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ABSTRACT 
 
In practical applications, model accuracy alone is insufficient; quantifying model uncertainty is 

crucial, particularly in mission-critical scenarios involving life, money, or reputation. In this 

paper, we propose a novel method called MACAU (Model-based AleatoriC and epistemic 

uncertainty Uantification) and implement it in the LightGBM gradient-boosting framework. 

MACAU enables the quantification of both aleatoric and epistemic uncertainties in Random 

Forest (RF). Additionally, MACAU offers enhanced noveltydetection capabilities, particularly 

valuable for identifying out-of-distribution (OOD) samples. We compare MACAU with other 

RF- or gradient boosted trees-based methods, including RF-native between-variance, quantile 

regression, inductive conformal prediction, exogeneous model for uncertainty estimation using 

the Gaussian negative log-likelihood method, Natural Gradient Boosting, and CatBoost. Our 

evaluation is conducted on both synthetic and real-world regression cases. The results 
demonstrate the effectiveness of MACAU in quantifying model uncertainty, as measured by the 

Continuous Ranked Probability Score, as well as detecting OOD samples, as measured by the 

ROCAUC. 
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1. INTRODUCTION 
 

In mission-critical applications where money, lives, or reputation are at risk, relying solely on 
point-wise predictions of machine learning (ML) models may not be sufficient. While achieving 
high average correctness through appropriate cross-validation schemes is important, it can be 
misleading and provide a false sense of security when there is covariate drift in the out-of-sample 

data, which is commonly encountered in real-life applications [1]. Moreover, in domains such as 
risk modelling, relying solely on point-wise predictions without proper confidence intervals is 
inadequate, particularly when dealing with asymmetric risks. 
 
Therefore, there is a need for advanced uncertainty quantification techniques that provide 
actionable insights beyond average correctness. Estimating uncertainty can be highly valuable in 
various domains and applications as expressing uncertainty in model predictions enables better 

decision-making, risk assessment, and model interpretability. Additionally, it facilitates the 
identification of instances where the model exhibits uncertainty and where further data collection 
or model refinement is necessary. 
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The Law of Total Variance decomposes the total variance into explained and unexplained 

variance components, with the former representing the variance of a random variable 𝑌 in itself, 

and the latter representing the variance between the expectations of   𝑌. These components can be 
interpreted as aleatoric uncertainty and epistemic uncertainty, respectively, which are 
fundamental elements of uncertainty in machine learning [2]. In regression, these components are 
typically combined to form confidence intervals without explicitly disentangling them, even 
though there are cases where a deeper analysis of the model behaviour would benefit from such 
disentanglement. 
 

Various methods exist to express and, in some cases, disentangle the components of total 
uncertainty, particularly in the context of Artificial Neural Networks (ANNs), as discussed in the 
comparison presented in [3]. While ANNs have achieved remarkable breakthroughs and state-of-
the-art performance in non-structured data domains, tree-based models remain highly relevant in 
structured, tabular data settings [4]. Furthermore, as concluded in [3], ensembles, commonly 
employed in tree-based models, appear to be the most suitable approach for capturing 
uncertainty. Therefore, tree-based models have an advantage over ANNs in uncertainty 

modelling, as ensembles are an integral part of their design rather than an afterthought. 
 
In this paper, we investigate how uncertainty modelling can be conducted in tree-based models, 
with a specific focus on Random Forest (RF) [5]. We explore different approaches for modelling 
uncertainty and introduce our own method called MACAU (Model-based AleatoriC and 
epistemic uncertainty q Uantification). MACAU is designed to not only capture uncertainty but 
also disentangle it and detect out-of-distribution (OOD) samples, which can lead to risky 
extrapolations. 

 
MACAU leverages the state-of-the-art LightGBM gradient boosting framework [6], offering a 
powerful and efficient platform for uncertainty quantification in tree-based models. As tree-based 
models are not naturally capable for dealing with OOD data, we augment RF with a capability of 
linear extrapolation which not only facilitates detecting OOD samples but also expands the range 
of applications for this model. MACAU is capable for disentangling aleatoric and epistemic 
uncertainties, offering enhanced tools for understanding predictions in both classification and 

regression tasks, leading to more reliable and trustworthy models. Additionally, MACAU 
incorporates capabilities for detecting OOD samples when the standard uncertainty modelling 
approaches fall short. 
 
In this paper, we quantitatively compare MACAU to its relevant peers in a set of regression tasks 
to evaluate its uncertainty modelling and OOD sample detection capabilities. We assess the 
quality of confidence intervals using the Continuous Ranked Probability Score (CRPS) as a 

metric, which captures the accuracy of predictions and the width of the confidence intervals in a 
single measure [7]. Additionally, we use the Receiver Operating Characteristic (ROC) Area 
Under Curve (AUC) as a metric to evaluate the OOD sample detection capabilities. While this 
comparison is not comprehensive, the initial results demonstrate the compelling performance of 
MACAU, surpassing its peers in both uncertainty quantification and OOD detection. 
 
