessing techniques
and algorithm-level enhancements. Data preprocessing encompasses the task of address-
ing class imbalance by employing techniques such as undersampling the majority class,
oversampling the minority class, or employing hybrid methods. Algorithm-level solutions
incorporate advanced techniques like bagging and boosting to modify regular classifiers
and adapt them to imbalanced datasets.

The paper is structured as follows: In Section 2, we delve into an examination of
existing solutions addressing the class imbalance problem, offering perspectives on the
historical context and prior work in this domain. In Section 3, we present our innovative
approach to tackle this persistent issue. Section 4 constitutes the empirical evaluation of
our proposed techniques. The effectiveness across various classification models by employ-
ing chosen evaluation metrics are assessed. Finally, in Section 5, we draw conclusions from
our findings, summarizing the contributions and implications of our proposed system.

2 RELATED WORK

To learn more about this issue we explore the existing solutions for imbalanced data
classification.

In a study conducted by Mishra, a comprehensive approach to address imbalanced
datasets was adopted [2].This approach involved a combination of preprocessing and en-
semble techniques. Specifically, preprocessing techniques, namely Synthetic Minority Over-
sampling Technique (SMOTE) and random undersampling, were individually applied to
the dataset. Each modified dataset was fed into ensemble classification models, including
Random Forest and XGBoost. Through a meticulous comparison of diverse metrics, such
as the Area Under Curve score, (AUC) sensitivity, and specificity, the author arrived at
a significant conclusion that the utilization of SMOTE in conjunction with the Random
Forest ensemble model yielded the highest sensitivity 79.19% [2].

Elhassan employed a multifaceted approach to address the challenge of imbalance
data set [3]. Tomek-Links were utilized on the original imbalanced dataset to effectively
eliminate noise from the data. Then, a combination of random undersampling and SMOTE
was applied to this preprocessed dataset to assess the performance of various classification
models. The author claimed that employing Tomek-Links in conjunction with random
undersampling as a combined sampling method significantly enhanced model performance.
The improvements were observed in terms of specificity, weighted accuracy, precision, G-
mean, and F-statistics across multiple classification models, including Random Forest,
Logistic Regression, Support Vector Machines, and Artificial Neural Networks [3].

In [4], the authors introduced two techniques aimed at addressing the issue of imbal-
anced datasets through majority class clustering. The first technique involves grouping the
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majority class instances into clusters, each containing an equal number of data points as
the minority class. K-Nearest Neighbors (KNN) algorithm is used to form these clusters
and the centroid of each cluster is calculated and is used as a new instance within the
majority class. The second technique selects an existing record from the original dataset
that has the shortest euclidean distance to the center of the cluster. To evaluate the effec-
tiveness of these two techniques, five classification models are chosen along with AdaBoost
algorithm for ensemble learning. By conducting these two experiments on a diverse set of
datasets, including 44 small-scale and 2 large-scale datasets, the authors concluded that
employing the second technique for undersampling the majority class, in conjunction with
using Multilayer Perceptron (MLP) as classifier, yielded better accuracy and Area Under
the Receiver Operating Characteristic (ROC) Curve scores when compared to other tested
combinations [4].

A preprocessing technique using Genetic Programming (GP) has been proposed for
effective feature selection and construction to address imbalanced datasets [5] [6]. The
proposed approach combines filters and genetic programming to select impactful features
and also generate novel features from the initial dataset, known as as Feature Selection
(FS) and Feature Construction and Modification (FCM) algorithms [6]. Considering FS
and FCM as the two base algorithms, a combined technique called FCMFS is implemented,
where multiple features are constructed from existing features using FCM and then the
most effective features are selected with FS. Experimental results from 9 diverse datasets
showed that FS and FCM demonstrated higher performance scores with comparison to the
original feature sets. FCMFS surpassed both of these two algorithms by achieving higher
classification accuracy with reduced number of features, thereby enhancing the overall
model performance [6].

3 METHODOLOGY

In the proposed approach, we will be handling the previously discussed imbalance dataset
problem through data-level interventions, specifically by combining two key data prepro-
cessing techniques: data oversampling and undersampling. This section delves into the
details of the data sources, the preprocessing techniques employed, and genetic program-
ming algorithms used to implement the proposed approach.

