
Forest Mixing: investigating the impact of
multiple search trees and a shared

refinements pool on ontology learning

Marco Pop-Mihali and Adrian Groza
Department of Computer Science

Technical University of Cluj-Napoca, Romania
Cluj-Napoca, Romania

Abstract

We aim at development white-box machine learning algorithms. We focus here on algo-
rithms for learning axioms in description logic. We extend the Class Expression Learning for
Ontology Engineering (CELOE) algorithm contained in the DL-Learner tool. The approach
uses multiple search trees and a shared pool of refinements in order to split the search
space in smaller subspaces. We introduce the conjunction operation of best class expressions
from each tree, keeping the results which give the most information. The aim is to foster
exploration from a diverse set of starting classes and to streamline the process of finding
class expressions in ontologies. The current implementation and settings indicated that the
Forest Mixing approach did not outperform the traditional CELOE. Despite these results, the
conceptual proposal brought forward by this approach may stimulate future improvements in
class expression finding in ontologies.

Index Terms

Ontology Learning, DL-Learner, Inductive Logic Programming (IDL), Description Logic
(DL), White-box Machine Learning

I. INTRODUCTION

Machine learning models are being deployed across diverse sectors, from predicting
outcomes in business, guiding decision-making in finance, to advancing diagnostics and
treatment planning in medicine. However, a significant challenge of these models is their
”black box” nature. Complex models built with deep learning networks are not easily
interpretable, lacking understanding of how they derive their predictions or decisions.
This lack of transparency can pose serious issues, especially when they are applied to
critical areas where interpretability and explainability are needed.

In contrast, ”white box” models offer insights into the decision-making process,
indicating the influence each feature has on the output. They present a more transparent
approach for predicting outcomes, but these advances often come with a performance
trade-off. Such models may not deliver performance on par with Large Language Models
(LLMs), or they might require more time and resources to offer similar outputs.

As building blocks for the Semantic Web, ontologies can be used for data storage,
relations among these data, reasoning, or as a background knowledge source for machine
learning algorithms. A specific task is finding class expressions from ontologies and
examples, an area that might be approaced by inductive logic programming (ILP).

We present a novel approach to inductive logic programming, in which we modify
the state-of-the-art algorithm CELOE [2]. Our Forest Mixing approach aims to improve

David C. Wyld et al. (Eds): SIPR, NCWC, BIBC, SOFEA, DSML, ARIA, NLP, CSEN -2023
pp. 237-251, 2023. CS & IT - CSCP 2023 DOI: 10.5121/csit.2023.131919

https://doi.org/10.5121/csit.2023.131919

the process of finding class expressions from ontologies and traversing large search
spaces, offering a potentially more efficient solution to this type of problems.

II. RELATED WORK

The learning algorithm proposed here belongs to the larger field of Inductive Logic
Programming (ILP). ILP represents a fusion between inductive learning and logic pro-
gramming, aiming to derive hypotheses from observations and to create new knowledge
from experience.

ALEPH (A Learning Engine for Proposing Hypotheses) is a tool that operates within
the domain of Inductive Logic Programming (ILP) [3]. ALEPH formulates hypotheses
based on a given set of positive and negative examples and a body of background
knowledge. It utilizes a ’set covering’ loop and applies a hill-climbing search strategy
within the hypothesis space. This approach is governed by a refinement operator, facili-
tating the exploration of the hypothesis space. The versatility of ALEPH, demonstrated
by its adaptable parameters and settings, enables it to handle a wide array of logic
programming tasks, making it a significant tool in the field of ILP. Notably, ALEPH
has found successful applications across various sectors, such as bioinformatics and
natural language processing [3].

DL-Learner (Description Logic Learner) is a framework for supervised machine
learning in Semantic Web and other structured knowledge domains. Using refinement
operators, the tool is designed for learning concepts within Description Logics (DLs),
including other related formalisms such as OWL and RDF(S). Among its multiple learn-
ing algorithms, the CELOE begins with a broad concept (e.g., ”owl:Thing” in OWL)
and incrementally refines it, aiming to discover the most specific concepts that satisfy
predefined quality criteria based on given positive and negative examples. The algorithm
leverages a heuristic search, which enables efficient handling of large knowledge bases
by removing the need for exhaustive searches [1], [2]. We rely on the modular design
of the DL-Learner tool, which allows easy extension of the CELOE algorithm and easy
reuse of its components like the Refinement Operators.