This paper is structured as follows. First, we discuss related research on enabling tree-based 
models to extrapolate and capture uncertainty in their predictions. Second, we introduce MACAU 

and its capabilities in uncertainty modelling and OOD detection. Third, we conduct quantitative 
comparisons between MACAU and its closest peers using regression experiments on two 
synthetic datasets and one real dataset. Finally, we provide a brief discussion of the findings and 
conclude the paper. 
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2. RELATED RESEARCH 
 

Breiman's Random Forest algorithm [5] aggregates predictions by computing the simple average 
of tree predictions, which has proven difficult to beat [9][10]. However, this approach limits the 
ability of RF to extrapolate and model trends, leading to non-smooth step-wise predictions. To 
address this limitation, researchers have proposed techniques such as piece-wise linear regression 
[11], treed regression [12] and fitting multivariate regressors in tree leaves [13]. In [14], piece-

wise linear models are utilized also in the tree-growing phase with additive feature selection. The 
piece-wise regression is not limited to linear models as discussed in [15] where comparisons 
between linear and kernel-based leaf models have shown the superiority of kernel-based models 
in certain cases. These advancements in modelling techniques offer improved flexibility in 
capturing complex relationships in data. 
 
In real-world applications, it is often necessary to estimate prediction intervals to assess the 
uncertainty associated with point-wise predictions. Several methods have been proposed for 

estimating uncertainty in RF regression, such as bootstrapping [16], subsampling, jackknife 
methods [17], and U-statistics on subsamples [18]. Gradient-Boosted Decision Trees have also 
been used for uncertainty modelling through ensembles or virtual ensembles, which are more 
suitable for larger datasets [19]. These methods can help disentangle aleatoric and epistemic 
uncertainty components when considering the law of variance. 
 
Quantile regression forests [20] replace the mean-squared error loss function with a pinball loss 

to estimate different quantiles of interest. Generalized Random Forests [21], Local-Linear Forests 
[22], and NGBoost [23] allow for estimation of arbitrary quantiles. However, these methods 
focus primarily on modelling aleatoric uncertainty and do not explicitly disentangle uncertainty 
components. 
 
Conformal Prediction (CP) [24] provides an approach to estimate aleatoric uncertainty based on 
transductive inference. However, it requires repeated training of the model, which may be 

intractable in real-world applications. Inductive Conformal Prediction (ICP) [25][26] offers an 
alternative that requires fitting the model and calculating conformance scores only once. ICP 
yields uniform confidence intervals that are independent of the input variables. Conformalized 
Quantile Regression [27] introduces a method that allows for locally varying confidence 
intervals, overcoming the fixed interval limitation of CP. While these methods estimate aleatoric 
uncertainty, they do not explicitly model epistemic uncertainty. 
 
In the context of artificial neural networks, estimating uncertainty can be approached through the 

Gaussian Negative Log-Likelihood (GNLL) loss function [28]. This method can be extended to 
estimate the uncertainty of any model by minimizing the GNLL loss of an exogenous model to 
maximize the likelihood that the predictions follow a Gaussian distribution, providing both point-
wise predictions and their associated standard deviation, representing aleatoric uncertainty. 
 
For RF classifiers, Shaker et al. [29] propose an add-on method that models aleatoric and 
epistemic uncertainty using plausibility theory and tree introspection. The reported uncertainties 

are dependent on the leaf nodes in which a sample falls. However, it should be noted that if the 
out-of-sample data does not adhere to the independent and identically distributed (IID) 
assumptions of the training data, the reported uncertainties may fail to capture the true 
uncertainty. 
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3. MACAU: MODEL-BASED ALEATORIC AND EPISTEMIC UNCERTAINTY 

QUANTIFICATION METHOD 
 

MACAU extends the LightGBM tree-based classification and regression framework [6], 
leveraging its tree-growing procedure without interfering with it. While LightGBM has its own 
functionality for fitting piece-wise linear trees, MACAU takes inspiration from previous research 
on fitting piece-wise models into tree leaves [11][12][15][22]. The primary goal of MACAU is to 
introduce smoothness in the decision function and enable extrapolation capabilities, which are not 
inherently present in RF. 
 

Unlike approaches that solely focus on extrapolation, MACAU places emphasis on modelling the 
uncertainty of predictions to enhance the trustworthiness of the model. It expands the concept of 
fitting piece-wise models beyond regression tasks and incorporates it into classification settings, 
enabling extrapolation in both regression and classification scenarios. MACAU also provides the 
flexibility to use traditional random forest trees without the piece-wise linear models, ensuring 
compatibility with existing RF implementations. 
 