3.1 Dataset

To perform the proposed technique, we use an imbalanced dataset sourced from the UCI
Machine Learning Repository known as the ”Bank Marketing” dataset [7]. This dataset
was collected by a Portuguese banking institution during a direct marketing campaign
through phone calls where its clients were recommended to subscribe for a bank term
deposit. The classification problem involves predicting if a client would subscribe to the
term deposit based on a set of input features. The original dataset, named ”bank-full.csv”
has a total of 45, 211 records with sixteen input attributes and one class variable. Table 1
provides a comprehensive breakdown of each client’s attributes.

These attributes include demographics information such as age, education, marital
status, and occupation, along with financial details like bank balance, home or personal
loans, and data related to campaign call. The output variable, denoted as y, possesses
two class values, with the value yes signifying the client subscribing to the term deposit
and the value no signifying the client not opting for the term deposit. Among the 45,211
records, 39,922 instances fall into the no class, constituting the majority class, whereas
5,289 instances fall into the yes class constituting the minority class. The majority class
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Table 1. Description of Attributes

Attribute name Description Variable type Values

age Age of the client numeric 18-95
job Type of job categorical ”admin.”, ”unknown”, ”unemployed”,

”management”, ”housemaid”, ”en-
trepreneur”, ”student”, ”blue-collar”,
”self-employed”, ”retired”, ”techni-
cian”, ”services”

marital Marital status categorical ”married”, ”divorced”, ”single”; note:
”divorced” means divorced or widowed

education Level of education categorical ”unknown”, ”secondary”, ”primary”,
”tertiary”

default Has credit in default? categorical ”yes”, ”no”
balance Average yearly balance numeric -8019 to 102127
housing Has housing loan? categorical ”yes”, ”no”
loan Has personal loan? categorical ”yes”, ”no”
contact How contacted? categorical ”unknown”, ”telephone”, ”cellular”
day Last contact day numeric 1-31
month Last contact month categorical ”jan”, ”feb”, ..., ”nov”, ”dec”
duration Last contact duration numeric 0 – 4918 sec
campaign Number of contacts numeric 1-63
pdays Days since last contact numeric -1 to 871; -1 means not contacted
previous Number of previous contacts numeric 0-275
poutcome Previous outcome categorical ”unknown”, ”other”, ”failure”, ”suc-

cess”
y Subscribed to term deposit? categorical ”yes”, ”no”

no accounts for approximately 89% of the dataset, indicating a significant class imbal-
ance. The class imbalance ratio for this dataset stands at 7.5. Figure 1 depicts sample
instances from the original dataset, offering an insight into the dataset’s structure and
attributes. This dataset serves as a representative foundation for our research, allowing

Fig. 1. Sample of Original Dataset

us to explore effective techniques to address class imbalance and optimize classification
model performance
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3.2 Data Preprocessing

Data preprocessing stands as a fundamental and pivotal stage within the machine learning
workflow. In the case of the Bank Marketing dataset, which comprises a mix of categorical,
discrete, and continuous attributes, we employ label encoding to convert all attributes
into a numeric type. This transformation reduces computational overhead. Additionally,
for attributes like duration, originally measured in seconds, we convert the values into
minutes to narrow the range. Considering the application of distance-based algorithms
such as K-Nearest Neighbors, Support Vector Machines, and logistic regression, it becomes
imperative to standardize the feature scales of balance and duration using standardizing
technique standard scalar.

Our proposed approach handles the challenges posed imbalanced dataset at the data-
level by oversampling the minority class using SMOTE and then passing this modified
data to random undersampling. This combination ensures that the final class imbalance
ratio reaches one. Then we further refine and clean this balanced dataset with Tomek-
Links [3] [8][9]. To enhance model efficiency and effectiveness, we use Genetic Programming
on top of this balanced and cleaned dataset to select the most efficient and relevant
features for model training. In our comparative analysis, we assess the performance of
our proposed approach against various scenarios, including the use of the original data,
oversampled data, oversampled data cleaned with Tomek-Links, undersampled data, and
undersampled data cleaned with Tomek-Links. This in-depth assessment enables us to see
the effectiveness of our proposed methodology in addressing the challenges posed by class
imbalance in the dataset.

Oversampling Oversampling is a common technique employed to mitigate class imbal-
ance by duplicating existing minority class instances and appending them to the original
dataset to reduce the imbalance ratio. Although this method successfully decreases the
imbalance ratio, it introduces data redundancy and potentially conveys false information
due to the inclusion of identical instances.