Learning ontologies have been also explored with Relational Concept Analysis [4],
semantic role labelling [6], or Large Language Models (LLMs) [5]. Role labbeling has
been use to fill the gap between natural language expressions and ontology concepts
or properties [6]. The LLMs are fine tuned to translate from natural language to OWL
functional syntax. The generated translations can be manually validated by the human
agent through a plugin for the Protoge ontology editor.

III. THEORETICAL INSTRUMENTATION

We briefly introduce here some theoretical notions like: ontologies, description logics
and refinement operators.

Ontologies are a key component in semantic web technologies and knowledge repre-
sentation systems. They provide a structured framework of concepts and their relation-
ships, facilitating more effective information retrieval, data integration, and reasoning.
They contain clases (i.e. concepts, sets), relations among these classes (that can have
some properties like reflexivity, transitivity, symmetry), and individuals (instances of
concepts).

Description Logic (DL) is a formal language utilized for knowledge representation,
often deployed in Semantic Web and ontologies for class expression and querying. DL
exhibits a balance between expressivity and computational efficiency. The expressivity

238 Computer Science & Information Technology (CS & IT)

TABLE I
DESCRIPTION LOGIC OPERATORS

DL Operator Description
⊤ (top) Special concept with every individual as an instance
⊥ (bottom) Empty concept
⊓ (and) Intersection or conjunction of concepts
⊔ (or) Union or disjunction of concepts
¬ (not) Negation or complement of concepts
∀ (for all) Universal restriction
∃ (exists) Existential restriction
⊑ (is-a) Inclusion of the concept
≡ (equivalent) Equivalence of concepts
=̇ (definition) Definition of the concept
: (assertion) Assertion of the concept

of DL stems from operators used for creating complex classes, as outlined in Table I [8],
[9]. In DL, ontologies are formalised using a collection of concepts (classes), roles (rela-
tionships), and individuals. By reasoning in DL, one can perform automatic consistency
checking, or maintaining the integrity of the knowledge base when introducing new
facts [9].

Definition 1: A refinement operator ρ is a mapping from a concept C to a set of
concepts, such that: ρ : C → C1, C2, ..., Cn, where each Ci represents a hypothesis.
Refinement operators can be classified into two main types: downward refinement
operators and upward refinement operators.

Definition 2: A downward refinement operator, denoted as ρ↓(C), transforms a concept
C into a set of more specific concepts C1, C2, ..., Cn, where each Ci ⊆ C for all i =
1, 2, ..., n.

Example 1: Let the current class expression C = Bird. Applying a downward refine-
ment operator, a more specific class expression is obtained, as Bird ⊓ ∃hasFeature.F ly,
describing birds that fly. The new expression describe a smaller set of individuals. Sim-
ilarly, when the ¬ operator is applied, one can obtain the expression Bird ⊓ ¬Aquatic,
describing birds that are not aquatic.

Definition 3: An upward refinement operator, denoted as ρ↑(C), transforms a concept C
into a set of more general concepts C1, C2, ..., Cn, where each Ci ⊇ C for all i = 1, 2, ..., n.

Example 2: Let the initial expression C = Birds ⊓ Carnivore. Applying an
upward refinement operator on C, a more general expression is obtained, that is Bird,
corresponding to a larger set of individuals.

Refinement operators are used to generate and test hypotheses during learning. By
applying these operators to concept learning, they facilitate navigation through the large
space of possible hypotheses [10].

IV. FOREST MIXING APPROACH

We start by analysing aspects of the state-of-the-art CELOE approach that can be im-
proved. Building on these observations, we formalise the novel Forest Mixing approach
(FM) for ontology learning.

A. Potential Advantages of FMA
In both Forest Mixing approach and Random Forest algorithms, the search space

is divided among several smaller trees. However, this division does not amount to a
strict partition in either of the methods. Random Forests train each tree on subsets of

 Computer Science & Information Technology (CS & IT) 239

overlapping data and features. In FM, each tree navigates a subset of the search space,
but these subsets are not mutually exclusive. Trees might delve into similar or even the
same parts of the search space. A crucial difference emerges in the way overlaps are
addressed in these algorithms. For Random Forests, overlapping can be beneficial, while
for FM, redundancies arising from multiple trees generating identical class expressions
can increase computational costs. Despite these contrasts, the central concept of FM
draws inspiration from the Random Forest’s mechanism.