In the subsequent sections, the uncertainty modelling capabilities of MACAU for both regression 

and classification tasks are discussed. As MACAU employs linear models within its leaves, it has 
inherent limitations in accurately capturing the complete extent of uncertainty when the model is 
required to extrapolate beyond the training data. To overcome this limitation, MACAU 
introduces the concepts of novelty, conditional novelty, and inference novelty. These concepts 
serve to identify situations where the model encounters atypical samples or when predictions 
significantly deviate from expectations. By incorporating these concepts, MACAU enhances the 
comprehension of the model's behaviour in extrapolation scenarios. Implementation details of 

MACAU are made available in GitHub [30]. 
 

3.1. Uncertainty Modelling 
 

The Law of Total Variance (Equation 1), sometimes referred to as the Law of Total Uncertainty, 
is a fundamental concept in statistics that decomposes the total variance (or uncertainty) of a 

random variable 𝑌 into two distinct components: the explained, or conditional, variance (aleatoric 
uncertainty) and the unexplained, or variance of conditional expectation (epistemic uncertainty). 

This law provides a framework for understanding and quantifying different sources of 
uncertainty. In Equation 1, 𝑉𝑎𝑟 (𝑌) represents the total variance (total uncertainty) of the random 

variable  𝑌,𝐸[𝑉𝑎𝑟 (𝑌|𝑋)] represents the expectation of conditional variance of 𝑌 given a random 

variable 𝑋 (aleatoric uncertainty), and 𝑉𝑎𝑟(𝐸[𝑌|𝑋]) represents the variance of conditional 

expectation of 𝑌 given 𝑋 (epistemic uncertainty). 
 

Var(𝑌) = 𝐸[𝑉𝑎𝑟(𝑌|𝑋)] + 𝑉𝑎𝑟(𝐸[𝑌|𝑋]) 
(1) 

RF, as an ensemble method, naturally incorporate both components of Equation 1 when we have 
access to individual tree predictions and know the leaves to which the samples belong in each 
tree. Epistemic uncertainty can be estimated by considering the variance among the predictions of 
the trees for that sample whereas aleatoric uncertainty can be computed as the average variance 
within each leaf. MACAU takes advantage of these characteristics by focusing on the leaves of 

the trees and seamlessly integrating with the LightGBM gradient boosting framework. 
 
It is worth noting that the identification phase of MACAU builds upon the already established RF 
model, which includes typical hyperparameter tuning and cross-validation. Once the RF model is 
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deemed satisfactory, MACAU proceeds to its specific identification phase, leveraging the 
existing structure and information provided by the RF. 
 
Similar to piece-wise linear models [11][12][13], MACAU operates within the leaves of the trees. 

Specifically, it fits a leaf-specific model, referred to as a leaf-model, to each leaf in each tree of 

the forest. When fitting the leaf-models, only the features of 𝑋 that were utilized by the 
corresponding tree to reach the leaf are selected, taking advantage of the automatic feature 
selection capability of the RF model. Furthermore, only the samples that have fallen into each 
leaf are utilized for fitting the leaf-models. This approach is applicable for both regression and 
classification tasks. 
 
 
3.1.1. Uncertainty Modelling In Regression 

 

In the context of regression, MACAU employs Automatic Relevance Determination Regression 
(ARDRegression) [31] as the leaf-model. ARD Regression is a Bayesian linear regressor that 
samples coefficients from Gaussian distributions instead of using fixed values as in ordinary 
linear regression. This allows ARDRegression to capture and express its aleatoric uncertainty, 
which is a fundamental aspect utilized by MACAU. ARDRegression also provides automatic 
feature selection capabilities which vanilla Bayesian linear regression does not provide therefore 
it is chosen instead of Bayesian regressor. 

 
During the model identification stage, the ARDRegression model within each leaf of the RF is 
trained using the samples that fell into that specific leaf. Only the features involved in the splits 
leading to the particular leaf are considered. This approach ensures that the samples within each 
leaf share common characteristics based on their features and the prediction task. Essentially, the 
RF acts as a conditional clustering algorithm, dividing the global feature space into sub-spaces 
defined by the leaves. Within each leaf, it is assumed that a linear model can effectively capture 
the underlying relationships between the features and the target variable. This formulation 

enables the modelling of local relationships within each leaf while leveraging the overall 
structure provided by the RF. 
 
During the inference phase, the leaf to which a sample belongs in each tree is identified, and the 

corresponding leaf-model is used to predict the target variable, denoted as 𝑌̂𝑙𝑒𝑎𝑓,𝑖 where I stands 

for sample index, and estimate the corresponding uncertainty represented by σ̂𝑙𝑒𝑎𝑓,𝑖  for each 

sample. In contrast to traditional random forest approaches that rely solely on observed mean 
values obtained during the model identification phase, MACAU combines the leaf-model 

predictions𝐸[𝑌̂𝑙𝑒𝑎𝑓,𝑖]and uncertainties from the tree-models using Equation 1 to calculate the final 

uncertainty for each sample, as shown in Equation 2. 
 