To address these limitations, an advanced oversampling technique, Synthetic Minority
Oversampling Technique (SMOTE), was introduced [8]. SMOTE takes a distinctive ap-
proach by generating synthetic data points from the original dataset. Data augmentation
adds minor changes to duplicated minority class instances aligning them with the direc-
tion of the original data points. A random space is generated from the minority class and
K-Nearest Neighbors are calculated for the observations within this space. The distance
between the observation and a randomly selected neighbor is multiplied by a number be-
tween 0 and 1, which is then added to the original observation. This leads to a new data
vector in the direction of the chosen neighbor. This helps generate data points that are
not same to those found in the initial dataset [10].

By adopting SMOTE in our data preprocessing, we enhance the representativeness of
the minority class while avoiding the issues associated with simple oversampling.

Undersampling Undersampling is a data resampling techniqueaimed at reducing the
number of records from the majority class while retaining the minority class examples [11].
The random undersampling technique characterizes by the stochastic removal of majority
class samples. It is advised to use random undersampling when the number of majority
class records significantly outweighs that of the minority class [9].

Another undersampling technique, known as Tomek-Links, not only reduces the data
but can also be employed for data cleaning. It was developed by Ivan Tomek in 1976

 Computer Science & Information Technology (CS & IT)                                   173



by modifying Condensed Nearest Neighbors (CNN) algorithm [12]. The CNN algorithm
aims to produce a training set consistency from the original dataset — a subset that
can accurately classify data points present in the original data [13] [14]. One challenge
with random undersampling is that it can result in the retention of unnecessary samples
while excluding boundary samples. To address this issue, two modifications to the CNN
algorithm have been proposed [15]. These modifications involve selecting a pair of examples
from the original dataset, ensuring they belong to different classes and have the minimum
distance between them. This pair of examples is referred to as Tomek-Links, which consists
of boundary instances and noise instances, both of which affect the learning process. In the
context of an imbalanced dataset, Tomek-Links can be used to identify all the majority
class samples that serve as nearest neighbors to the minority class. This information can
then be utilized to selectively remove these instances from the dataset [12] [15].

By leveraging these undersampling techniques, we aim to create a more balanced and
representative dataset, thereby facilitating the training of machine learning models that
can effectively address class imbalance.

3.3 Feature Selection

For optimal model performance, it is important that the classification model learns from
data that is devoid of redundant and noise. Feature selection is a pivotal technique to
handle this concern by identifying and selecting the most relevant and effective features
from the entire dataset. Various methods have evolved over time for feature selection,
including filter-based methods, wrapper methods and embedded methods [16].

Genetic programming, an evolutionary algorithm inspired by Charles Darwin’s theory
of evolution, is a versatile tool applicable to a wide array of optimization problems [17].
In the context of feature selection, genetic algorithms are employed to obtain a subset of
features that best train the model [17]. The genetic algorithm comprises five fundamental
stages: initial population, fitness function, selection, crossover, and mutation.

Initially, each potential solution to the feature selection problem is organized into a
set known as the population. Within this population, each individual is represented by a
sequence of binary bits (0s and 1s) known as genes. A chromosome is a string of genes,
representing a solution in the population. In the context of feature selection, the population
is a power set of features derived from the original dataset which can be restricted by
selecting the number of features in the optimal solution [17].

Next, a fitness function is defined and used to calculate the fitness value for each
individual in the population [18]. This fitness function can be any performance metric used
to evaluate the trained model, such as accuracy or error. Records with higher accuracy and
lower error attain higher fitness values, while those with lower accuracy and higher error
receive lower fitness values. Based on these fitness values, the individuals in the population
are ranked from highest to lowest fitness values.

During the selection phase, the individuals with higher fitness are chosen for recombi-
nation to produce the next generation. Two individuals are selected from the result set of
the selection phase as parents. Offspring are then generated from these parents through
gene interchanges, a process known as crossover. These offspring are subsequently added
to the population.

The mutation phase is the final step in the genetic algorithm, where the genes of the
offspring are slightly altered to maintain diversity within the population and prevent early
convergence [19]. The algorithm iteratively continues the last four steps — generating
fitness values, selection, crossover, and mutation — until the optimal solution is achieved
or the population exhibits signs of convergence [18].
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By utilizing genetic programming for feature selection, we aim to identify the most
informative features that facilitate enhanced model training and improved classification
performance

Figure 2 illustrates the architecture of the proposed machine learning process, encom-
passing the pivotal stages involved in the transformation of raw and unprocessed data into
a balanced training dataset ready for utilization by classification models.