Though CELOE [2] stands as the state-of-the-art in ontology-based hypothesis search,
there exist scenarios where its performance might be improved. Within the scope of
CELOE, and hypothesis searching in general, the most computationally demanding
operation is the refinement process. This operation can induce an exponential growth
in the number of nodes (concepts or class expressions) to be examined. Therefore, an
efficient algorithm in our context should ideally minimize the number of refinements
required to find the best hypothesis. Note that both CELOE and FM approach provide
the functionality to set initial concepts. Setting the initial concepts with the help of
user’s knowledge triggers a reduction in the search space. We hypothesize two cases
where the Forest Mixing approach could offer more efficiency than CELOE.

First, FM can exhibit higher efficiency compared to CELOE, particularly when users
have prior knowledge of the data and can suggest starting classes within relevant
subspaces. For example, consider non-disjoint classes such as Employee and Student,
where individuals could be part of both classes. If the target concept is for instance

Student ⊓ Employee ⊓ ∃attendsCourse.EveningCourse (1)

representing individuals enrolled in a university and working there who also attend
evening courses, there can be useful hypotheses within both Employee and Student
subspaces. In this case, FM’s parallel exploration can expedite the process by simul-
taneously investigating both paths, potentially discovering a suitable hypothesis faster
than sequentially exploring one subspace after the other as CELOE would do.

Second, FM potentially outperforms CELOE in cases involving disjunctions in the
target concept. Disjunctions pose a challenge for most Inductive Logic Programming
(ILP) techniques, including CELOE, due to the prevalent use of downward refinement
operators. These operators primarily generate conjunctions, not disjunctions. For in-
stance, consider the target concept

(Student ⊔ Employee) ⊓ ∃attendsAICourse (2)

representing individuals who are either students or employees and attend an AICourse.
CELOE, in this case, might need to explore a vast search space exhaustively. FM can
address this efficiently by assigning different starting classes or computing them, thus
facilitating parallel exploration in different relevant subspaces. While FM approach may
not directly find the exact class expression, it can swiftly uncover simpler, separate class
expressions such as:

Student ⊓ ∃attends.AICourse (3)
Employee ⊓ ∃attends.AICourse (4)

B. Designing the FM algorithm
The FMA commences by selecting an initial class or classes as the starting point.

This selection is a strategic move aimed at reducing the search space, consequently

240 Computer Science & Information Technology (CS & IT)

increasing the efficiency of the algorithm. The criterion for choosing a class is its
ability to contain all the positive examples, symbolized by C. Such a class can then be
refined or specialized without any loss of positive examples, as it ensures a full positive
coverage PosCov:

PosCov(ce) =
|cepos(E)|
|Epos|

(5)

Here, PosCov(ce) is the positive coverage of the class expression ce. cepos(E)
represents the set of positive examples covered by ce, and Epos is the set of all positive
examples. Therefore, a class with a PosCov value of 1.0 signifies that all positive
examples are encapsulated within that class. This ensures that the search space is
efficiently minimized from the outset, providing an optimized starting point for further
refinement and specialization. The selection of best nodes is described by Algorithm 1.

Algorithm 1 Finding the Starting Classes
1: classSet← initialClassSet
2: startClassesSet← ∅
3: for all class ∈ classSet do
4: posCov ← PosCov(class)
5: subClassSet← ∅
6: for all subClass ∈ children(class) do
7: if PosCov(subClass) = posCov then
8: subClassSet← subClassSet ∪ {subClass}
9: end if

10: end for
11: if subClassSet = ∅ then
12: startClassesSet← startClassesSet ∪ {class}
13: else
14: classSet← classSet ∪ subClassSet
15: end if
16: end for=0

The Algorithm 1 starts by applying a strategy similar of CELOE, where a search tree
is generated, the best nodes identified, and refined. However, FM approach introduces
the following enhancement - instead of maintaining a single search tree, it manages
multiple trees, and all the refined expressions derived are kept in a shared pool. Each
tree is permitted to draw a maximum number of expressions from the shared refinements,
consequently promoting an efficient and diversified exploration of the search space.

The process of adding refinements to the shared pool is governed by specific con-
ditions. First, the algorithm maintains a record of the best nodes from previous trees
and also the refinements added by the current node, Second, the current expression is
checked against this list. If the current expression and any of the previous bests do not
share a class in common, a conjunction of them is computed. This conjunction is only
added to the shared poll when all the classes are distinct, aiming to maximize the class
expressions which bring new information, and which do not have multiple identical
classes.