𝑽𝒂𝒓(𝒀̂𝒊) = 𝑬[𝛔̂𝒍𝒆𝒂𝒇,𝒊] + 𝑽𝒂𝒓(𝒀̂𝒍𝒆𝒂𝒇,𝒊) 

(2) 
Additionally, MACAU offers a basic version where linear models are not fitted within the leaves. 
In this case, the leaf predictions are the same as those in the classic RF but accompanied by 

uncertainty measures. The uncertainty σ̂𝑙𝑒𝑎𝑓,𝑖 in this case is calculated as the 

variance 𝑉𝑎𝑟(𝑌𝑙𝑒𝑎𝑓) observed during the model identification phase. Therefore, it is leaf-

dependent rather than sample-specific, as it is in the piece-wise linear tree version of MACAU. 
This flexibility allows users to choose the appropriate version of MACAU based on their specific 
requirements, considering factors such as computational complexity and model interpretability. 
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3.1.2. Uncertainty  Modelling  in  Classification 
 

Similar to regression, both aleatoric and epistemic uncertainties can be modelled for predicted 

class probabilities. In MACAU, a logistic regression is employed as the leaf-model for 
classification, replacing the ARDRegressor used in regression. However, logistic regression does 
not inherently provide a means for estimating the variance of predicted probabilities. To 
overcome this limitation, MACAU utilizes the Delta Method [32] instead of techniques like 
bootstrapping, which primarily captures epistemic uncertainty. The Delta Method enables the 
construction of confidence intervals for the probabilities, similar to regression. 
 

During the model identification phase, a logistic regressor is fitted in each leaf following a 
similar approach used in regression. After fitting a logistic regressor in a leaf, a covariance matrix 
is calculated using the training samples available in the leaf along with the selected features. This 
covariance matrix is later utilized during inference. The following equation is used to calculate 

the covariance matrix 𝐶𝑜𝑣𝑙𝑒𝑎𝑓: 

𝐶𝑜𝑣𝑙𝑒𝑎𝑓 = (𝑋𝑇𝑉 ⋅ 𝑋)−1 
(3) 

Here, 𝑋 represents the design matrix of shape (𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) where the both are specific to 

the leaf, and 𝑉 is a vector of shape 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 obtained by taking the element-wise product of the 

predicted probabilities of the training set available in the leaf. 
 
During inference, the leaf-models are used to predict the dependent variable and estimate the 
prediction uncertainty in each leaf, similar to the regression approach. However, since the leaf-
model itself does not naturally provide uncertainty estimates, the Delta Method is utilized to 
quantify uncertainty. 
 

First, the gradient ∇𝑙𝑒𝑎𝑓,𝑖  of the predicted probabilities is calculated in each leaf-model. The 

gradient for a sample in a leaf is computed as follows: 
 

∇𝑙𝑒𝑎𝑓,𝑖= 𝑝𝑖 ⋅ 𝑋𝑖 
(4) 

Here, 𝑝𝑖 is the predicted probability for the i-th sample obtained by taking the element-wise 

product of the predicted probabilities, and 𝑋𝑖 represents the feature vector for the i-th sample 
considering only the selected features chosen by the tree for this particular sample. After 
computing the gradient, the uncertainty σ𝑙𝑒𝑎𝑓,𝑖 is calculated for each sample: 

 

σ𝑙𝑒𝑎𝑓,𝑖 = √∇𝑙𝑒𝑎𝑓,𝑖 ⋅ 𝐶𝑜𝑣𝑙𝑒𝑎𝑓 ⋅ ∇𝑙𝑒𝑎𝑓,𝑖 

(5) 

Here, ∇𝑙𝑒𝑎𝑓,𝑖 represents the i-th element of the gradient vector. As a result, each leaf-prediction 

now includes the predicted probability along with its associated uncertainty expressed as σ. Once 
again, the Law of Total Variance (Equation 1) combines all tree predictions together and forms 

the collective prediction with associated uncertainties. 
 

3.2.  Novelty Modelling 
 
While tree-models are effective at capturing and quantifying prediction uncertainties within their 

local sub-spaces, they have limitations when it comes to extrapolation, which involves making 
predictions beyond the observed data range. It is important to exercise caution when 
extrapolating with linear tree-models because they assume a linear relationship between variables 
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even in unobserved regions. However, in reality, the relationship between variables can be 
complex and non-linear beyond the observed range. Solely relying on linear models for 
extrapolation can lead to unreliable and potentially inaccurate predictions since the model 
assumptions may not hold true in the extrapolated region. 