Fig. 2. The proposed approach to balance imbalanced dataset

3.4 Classification Algorithms

In this paper, we will train four well-established classification models using our proposed
preprocessing and feature selection techniques. These models include Decision Tree, Lo-
gistic Regression, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM). Our
objective is to examine the performance and functionality of each model when trained on
our prepared dataset.

Figure 3 shows the process of splitting the balanced dataset into training and testing
subsets for training the classifier and evaluating its performance. Prior to model training,
each feature space undergoes individual normalization. The training data is subjected to
the genetic programming algorithm, which selects the optimal subset of input features for
each classifier to be trained. Once the classifiers are trained, they are deployed to predict
the output labels of the test dataset. The performances of these classifiers are assessed
using a range of performance metrics.

Fig. 3. The proposed approach to balance unbalanced dataset

Decision Trees Decision trees is a supervised, non-parametric and interpretable machine
learning model that can be used for both classification and regression [20]. The decision
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trees are designed to mimic human decision making processes by breaking down decision
making tasks into a series of smaller and simpler choices. Each node in a decision tree
represents a test on an attribute or feature, leading to branches that correspond to possible
outcomes or values. As traveling the tree, it follows these branches, ultimately arriving at a
terminal/leaf node that furnishes the ultimate prediction or decision. The iterative process
aims to establish conditions on the input features to separate all the classes contained in
the dataset for the fullest purity [20].

To measure the impurity of the node and guide the decision tree’s construction, Gini
index and Entropy can be used [21]. The Gini index measures impurity of a node by
quantifying the difference between one and the sum of squared probabilities for each
class [22]. Equation 1 shows how to calculate the impurity of a given node N in a binary
classification (with class labels C1 and C2) using Gini.

Gini(N) = 1− (
|C1|
|N |

)2 − (
|C2|
|N |

)2 (1)

The impurity after splitting Node into child nodes N1 and N2 is the weighted impurities
of child nodes N1 and N2 , and can be calculated by Equation 2.

Gini(Node) =
|N1|

|Node|
×Gini(N1) +

|N2|
|Node|

×Gini(N2) (2)

Entropy is used to measure the impurity or randomness of a dataset. The optimal split
is determined by selecting the one with the lowest entropy after splitting [23]. Decision
tree algorithms CART uses Gini index to measure the node impurity and select splitting
features; ID3 and C4.5 use Entropy and information gain to select features when building
decision trees [21].

Logistic Regression Logistic Regression is a parametric statistical model tailored for
binary classification tasks [24]. It captures the correlation between a set of independent
variables or attributes and a binary dependent outcome. Logistic Regression leverages a
logistic or sigmoid function to map real values to probabilities ranging from 0 to 1, as
shown in Equation 3.

σ(z) =
1

1 + e−z
(3)

Where z represents the linear combination of the input features and their corresponding
weights. When z takes a positive value, σ(z) approaches 1, indicating a high probability
of belonging to the positive class. In contrast, when z is negative, σ(z) tends toward 0,
indicating a high probability of the negative class [25].

Its core functionality lies in estimating the parameters’ weights by employing the likeli-
hood function, which scrutinizes training data to predict the output labels of new instances.
The key strength of Logistic Regression lies in its ability to provide probabilities and make
predictions about the likelihood of an event occurring based on the input attributes’ val-
ues [24]. The iterative techniques like gradient ascent are frequently employed in order to
get the optimal weight vector that maximizes the likelihood function [24].

Logistic Regression models have been applied in various domains, including health-
care for disease prediction, finance for credit scoring, natural language processing, and
marketing for customer churn analysis.
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K-Nearest Neighbors K-Nearest Neighbors (KNN) is a lazy supervised learning algo-
rithm and can be used for both classification and regression tasks. KNN is called lazy
learning because it has no training process and just stores training data until test data is
provided for prediction [26]. KNN classification classifies a new observation by assessing
the classes of its K nearest neighbors. It is important to choose the optimal K value with
respect to each data set. Smaller K values make the model sensitive to noise, potentially
leading to overfitting. While larger K values lead to misclassification errors [26]. KNN re-
lies on distance metrics such as Manhattan distance, Euclidean distance, and Minkowski
distance, etc. to identify the nearest neighbors. Normally, the scaling of feature values is
essential to reduce bias and maintain the relevance of each feature’s contribution during
the distance calculations [27]. KNN is particularly effective when dealing with extensive
training datasets and scenarios where noise may be present, which makes it a useful tool
in various domains, from recommendation systems to anomaly detection.