The complexity of a node (i.e. class expression) is measured as the length of the
expression, thereby a conjunction of two expressions might be overly complex. To

 Computer Science & Information Technology (CS & IT) 241

avoid this case, the length of the resulting expressing is added to the shared pool only
when it doesn’t exceed a threshold set using a FM parameter. The conjunction selection
process is shown in the Algorithm 2. The rest of the algorithm, refining nodes, selecting
best nodes is very similar to CELOE [2].

Algorithm 2 Conjunction for Shared Pool
1: for all CE previous in bestNodesFromEachTree do
2: Cprevious ← classes(CEprevious)
3: Ccurrent ← classes(CEcurrent)
4: if Cprevious ∩ Ccurrent = ∅ then
5: CEconjunction ← conjunction(CEcurrent, CEprevious)
6: complexity← |classes(CEconjunction)|
7: if complexity < maxLength then
8: Add CEconjunction to refinementSharedPool
9: end if

10: end if
11: end for=0

FM represents an extension of the CELOE approach (see Figure 1). To evaluate the
proposed FM, we rely on the University Ontology Benchmark (UOBM) generator. The
UOBM generator outputs scalable and realistic ontologies, tailored for benchmarking
ontology-based systems [11].

Ontologies alone do not suffice for generating a complete test. In the case of a specific
ontology generated with the UOBM generator, we require a class expression (also called
ground truth or target) along with two sets of individuals: one belonging to the class
and the other not. To handle this, we designed the Algorithm 3 that finds a suitable
class expression and individuals in the given ontology. The corresponding diagram flow
appears in Figure 2. To implement the proposed algorithm we rely on GPT-4. Human
implementation was used in a few selected places where the code generated did not
capture the correct logic steps. This is why in Figure 1 GPT-4 is represented as an
external system (i.e. colored red). The test generation modules are colored purple, which
means they are the result of computer generation and human fine tuning.

C. Heuristics designed for FM approach
The proposed HT1 heuristic differs from the standard CELOE heuristic by considering

the parent node’s refinement count, which is essentially the number of its child nodes.
The premise behind this heuristic is the potential value of less-branching paths in the
search tree, which might prove beneficial in later steps.

In the standard CELOE heuristic, branches with more child nodes (or refinements)
are prioritized, as they are often seen as more promising. However, HT1 posits that less-
branching paths (those with fewer child nodes) could also be of value. To encourage
the exploration of these less-branching paths, HT1 integrates an additional term into
the final score calculation - the inverse of the parent’s refinement count, multiplied by
a weight factor. This effectively gives a score boost to nodes that have fewer siblings.

HT1 =

{
startbonus − (horiz − 1) · β − refin · γ, if node = root
(acc− accparent) · δ + 1

refinparent
· ϵ− (horiz − 1) · β − refin · γ, otherwise

242 Computer Science & Information Technology (CS & IT)

Fig. 1. System Architecture

Fig. 2. Generating testing ontologies

 Computer Science & Information Technology (CS & IT) 243

Algorithm 3 Generating Example Test
0: procedure ONTOLOGYREASONING
0: o← LoadOntology(filePath)
0: classes← ontology.GetClasses()
0: reasoner ← InitReasoner(ontology)
0: int← ∅
0: repeat
0: class← classes.ChooseRandom()
0: property ← GetPropertyBasedOnClass(reasoner, class)
0: int← Intersection(class, property)
0: until int.size() ≥ |posExample|
0: posExamples← int.ChooseRandom(|posExamples|)
0: individuals← o.GetIndividuals().Remove(|posExamples|)
0: negExamples← individuals.ChooseRandom(|negExample|)
0: ApplyNoise(posExamples, negExamples, noiseRatio)
0: classExpression← class ⊓ (Some(property, Thing))
0: accuracy ← CalculateAccuracy()
0: end procedure
0: procedure GETPROPERTYBASEDONCLASS(reasoner,class)
0: individuals← GetIndividuals(class)
0: suitableProperty ← ∅
0: for all i ∈ individuals do
0: properties← GetProperties(i)
0: for all p ∈ properties do
0: if p.GetIndividuals().size > |posExamples| then
0: suitableProperty ← CurrentProperty
0: return suitableProperty
0: end if
0: end for
0: end for
0: end procedure=0

Here, startbonus is score for the root of the search tree, acc is the accuracy of the
evaluated node, while accparent is the accuracy of the parent of the evaluated node.
The horiz parameter counts the number of horizontal expansions to reach the current
node, or the length of the class expression. Number of refinements or the number of
children in the search tree is represented by refin, while refinparent is the number of
refinements of the parent, or the number of nodes on the same level that came from
the same parent The values α, β, γ, δ are weights chosen based on the problem in the
domain.