 

3.2.1. Conditional Novelty 
 

To identify potential extrapolation in tree-models, MACAU employs the Mahalanobis distance to 
quantify the novelty of samples within each leaf in RF. This measure, known as conditional 
novelty, is calculated using leaf-specific covariance estimators obtained during the model 

identification phase where the covariance estimators focus on selected features by the trees in the 
forest and samples within those leaves, similar to uncertainty modelling. The use of the Oracle 
Approximating Shrinkage Estimator [33] improves the stability of the estimation process, 
particularly when the number of samples within each leaf is limited. 
 
To facilitate the interpretation of the Mahalanobis distance, MACAU applies tree-wise quantile 
normalization, which transforms the distance into a standard normal distribution for better 
comparability and comprehension. During the model identification phase, a scaler is fitted for 

each tree using the Mahalanobis distances computed from the training set. During inference, the 
tree-specific scaler is utilized to calculate the z-score for each sample, replacing the original 
Mahalanobis distance. The resulting conditional novelty is computed as the mean of all the 
normalized conditional novelties across the trees. 
 
A high normalized Mahalanobis distance (or z-score) for a sample indicates a significant 
difference between its feature values and the observed training data, suggesting that the sample 

resides in a novel or unfamiliar region within the feature space. Thus, the normalized 
Mahalanobis distance serves as a quantitative metric for detecting samples that may extrapolate 
beyond the observed range of the training data. It provides valuable information, indicating the 
potential for the corresponding tree-model to generate unreliable predictions due to extrapolation. 
 

3.2.2 Inference Novelty 
 

The concept of conditional novelty, derived from the covariance matrix computed within each 
leaf using the relevant samples and selected features, is not directly associated with the actual 
predicted value. It is possible for the Mahalanobis distance to be high without significantly 
affecting the predicted value, or for it to have a limited impact due to variations in feature 
contributions. To address this, MACAU incorporates inference novelty, which assesses the 
deviation of the actual predicted value from the observations made during the tree-model 
identification phase. 

 
The calculation of inference novelty involves fitting a leaf-wise quantile normalization scaler 
using the predicted values of each leaf-model during the MACAU identification phase. This 
scaler enables the computation of the z-score for each prediction during inference. The final 
inference novelty for a sample is obtained by averaging the z-scores across all trees. 
 
The resulting inference novelty provides valuable information about the typicality of the 

predicted value within its context. A value of 0 indicates that the predicted value is typical, while 
high or low values indicate deviations from the typical pattern, with directional information 
incorporated. The absolute value of the z-score represents the degree of atypicality in the 
prediction, thereby indicating the presence of extrapolation. This allows for a quantitative 
assessment of the novelty in the predicted values and helps identify cases where extrapolation 
may occur. 
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3.2.2. Novelty 
 

In MACAU, the novelty feature aims to detect novelty in the input, regardless of whether the 
features were selected by the trees. The rationale behind this is to identify changes in features that 
may not have been initially selected by the trees but may have become relevant to the prediction 
task due to changes in the input data. 
 
To compute novelty and specifically detect OOD samples, MACAU takes a localized approach 

compared to traditional methods that use a global covariance matrix. MACAU focuses on a 
specific subspace aligned with the prediction task, similar to its uncertainty modelling and other 
novelty modelling techniques. This tailored approach ensures that MACAU's notion of novelty is 
well-suited to the specific prediction task, unlike conventional approaches that rely solely on the 
data without considering its intended application. 
 
This refinement is desirable because the reliable computation of the Mahalanobis distance 
assumes an elliptical data distribution, which may be overly restrictive when considering all the 

data. However, within the localized context of the leaves in MACAU's trees, it is more 
reasonable to assume that the data within each leaf follows an elliptical distribution. 
 
Similar to the conditional novelty feature, the Mahalanobis distances are normalized using tree-
wise quantile normalization. This normalization process converts the distances into standardized 
z-scores, allowing for a consistent measure of novelty across different samples and leaves. The 
final novelty value is obtained by calculating the mean of the normalized Mahalanobis distances 

across all trees in the forest. 
 

4. QUANTITATIVE COMPARISON BETWEEN UNCERTAINTY MODELLING 

METHODS 
 
In the context of regression tasks, there are several established methods for estimating uncertainty 

in tree-based models. However, in the case of classification settings, quantifying uncertainty is 
not as straightforward and lacks the same level of research and application. As a result, this 
section primarily focuses on evaluating uncertainty estimation methods in regression settings, 
where these methods have been more extensively studied and widely utilized. 
 
Uncertainty estimation in regression can be approached through bootstrapping and ensembles. 
This involves generating multiple bootstrap samples from the training data and training multiple 
models, whose predictions are then averaged. As a baseline, we use Light GBM with the RF 

booster, representing the bootstrapping approach. We also include CatBoost, a gradient boosted 
trees-based method capable of capturing aleatoric and epistemic uncertainty [19]. 
 