Support Vector Machines Support Vector Machine (SVM) is a sophisticated classi-
fication technique using linear models. SVM’s core objective is to ascertain a decision
boundary, often depicted as a hyperplane, that effectively segregates data points based on
their respective classes. The essence of SVM revolves around the notion of margin, denot-
ing the distance between this decision hyperplane and the nearest data point from each
class. In pursuit of robust performance on test data, SVM aims to identify a hyperplane
with the largest margin [28]. In cases where data instances cannot be linearly distinguished
within lower dimensions, SVM adds additional features that facilitate separation of data
points belonging to different classes in higher-dimensional spaces.

It is highly challenging to find a hyperplane that perfectly separates the data points
belonging to different classes when dealing with data from real world. Therefore, a concept
called ”soft margin” is introduced, where a small misclassification is allowed in the training
data while imposing penalties for misclassifying test data [29].

SVM models have been used in diverse applications, ranging from image recognition
to sentiment analysis and bioinformatics.

4 EXPERIMENTS

In this section, we present the results of our comprehensive experimental analysis, de-
signed to evaluate the effectiveness of the proposed preprocessing techniques and feature
selection via genetic programming. Our experiments were conducted on the Bank Mar-
keting dataset from the UCI Machine Learning Repository—known for its inherent class
imbalance. We systematically applied our resampling methods to address this imbalance,
which included oversampling, undersampling, and data cleaning. Additionally, we em-
ployed genetic programming to select and construct feature subsets aimed at enhancing
the performance and efficiency of classification models. We evaluated the impact of these
techniques on four widely-used classifiers: Decision Tree, Logistic Regression, K-Nearest
Neighbors (KNN), and Support Vector Machines (SVM). Through assessments and com-
parisons using various metrics, we aim to provide insights into the optimal strategies for
addressing dataset imbalance within the realm of machine learning classification.

4.1 Evaluation Metrics

To ascertain the efficacy of the proposed preprocessing techniques in comparison to the
original imbalanced dataset, it is essential to employ appropriate metrics that remain im-
partial and unbiased toward any single class. These metrics have a crucial role in assessing
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the performance of each classifier at various stages of the resampling process. Different
evaluation metrics are developed over time to assess the performance of machine learning
classification models, out of which accuracy, balanced accuracy, recall, F1 score, area under
ROC curve, Receiver Operating Characteristics(ROC) curve, and Precision-Recall(PR)
Curve are used in this project.

Accuracy measures the number of correct predictions made out of the total number of
predictions by a trained model. Accuracy leads to misleading results when there is a high
class imbalance in the dataset [30]. Balanced accuracy gives equal weight to each class,
which is calculated by summing the recall for individual classes and dividing it by the
number of classes [31].

Recall, also known as sensitivity or true positive rate, measures the ability to correctly
identify positive or class of interest samples. It is calculated as the number of true positives
divided by the sum of true positives and false negatives, ranging from 0 to 1. A classification
model with a higher recall value can predict most of the positive samples correctly [32].

Precision measures the consistency and stability of a model, calculated for the posi-
tive class as the number of true positives divided by the sum of true positives and false
positives [32].

The F1 score simultaneously considers both recall and precision, given as the harmonic
mean of recall and precision [33]. A model with an F1 score of one has perfect recall and
precision, which is highly impractical to achieve in real-world data.

The ROC Curve is a widely used evaluation metric when dealing with imbalanced
datasets. It is a graphical representation of how well a binary classification model can
perform across different classification thresholds. It is calculated by plotting recall/TPR
on the Y-axis and the corresponding FPR on the X-axis at different classification thresh-
olds [34]. A point where TPR=1 and FPR=0 on the graph represents an ideal classification
model. The area under the ROC Curve measures the separability or ability of a classi-
fier to distinguish between positive and negative classes [35]. The area under the curve
is determined using a trapezoidal approximation. A model with a roc auc score of 1 can
distinguish all the records perfectly correctly, whereas a model with a roc auc score of 0
misclassifies every input. Nevertheless, if there is a significant imbalance in the distribu-
tion of classes, ROC curves may provide an excessively positive assessment of a classifier’s
effectiveness.