The FH heuristic factors in both the depth of the current node within the search tree
and its F1 score. The depth of a node in the search tree is the number of steps from
the root to the node. Nodes deeper in the search tree often signify more ”complex”
solutions. Hence, we introduce a depth-based penalty to encourage simpler solutions in
line with Occam’s razor, the simplest solution is often the best, as shown in equation 6:

FH1 = −horiz · α +

f1 · β, if f1 ≥ 0.8

−f1 · γ, if f1 ≤ 0.3

0, otherwise
(6)

Here, horiz is depth of the node in the search tree, α is the penalty factor for the
depth of a node in the search tree, f1 the F1 score of the node, β the bonus factor

244 Computer Science & Information Technology (CS & IT)

for high F1 score (when f1 ≥ 0.8), while γ is a penalty for very low F1 score (when
f1 ≤ 0.3).

V. LEARNING ONTOLOGIES WITH FORREST MIXING APPROACH

We illustrate the functionality of FM on a small sized ontology. The trace of FMA
displays console outputs in small clusters, after which a brief explanation is provided.
The ontology and examples were created manually in order to contain disjoint classes,
in this case the classes Student and UniversityEmployee have common individuals.
In the configuration file examples the individuals chosen as positive examples are all
students, university employees and work in a research program. The goal of these exam-
ples is to better explain how the selection process of nodes work and how refinements
are added to the search tree.

The algorithm tries to find a class expression that best differentiates between the
positive and negative training examples.

Listing 1. Step 1: Identifying starting classes for search trees
Running algorithm instance "alg" (FM)
FMA starting
Nb of tree roots to find: 2
Thing cov 1.0, ResearchProgram cov0.0, Student cov1.0, University cov0

.0, UniversityEmployee cov1.0, Student cov 1.0, UniversityEmployee
cov 1.0

2 trees found with roots: [Student, UniversityEmployee]

Within the DL-Learner framework, the FM algorithm is initialized with a specific
configuration. The user selects the number of trees to be used, which in this case is set
to 2 (Listing 1). FM then proceeds to generate and explore multiple classes, beginning
with the top concept (⊤), and iteratively specializes them until they cannot be further
specialized without compromising the coverage of positive examples. The first two
classes obtained through this process are identified as the best starting classes as the
roots of our search trees.

Listing 2. Step 2: Picking the most promising class for refinement
Student acc: 0.6
Best description so far: Student
acc: 0.6
f-score: 0.6666666666666666
ref: 0 time: 9
UniversityEmployee acc: 0.6

Since Student is the first node is selected as best one so far. The accuracy, f-score,
number of refinements required to get the expression and time in ms are also displayed.
(Listing 2).

Listing 3. ”Step 3: Refining the current class”
Node Student score calculation :

Horizontal expansion: 1.0
Start node: 1.0
Acc gain: -1.0
Parent Refinements: 0.0
Refinements: 0.0

 Computer Science & Information Technology (CS & IT) 245

score: 0.7
CURRENT TREE WITH ROOT: Student
Current node: Student, accuracy: 0.6
Horizontal Expansion: 1
REF added from conj:
Refinements for node Student: []

The best node from the tree is selected and its score calculation is displayed. Since the
expansion is 1, we can not find refine a new class expression with length 1 (Listing 3).

Listing 4. Step 4: Selecting another node for expansion
Node UniversityEmployee score calculation :

Horizontal expansion: 1.0
Start node: 1.0
Acc gain: -1.0
Parent Refinements: 0.0
Refinements: 0.0

score: 0.7
REF added from conj:
Refinements for node UniversityEmployee: []

After the first tree either has no refinements or added the maximum number of nodes,
the second tree best node is selected (Listing 4). Again, horizontal expansion is 1 and
no refinements are found.

Listing 5. Step 5: Going back to the first tree to find expansions
Node Student score calculation :

Horizontal expansion: 3.0
...
score: 0.49999999999999994

CURRENT TREE WITH ROOT: Student
Current node: Student, accuracy: 0.6
Horizontal Expansion: 3
Refinements for node Student: [Student and Student, Student and

UniversityEmployee]
Selected refinement: Student and Studentt acc: 0.6

Node Added
Selected refinement: Student and UniversityEmployee: acc 0.6

Best description so far: Student and UniversityEmployee acc: 0.8
Node Added

We select the node Student again, we are back to the first search tree, but this time
the expansion is 3 and we find a refinement (Listing 5). The best current expression for
the target class is Student ⊓ UniversityEmployee.