Direct modelling of uncertainty is another approach, exemplified by Quantile Regression [20] 
using Light GBM with the RF booster. NGBoost  models the distribution of confidence intervals 
directly, allowing any model as the primary model. Here, decision trees are used to create a RF 
model. GNLL [28] captures aleatoric uncertainty with a primary model and a separate exogenous 

model to model prediction uncertainty. In this comparison, a linear exogenous model is 
employed. 
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While the aforementioned methods provide sample-specific uncertainty estimates, ICP [25][26] 
can estimate global uncertainty. ICP is a straightforward yet effective approach, implemented 
here using LightGBM with the RF booster as the primary model. 
 

Additionally, we evaluate MACAU in two forms: MACAU (basic) without piece-wise linear 
models, and MACAU (linear) with tree models capable of extrapolation. Both versions are 
implemented on the LightGBM framework. 
 
For the evaluation, sane default parameters are used for all models without hyperparameter 
tuning. Consistent hyperparameters are employed whenever possible. 

 

4.1. Synthetic Id Regression 
 
The effectiveness of uncertainty modelling methods is demonstrated using a synthetic 1D 
regression non-linear function with Gaussian heteroscedastic noise, as described in Equation 6. 
Additionally, the methods are examined for their behaviour in situations requiring extrapolation, 
and their performance in such scenarios is assessed.  
 

𝑌 =
1

2
𝑋 + 𝑠𝑖𝑛(𝑋) + 𝑁(0, 1) + 𝑁(𝑋, 0.12) 

(6) 
In this experiment, all models consist of 100 trees. The RF models employ fully grown trees, 
while CatBoost is restricted to three depth trees, as commonly done in gradient boosting. To 
encourage the development of diverse trees capable of predicting smooth functions, a sub-

sampling rate of 0.1 is used. The models are fitted with 2k samples, where 2k samples are 
reserved for the in-distribution test set, and 6k samples are used for OOD samples. 
 
Figure 1 illustrates the performance of different models in capturing the noise present in the 
function. The RF model, which solely captures epistemic uncertainty, fails to effectively capture 
the noise. In contrast, the other methods exhibit varying degrees of success in capturing the noise. 
Quantile Regression and NGBoost tend to overestimate the variance, while CatBoost tends to 

underestimate it. On average, ICP successfully captures the noise in the function, while GNLL 
demonstrates the ability to capture the linearly increasing noise. Both versions of MACAU 
effectively capture the heteroscedastic noise and accurately identify it as aleatoric uncertainty. 
The quantitative results are presented in Table 1 (see 1DSynth(CRPS) column). 
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Figure 1. Comparison between uncertainty and OOD detection methods. 

 
Detecting extrapolation presents a significant challenge for most models, but MACAU stands out 
with its specialized features designed precisely for this purpose. While CatBoost has capabilities 
for expressing epistemic uncertainty, it struggles to model trends and extrapolate due to its typical 

tree-based structure. As a result, CatBoost faces difficulties in effectively identifying OOD 
samples. Similarly, MACAU (basic), lacking extrapolation abilities like CatBoost, struggles to 
properly express its epistemic uncertainty in OOD scenarios. However, MACAU (linear), 
equipped with trend-modelling capabilities, demonstrates its prowess in handling extrapolation 
by exhibiting a linear increase in epistemic uncertainty when encountering OOD situations. 
 
In addition to their uncertainty modelling capabilities, both MACAU models employ specialized 

techniques to detect extrapolation and identify abnormally high or low predictions. The concepts 
of novelty and conditional novelty are crucial in identifying covariate drift. Furthermore, the 
concept of inference novelty allows for the detection of deviations between the final predictions 
and what was observed during the model identification phase. Both MACAU models excel in 
capturing extrapolation by leveraging novelty. However, MACAU (linear) goes a step further by 
incorporating inference novelty to enhance its ability to identify extrapolation patterns. In 
contrast, MACAU (basic), being a tree-based model, lacks the necessary extrapolation 
capabilities and, therefore, cannot effectively utilize inference novelty for extrapolation detection. 

The quantitative results are as presented in Table 1 (see 1DSynth(AUC) column) 
 



Computer Science & Information Technology (CS & IT)                                           263 

4.2. Multiple  Regression 

 
For multiple regression, two datasets are utilized. The first is a synthetic linear multivariate 
regression experiment with 10,000 samples and 10 features. Out of these features, five are 
relevant to the target variable, and the target variable itself is affected by noise. The second 
dataset is the California Housing Dataset, which contains eight input features and one target 
variable. In both cases, the datasets are divided into training and test sets using a 50/50 split. 
 