In such cases, Precision-Recall (PR) curves are suggested to address the issue of class
distribution skew [36]. The PR curve for a model is given by plotting precision on the Y-
axis and corresponding recall on the X-axis at different thresholds. As both precision and
recall consider true positives, the PR curve is more focused on how well a model predicts
minority class samples correctly. The confusion matrix shows the overall performance of
a model in tabular form for easy interpretation, especially for imbalanced datasets [37]. It
uses an n× n matrix for n different class classification, which shows actual and predicted
outcomes for test data as true positive and true negative for correct predictions, and false
positive and false negative for incorrect predictions.

4.2 Performance Analysis

The efficacy of our proposed preprocessing techniques was evaluated across four distinct
classification models, and the corresponding performance metrics were compared to esti-
mate their impact. Tables 2 to 5 provide an in-depth insight into the performance of each
classifier under various preprocessing scenarios.

In Table 2, the second row, labeled ”Unbalanced Data”, represents the evaluation met-
rics computed on the original imbalanced dataset. This dataset comprises 39,922 majority
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class instances and 5,289 minority class instances. To address this imbalance, we applied
the Synthetic Minority Oversampling Technique (SMOTE), as depicted in the third row.
SMOTE effectively increased the minority class instances to 19,961, resulting in the asso-
ciated metrics.

Table 2 includes ”SMOTE + Tomek-Links” in the fourth row, which illustrates data
that has been resampled using both SMOTE and Tomek-Links exclusively on the minority
class. This resampling process culminated in 19,795 minority records.

For the fifth row of Table 2 , designated as ”Undersampled”, we randomly undersam-
pled the majority class, yielding 12,900 majority and 5,289 minority class instances.

In Table 2, the sixth row, ”Overall Balanced”, showcases instances that underwent a
two-step resampling process: oversampling the minority class first and then undersampling
the majority class. This hybrid approach resulted in a balanced dataset comprising 19,961
instances in both classes. This balanced dataset underwent further refinement through
Tomek-Links, as shown in the seventh row, labeled ”Overall Balanced + Tomek-Links”,
resulting in 19,831 instances.

The last row of Table 2, labeled ”Overall Balanced + Tomek-Links + GP”, provides
metrics for a classifier trained on the overall balanced and cleaned data, incorporating an
optimal set of input features selected through the Genetic Programming (GP) algorithm.

Tables 3, 4, and 5 mirror the same resampled datasets as Table 2, presenting perfor-
mance metrics for Logistic Regression, K-Nearest Neighbors (KNN), and Support Vector
Machines (SVM) classifiers, respectively. These comprehensive assessments aim to show
the impact of our proposed techniques on diverse classification models and provide valuable
insights into their efficacy.

All four classification algorithms showed improved performance when trained on bal-
anced data compared to the original unbalanced dataset. It is observed that the Decision
Tree model performed the best when trained on oversampled, undersampled, and cleaned
data. Table 2 shows that decision tree classifier has highest balanced accuracy, recall, F1
score and area under ROC curve for the proposed technique, which is 0.8834, 0.8828,
0.8831 and 0.8834 respectively. Comparing the recall and F1 score of the proposed model
to the original data reveals that these values nearly doubled, indicating better predic-
tion by the model. Among the four classification models, the KNN classifier exhibited the
highest recall and F1 score of 0.94 and 0.9, respectively.

Table 2. .Evaluation Metrics for Decision Tree Classifier

Decision Tree Accuracy Balanced Accuracy Recall F1 Score roc auc score

Unbalanced Data 0.8729 0.7007 0.4755 0.4684 0.7007

SMOTE 0.8869 0.8748 0.8386 0.8318 0.8748

SMOTE + TOMEK-Links 0.8882 0.8757 0.8384 0.8330 0.8757

Undersampling 0.8081 0.7676 0.6751 0.6644 0.7676

Undersampling + TOMEK-Links 0.8247 0.7887 0.7000 0.7034 0.7887

Overall Balanced 0.8737 0.8737 0.8754 0.8740 0.8737

Overall Balanced + TOMEK-Links 0.8771 0.8771 0.8760 0.8767 0.8771

Overall Balanced + TOMEK-Links + GP 0.8834 0.8834 0.8828 0.8831 0.8834

5 CONCLUSIONS

In this research, we have introduced a robust data preprocessing technique designed to
effectively address the challenges posed by imbalanced datasets. This innovative approach
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Table 3. Evaluation Metrics for Logistic Regression Classifier