Listing 6. Step 6: Using conjunction as refinement
Node Student and UniversityEmployee score calculation :
Horizontal expansion: 3.0
...
score: 0.6600000000000001
REF added from conj:
(Student and UniversityEmployee)
Refinements for node Student and UniversityEmployee: []

246 Computer Science & Information Technology (CS & IT)

Selected refinement: (Student and UniversityEmployee)
(Student and UniversityEmployee) acc: 0.8
Added node: (Student and UniversityEmployee)

Listing 6 shows that nodes created from the conjunction (⊓) of best nodes form
different trees are created. This node was already added in the tree with root Student,
but here its first added as the conjunction before it is added as a normal refinement.

Listing 7. Step 7: Using quantified relations as refinement
Node Student and UniversityEmployee and (not (ResearchProgram)) score

calculation :
Horizontal expansion: 6.0
...
CURRENT TREE WITH ROOT: UniversityEmployee
...
Student and UniversityEmployee and (inProgram some Thing) acc: 1.0
Best description so far: Student and UniversityEmployee and (inProgram

some Thing) acc: 1.0 f-score: 1.0 ref: 40 time: 71
Added node: Student and UniversityEmployee and (inProgram some Thing)

In Listing 7 the best class expression is found

Student ⊓ UniversityEmployee ⊓ (∃inProgram.⊤). (7)

We can see the accuracy, f-score, the number of refinements needed to get here and
time in miliseconds displayed. From this point onward the algorithm will search for
better class expressions but it won’t find any.

VI. RUNNING EXPERIMENTS

Before presenting the results, we briefly introduce what constitutes a test, the setup
and algorithms employed.

A. Experiments Setup
A test in the context of ILP and hypothesis search can be defined as a triplet denoted

by (K, E, C), where K represents the knowledge base, in our case an ontology in
the OWL format, E represents the set of examples, and C represents the target class
expression. For testing the performance of FM, (1) we used datasets from the DL-
Learner and additionally (2) we created our own synthetic datasets tailored to specific
testing scenarios. For the knowledge base K, we used the UOBM generator.

For E and C in the test triplet, we designed a Java algorithm that finds a class
expressions of the format classA ⊓ ∃hasRelationR.Thing. This class expression is
found in previously generated ontology K. We chose this simple structure as the majority
of relations we seek are simple. While this approach uses brute force, and may not be
the most efficient, it serves our requirements due to the simplicity of the expressions.

The users can specify a minimum number of positive examples, After class expres-
sions are found and positive and negative examples are determined, we add an additional
layer of noise to our testing. We randomly remove 5% of examples from both positive
and negative sets, followed by a swapping of examples between the two sets. The
swapping guarantees that the accuracy is not 1.0, because we rarely see this example
in real life. The deletion ensures that the examples do not cover all individuals of the
class, which is again not a real scenario.

 Computer Science & Information Technology (CS & IT) 247

TABLE II
FM PERFORMANCE WITH VARIOUS HEURISTICS ON THE CARCINOGENESIS DATASET

Algorithm Pred. Acc. F1 Time (m) Class expression
OCEL 0.68 - 10 (≥ 2)hasBond.Bond ⊓ ∃amesTestPositive.⊤) ⊔

∃hasStructure.Ar halide
CELOE 0.63 0.65 10 ∃hasStructure.(Amino ⊔Halide)
NaiveALLearner 0.53 - 10 ⊤
FM1 + HT1 0.61 0.61 10 Compound ⊓ ∃amesTestPositive.⊤
FM2 + HT1 0.62 0.71 50 Compound ⊓ (≤ 3)hasAtom.Carbon10
FM + FH 0.61 0.61 10 Compound ⊓ ∃amesTestPositive.⊤

TABLE III
FM PERFORMANCE WITH VARIOUS HEURISTICS ON THE SYNTETIC DATASET

Algorithm Pred. Acc. F1 Time (m) Class expression
OCEL 0.68 - 10 UndergraduateStudent ⊔ ¬Woman ⊓ ¬Article ⊓

¬Software ⊓ ¬Specification
CELOE 0.69 0.76 10 Book ⊔ ¬AssociateProfessor ⊓

∀publicationAuthor.Employee
FM1 + HT1 0.62 0.72 10 (< 1)publicationAuthor.Employee
FM2 + HT1 0.69 0.76 50 Book ⊔¬Professor ⊓∀publicationAuthor.Employee
FM + FH 0.62 0.72 10 (< 1)publicationAuthor.Employee