All models in the evaluation use common hyperparameters. A sub-sampling rate of 0.8 is applied, 

with a minimum of 20 samples required in each leaf and a maximum of 31 leaves allowed. The 
random forest models are fully grown, while CatBoost is limited to a depth of three. In addition 
to the tree-based models, a linear regression model is included in the evaluation and serves as a 
baseline for comparison. 
 
Table 1 presents the CRPS metrics of the models (see Synth(CRPS) column). In the synthetic 
dataset, the baseline model (inductive conformal linear prediction) performs the best in capturing 

the target variable. This result is not surprising, considering that the underlying relationship in the 
dataset is linear. Following the baseline model, MACAU (linear) ranks second, while the other 
models lag behind, sometimes by a significant margin. Interestingly, CatBoost struggles greatly 
in this dataset, contrary to expectations. 
 
In the California Housing Dataset (see Cali(CRPS) column), MACAU (linear) emerges as the top 
performer in capturing the target variable. These results indicate that MACAU demonstrates 
fairly promising capabilities in modelling confidence intervals and capturing the underlying 

uncertainty in the predictions. 
 
To evaluate the methods' ability to detect OOD samples, we use the same datasets. The OOD 
challenge is designed by dividing each feature, one at a time, into two groups based on feature 
values: the top 50% and the bottom 50%. Each group represents either in-sample or OOD data. 
For model training, we reserve 50% of the in-sample data, while the remaining 50% is used for 
evaluation alongside the OOD data. To ensure unbiased OOD detection, we repeat this process 

twice for each feature, switching between in-sample and OOD data. In total, we conduct 
experiments equal to twice the number of features in the dataset. The results are averaged to 
calculate the ROC AUC with 95% confidence intervals, as shown in Table 1 (see Synth(AUC) 
and Cali(AUC) columns). As a baseline for comparison, we utilize Isolation Forest [34], a 
powerful tree-based anomaly detection algorithm known for its effectiveness in detecting OOD 
samples. 
 

The results indicate that MACAU and Isolation Forest are the only methods that consistently 
detect OOD samples in both the synthetic and California Housing dataset cases. MACAU's 
novelty capability performs exceptionally well in capturing OOD samples and surprisingly 
outperforms Isolation Forest in OOD detection. This may be because Isolation Forest considers 
the entire global feature space, while MACAU focuses on smaller, leaf-specific sub-spaces, 
which can make separating OOD samples easier. 
 
Regarding MACAU's conditional novelty capability, it is evident that OOD detection is only 

possible when OOD is introduced to features relevant to the prediction task. This results in high 
variance in the OOD detection capabilities observed in these results. This behaviour is expected 
because conditional novelty is not aware of features that are not selected by the trees. Similarly, 
the inference novelty capability captures instances where extrapolation significantly influences 
the actual predictions. However, it is surprising that MACAU (linear) does not demonstrate 
effective OOD detection with its epistemic uncertainty. This contradicts the expectation that 
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epistemic uncertainty should indicate a lack of knowledge. In summary, MACAU's novelty 
emerges as the superior method for OOD detection compared to the other evaluated methods in 
these experiments. 
 

Table 1. Confidence interval quality and OOD detection capabilities of the evaluated methods 

 
Method 1DSynth(CRPS) Synth(CRPS) Cali(CRPS) 1DSynth(AUC) Synth(AUC) Cali(AUC)

CatBoost aleatoric uncertainty 0.32 857.6 0.46 0.55 0.5 [0.48;0.52] 0.5 [0.23;0.7]

CatBoost epistemic uncertainty 0.44 30.97 0.63 0.53 0.5 [0.44;0.54] 0.51 [0.09;0.77]

CatBoost total uncertainty 0.32 870.09 0.46 0.55 0.5 [0.49;0.51] 0.49 [0.36;0.7]

GNLL 0.29 30.28 0.43 0.5 0.5 [0.48;0.52] 0.37 [0.3;0.7]

Inductive conformal linear prediction 0.49 5.99 0.46 0.7 0.5 [0.44;0.55] 0.44 [0.37;0.73]

Inductive conformal prediction 0.3 30.34 0.44 0.66 0.5 [0.47;0.53] 0.47 [0.28;0.74]

Isolation forest 1 0.86 [0.77;0.94] 0.83 [0.72;0.98]

MACAU (basic) aleatoric uncertainty 0.29 30.37 0.43 0.44 0.5 [0.47;0.53] 0.49 [0.25;0.71]

MACAU (basic) conditional novelty 1 0.61 [0.49;1.0] 0.65 [0.4;0.95]

MACAU (basic) epistemic uncertainty 0.35 32.77 0.51 0.2 0.5 [0.45;0.54] 0.49 [0.26;0.74]

MACAU (basic) inference novelty 0.5 0.5 [0.48;0.52] 0.5 [0.28;0.72]