Logistic Regression Accuracy Balanced Accuracy Recall F1 Score roc auc score

Unbalanced Data 0.8984 0.6419 0.3110 0.4105 0.6419

SMOTE 0.8196 0.7817 0.6680 0.7118 0.7817

SMOTE + TOMEK-Links 0.8236 0.7842 0.6667 0.7154 0.7842

Undersampling 0.8287 0.7580 0.5964 0.6621 0.7580

Undersampling + TOMEK-Links 0.8425 0.7861 0.6475 0.7093 0.7861

Overall Balanced 0.8308 0.8308 0.8274 0.8303 0.8308

Overall Balanced + TOMEK-Links 0.8305 0.8304 0.8234 0.8289 0.8304

Overall Balanced + TOMEK-Links + GP 0.8301 0.8301 0.8229 0.8285 0.8301

Table 4. Evaluation Metrics for KNN Classifier

KNN Accuracy Balanced Accuracy Recall F1 Score roc auc score

Unbalanced Data 0.8899 0.6551 0.3482 0.4267 0.6551

SMOTE 0.9023 0.9019 0.9007 0.8601 0.9019

SMOTE + TOMEK-Links 0.9054 0.9056 0.9062 0.8643 0.9056

Undersampling 0.8196 0.7516 0.5969 0.6501 0.7516

Undersampling + TOMEK-Links 0.8358 0.7789 0.6388 0.6979 0.7789

Overall Balanced 0.8968 0.8968 0.9410 0.9013 0.8968

Overall Balanced + TOMEK-Links 0.8974 0.8975 0.9408 0.9014 0.8975

Overall Balanced + TOMEK-Links + GP 0.8930 0.8931 0.9261 0.8962 0.8931

Table 5. Evaluation Metrics for SVM Classifier

SVM Accuracy Balanced Accuracy Recall F1 Score roc auc score

Unbalanced Data 0.8956 0.6195 0.2584 0.3682 0.6195

SMOTE 0.8168 0.7736 0.6438 0.7011 0.7736

SMOTE + TOMEK-Links 0.8203 0.7747 0.6384 0.7026 0.7747

Undersampling 0.8261 0.7466 0.5647 0.6463 0.7466

Undersampling + TOMEK-Links 0.8380 0.7748 0.6194 0.6942 0.7748

Overall Balanced 0.8294 0.8294 0.8195 0.8278 0.8294

Overall Balanced + TOMEK-Links 0.8298 0.8298 0.8179 0.8274 0.8298

Overall Balanced + TOMEK-Links + GP 0.8302 0.8302 0.8181 0.8279 0.8302
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combines oversampling, undersampling, data cleaning, and feature selection to mitigate
class imbalance, providing an effective solution for improved model performance.

To evaluate the efficacy of our proposed method, we conducted extensive experiments
on a real-world Bank Marketing dataset. This involved training four classification models
on various balanced datasets generated through our preprocessing technique. We employed
a suite of metrics tailored for imbalanced datasets, including recall, F-1 score, balanced
accuracy, and the area under the ROC curve, to comprehensively assess the performance
of both existing preprocessing methods and our proposed approach.

Our results illustrate that employing both oversampling and undersampling at the same
time as part of our data preprocessing technique consistently enhances the performance of
all four classifiers. The Decision Tree and K-Nearest Neighbors (KNN) algorithms emerged
as top performers, achieving the highest balanced accuracy rates of 88.34% and 89.31%,
respectively. These discoveries emphasize the efficacy of our approach on addressing the
class imbalance challenge.

There are many compelling paths for further investigation. One potential direction in-
volves combining our data-level preprocessing technique with algorithmic-level approaches,
such as ensemble machine learning classifiers, to leverage their complementary strengths.
Additionally, the integration of genetic programming, which we used for feature selection,
could be extended to data-level preprocessing tasks, offering the potential to further en-
hance model performance. This research lays the foundation for continued advancements
in the field of imbalanced dataset handling, with the aim of improving the robustness and
reliability of machine learning classification models in practical applications.
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