B. Results
To test the Forest Mixing approach, we used two datasets: (i) one real-world dataset

known as the Carcinogenesis dataset from the DL-Learner, and (ii) a synthetic dataset
tailored to our specific testing scenarios. The Carcinogenesis dataset revolves around
compounds and cancer-related data and contains 142 classes, 4 object properties, 15
data properties and 22.372 individuals. The synthetic dataset which we created consists
of 40 classes, 6 object properties, 15 data properties and 26.766 individuals. These
datasets were chosen for their ability to represent general cases, rather than specific
ones where FMA is theoretically optimized.

The testing employed different heuristics as part of the FM approach. The use of
these various heuristics aids in exploring the impact on performance and results under
a broad array of scenarios, thereby providing a well-rounded understanding of FM’s
capabilities. Table II presents the metric results and the corresponding class expressions
learned from the carcinogenesis dataset, while Table III for the syntetic dataset. Here,
FM1 represents the FM algorithm with a single search tree and FM2 represents the
FMA algorithm with two search trees.

Furthermore, we evaluated FM’s performance in comparison to CELOE in scenarios
involving non-disjoint classes. For this experimental context, we created a compact
ontology encapsulating such non-disjoint classes. This model represents a small segment
of a university ecosystem, comprising students, university employees, each of whom
can be associated either with a research program, a university, or both. T his ontology
consists of 4 classes, 2 object properties, 0 data properties and 11 individuals.

Our underlying assumption here was that FM, due to its inherent design advantages
when dealing with non-disjoint classes, should outperform CELOE in terms of finding
the correct class expression in a more efficient manner. The outcomes of these tests
with corresponding class expressions are listed in Table IV. The first nine tests have
learned the same class expression:

Student ⊓ UniversityEmployee ⊓ ∃inProgram.ResearchProgram (8)

248 Computer Science & Information Technology (CS & IT)

TABLE IV
RESULTS CELOE AND FMA ON NON-DISJOINT CLASS ONTOLOGY

Algorithm Starting Class Time (ms) Refinements
CELOE ⊤ 133 88
CELOE Student 83 16
CELOE UniversityEmployee 86 16
FMA1 ⊤ 41 28
FMA1 Student 37 28
FMA1 UniversityEmployee 38 28
FMA2 ⊤ 44 42
FMA2 Student 41 31
FMA2 UniversityEmployee 41 32
FMA2 Both 53 42

The tenth approach, i.e. FMA2, learned the distinct expression:

Student ⊓ ∃inProgram.ResearchProgram ⊓
UniversityEmployee ⊓ ∃inProgram.⊤ (9)

One additional test was conducted. FMA requires a parameter for limiting the number
of nodes a search tree can it to itself at once. In the previous testing we noticed that
the more trees we have the more refinements we need to find our class expression.
In order to have a conclusion we isolated that case, using FMA with two search trees
and Student as starting class and we varied the number of nodes allowed for a tree to
add. In Figure 3 the x-axis denotes the parameter maxNodesAddedPerTree, which
represents the maximum number of nodes a tree can incorporate into itself during a
single cycle. The y-axis simultaneously tracks two different metrics, distinguished by
color. The red line illustrates the changes in the number of refinement iterations required,
while the blue line maps out the time consumed.

Our observations from the graph suggest that the addition of more than one node
leads to a near-constant requirement of refinements. This insinuates that in a small
ontology environment, the system behaves akin to a single tree with the inclusion of
two or more nodes. The time consumption, depicted by the blue line, increases at the
extreme points of maxNodesAddedPerTree, yet this parameter negligibly affects
the system’s overall performance due to minor temporal differences.

VII. CONCLUSION

We examined the potential benefits of using multiple search trees and a shared pool
of refinements as an enhancement to CELOE in the context of DL-Learner. Our initial
hypothesis suggested that the Forest Mixing approach would outperform CELOE when
handling non-disjoint classes and specific target class expressions. The results from our
experiments indicate that, contrary to our research hypothesis, FM is less efficient than
CELOE. Furthermore, in the context of FM alone, an increase in the number of trees
surprisingly appears to negatively impact performance. These findings prompt further
investigation to fully understand the factors influencing the performance of FM and how
it could potentially be optimized for the task at hand.