MACAU (basic) novelty 1 1.0 [0.99;1.0] 0.93 [0.77;0.98]

MACAU (basic) total uncertainty 0.29 32.87 0.43 0.32 0.5 [0.47;0.53] 0.49 [0.28;0.74]

MACAU (linear) aleatoric uncertainty 0.29 19.39 0.4 0.54 0.5 [0.34;0.67] 0.52 [0.27;0.81]

MACAU (linear) conditional novelty 1 0.61 [0.49;1.0] 0.65 [0.4;0.95]

MACAU (linear) epistemic uncertainty 0.39 20.89 0.46 0.95 0.5 [0.27;0.74] 0.57 [0.38;0.86]

MACAU (linear) inference novelty 1 0.6 [0.49;0.99] 0.61 [0.45;0.91]

MACAU (linear) novelty 1 1.0 [0.99;1.0] 0.93 [0.77;0.98]

MACAU (linear) total uncertainty 0.29 20.44 0.4 0.63 0.5 [0.31;0.7] 0.56 [0.36;0.83]

NGBoost 0.32 45.95 0.48 0.53 0.5 [0.46;0.54] 0.49 [0.21;0.76]

Quantile regression 0.31 37.02 0.45 0.28 0.5 [0.26;0.75] 0.48 [0.08;0.71]

Random forest 0.35 32.77 0.51 0.2 0.5 [0.5;0.5] 0.49 [0.5;0.5]  
 

5. DISCUSSION 
 
In this paper, we compared several methods for expressing uncertainty in tree-based models. 
While the evaluation datasets used were relatively easy to model, the results reveal the limitations 
of these methods. Expressing aleatoric uncertainty is not always straightforward. We 
quantitatively evaluated performance using the CRPS metric and found that certain methods 
struggle to accurately represent aleatoric uncertainty, whereas MACAU performs reasonably well 
compared to other evaluated methods. 

 
Capturing epistemic uncertainty presents an even greater challenge. This is particularly true for 
detecting OOD samples. Reliable estimates of epistemic uncertainty are crucial for applications 
like active learning, where new samples are selectively collected to improve the model, and in 
domains where covariate drift is expected. In our comparison, MACAU is the only method 
capable of providing meaningful values for epistemic uncertainty, although it may not be 
sufficient for active learning or OOD detection. However, MACAU offers additional features 

such as conditional novelty, inference novelty, and novelty in particular to address these 
challenges, providing better tools for detecting risky predictions. 
 
Although this study only scratches the surface of the potential uses for the additional information 
provided alongside the actual predictions, practitioners can leverage these outputs based on their 
specific requirements and use cases. Our hope is that the rich information provided by MACAU 
will contribute to the development of more trustworthy and reliable models for real-world 
applications. 
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6. CONCLUSIONS 
 
In domains where the consequences of supervised machine learning models have significant 
impacts on matters of life, money, or reputation, relying solely on average correctness is 
insufficient. It is crucial to discern when to trust each prediction made by the model especially 
when real-world use cases often present challenges that defy the fundamental assumptions of 
supervised machine learning, such as data independence and identical distribution. These 

challenges can result in potentially misleading summary statistics and highlight the need for 
improved methods to comprehend predictions. 
 
This paper introduces MACAU, a novel method that addresses the aforementioned challenges by 
leveraging tree introspection in random forest models. MACAU leverages the state-of-the-art 
LightGBM framework to provide valuable insights into the trustworthiness of predictions. By 
quantifying two types of uncertainty - aleatoric uncertainty and epistemic uncertainty - MACAU 
offers a deeper understanding of predictions. 

 
Furthermore, MACAU tackles the inherent difficulties associated with detecting covariate drift in 
tree-based models by introducing additional features that can be used in conjunction with the 
uncertainty measures. The conditional novelty detects drift in the covariates that are relevant to 
the predictions, the inference novelty identifies significant discrepancies between the predicted 
values and the observed values in the model training data, helping to identify potential issues in 
the model's performance, and lastly, the novelty detects drifts in the data that may be relevant to 

the model but are not necessarily utilized by it, making it particularly useful for identifying OOD 
samples. By incorporating these features, MACAU equips decision-makers with additional 
information to evaluate the trustworthiness of predictions and make informed decisions.  
 
To evaluate the performance of MACAU relative to other state-of-the-art methods designed for 
similar tasks, a comparison was conducted. The results demonstrate that expressing uncertainty in 
models is far from trivial. However, based on the evaluation presented in this paper, MACAU 

performs favourably against other methods when evaluated using the CRPS metric. Furthermore, 
in terms of OOD detection, MACAU surpasses all other evaluated methods, including a 
dedicated OOD detection method in terms of ROCAUC. These evaluation results, while not 
exhaustive, provide compelling evidence of the trustworthiness and reliability of MACAU's 
capabilities. 
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