It is also conceivable that the current FM algorithm may not be fully optimized with
regard to the number of refinements it uses in order to generate the target class expres-
sions. Given that the number of refinements can substantially increase the complexity of
the search space, excessive refinement operations may result in performance degrada-
tion. Using different heuristics and refinement operators could potentially enhance the

 Computer Science & Information Technology (CS & IT) 249

Fig. 3. Comparison of Time and Number of Refinements Relative to Maximum Number of Nodes Added to a
Search Tree

algorithm’s performance, as the ones used in CELOE might not be the most suitable
for this algorithm.

Additionally, a deeper investigation into the core logic of FM, particularly the man-
agement of the shared pool, could yield valuable insights. Experimenting with various
types of pool management techniques and strategies for combining the most promising
nodes from each tree could further refine the efficacy of the algorithm.

ACKNOWLEDGEMENT

A. Groza is supported by the project number PN-III-P2-2.1-PED-2021-2709, within
PNCDI III.

REFERENCES

[1] L. Bühmann, J. Lehmann, and P. Westphal, ”DL-Learner – A framework for inductive learning on the Semantic
Web,” J. Web Semantics, vol. 39, pp. 15-24, 2016.

[2] J. Lehmann, S. Auer, L. Bühmann, S. Tramp, ”Class expression learning for ontology engineering,” J. Web
Semantics, vol. 9, no. 1, pp. 71-81, 2011.

[3] A. Srinivasan, ”The Aleph Manual”, [Online]. http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/,
2003.

[4] P. Mateiu, A. Groza, and C. Nica. ”Learning Ontologies with Relational Concept Analysis.” 2022 IEEE 20th
Jubilee World Symposium on Applied Machine Intelligence and Informatics (SAMI). IEEE, 2022.

[5] P. Mateiu and A. Groza. ”Ontology engineering with Large Language Models.” in 25th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC23), Nancy, France, 11-14 September
2023, arXiv preprint arXiv:2307.16699 (2023).

[6] Marginean, Anca Nicoleta, and Kando Eniko. ”Towards lexicalization of dbpedia ontology with unsupervised
learning and semantic role labeling.” 2016 18th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC). IEEE, 2016.

[7] F. M. Donini, ”Complexity of Reasoning,” in The Description Logic Handbook: Theory, Implementation and
Applications, F. Baader et al., Eds. Cambridge University Press, 2003.

[8] D. Calvanese and G. De Giacomo, ”Expressive Description Logics,” in The Description Logic Handbook:
Theory, Implementation and Applications, F. Baader et al., Eds. Cambridge University Press, 2003.

250 Computer Science & Information Technology (CS & IT)

[9] I. Horrocks, ”Implementation and Optimisation Techniques,” in The Description Logic Handbook: Theory,
Implementation, and Applications, F. Baader et al., Eds. Cambridge University Press, 2003.

[10] L. Badea and S. Nienhuys-Cheng, ”A refinement operator for description logics,” in International Conference
on Inductive Logic Programming, Springer, pp. 40-59, 2000.

[11] Y. Zhou, B. C. Grau, and I. Horrocks, ”UOBM Generator,” Available at: https://www.cs.ox.ac.uk/isg/tools/
UOBMGenerator/.

Authors

Marco Pop-Mihali has graduated from Technical University
of Cluj-Napoca, Romania, Department of Computer Sci-
ence. His research interests are related to artificial intelli-
gence, currently working at Bosch as a data scientist, solv-
ing problems related to time series prediction, augmenting
input data for large models, and processing big data.

Adrian Groza is professor of Artificial Intelligence at Tech-
nical University of Cluj-Napoca, Romania, Department of
Computer Science. His current research is related to knowl-
edge representation and reasoning. He recently published
the book Modelling puzzles in first order logic, Springer,
that provides a collection of warm-up and fun activities to
start a lecture on logic or computer science.

 Computer Science & Information Technology (CS & IT) 251

https://www.cs.ox.ac.uk/isg/tools/UOBMGenerator/
https://www.cs.ox.ac.uk/isg/tools/UOBMGenerator/
https://users.utcluj.ro/~agroza/publications/
https://users.utcluj.ro/~agroza/puzzles/maloga/slides.html

	Introduction
	Related Work
	Theoretical instrumentation
	Forest Mixing Approach
	Potential Advantages of FMA
	Designing the FM algorithm
	Heuristics designed for FM approach

	Learning ontologies with forrest mixing approach
	Running Experiments
	Experiments Setup
	Results

	Conclusion
	References

