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ABSTRACT 
 
Perception is a very critical and challenging task in the realm of autonomous driving. The current 

approach relies on a sophisticated model pipeline built upon various deep learning models, each 

tasked with solving distinct challenges. This leads to a large model size. 

 
The proposed approach dissects an entire driving scene into two distinct elements: driving 

backgrounds that are not for vehicles to drive onto and road segments that are for vehicles 

driving. It performs the pointwise fusion using disparity image and RGB image. It uses pointwise 

and depthwise convolution to reduce multiplication times. It integrates image segmentation neural 

networks Deeplab V3 as backbone and significantly reduces the model size using ResNet-18. 

 
The efficacy of the proposed neural network is substantiated through validation using the 

Cityscape dataset, yielding an impressive 0.979 accuracy, 0.948 precision, and a 0.947 F1-score. 
Furthermore, it boasts a training speed that is five times faster compared to conventional UNet-

based models, and the model size is eight times smaller than UNet-based models. 
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1. INTRODUCTION 
 

Real-time object detection and image segmentation have a considerable leap in their 

performance, benefiting from the escalation of GPU and deep learning performance [1]. The 

major approach most research papers use in object detection uses deep learning methods. Figure 
1 shows the major milestones object detection has gone through. 

 

 
 

Figure 1. Roadmap of Object Detection [1] 

https://airccse.org/csit/V13N18.html
https://airccse.org/csit/V13N18.html
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The performance escalation enables object detection and background understanding applications 

in autonomous driving. Object detection is critical for autonomous driving. Autonomous driving 

cars generally have four main components: Perception, Localization, Plan, and Control. 

Perception allows cars to perceive their environments and to make sense of them. For example, 
real-time object detection involves road, lane, vehicle, traffic sign, and pedestrian detection. 

Simultaneous localization and mapping (SLAM) are common approaches to finding vehicle 

location once the environment is given. After a vehicle knows its environment and where it is 
located, that information is sent to the vehicle controller together with the directions from the 

user to give the best control decisions for vehicle actions. The controller subsequently transmits 

control commands to the vehicle's hardware, instructing it to act in the real world. Figure 2 shows 
the autonomous driving sequential pipeline [2]. 

 

 
 

Figure 2. Autonomous driving sequential pipeline [2] 

 
There are some significant challenges in autonomous driving. To realize autonomous driving, this 

process needs to be real-time. In an actual application, it needs to be shorter than standard human 

reaction time to hazardous conditions. Matheson [3] has found an answer in a new study that 
shows humans need about 390 to 600 milliseconds to detect and react to road hazards by giving 

only a single glance at the road. Perception is the most important for vehicles to understand the 

environment to move safely in real-time. It requires real-time processing of surrounding 
environment information gathered by multiple sensors. On average, 4,000 GB of data is 

generated daily for an autonomous driver vehicle [4]. Object detection is inaccurate under 

extreme conditions, such as complex weather conditions, road conditions, traffic conditions, 

situations involving accident liabilities, or un-trained situations. Common sensors deployed in 
vehicles include LiDAR, camera, radar, sonar, and GPS. Each sensor has its own advantages and 

disadvantages. For example, LiDAR has the best resolution and precise perception, even in 

darkness. But it is with high cost and low performance on rainy days or detecting moving parts. 
The camera is cost-efficient but lacks depth information and will not work well in the dark.  

 

Deep learning models are trained using datasets gathered by researchers and developers. It 
includes images annotated by humans. However, there are always situations that are not captured 

by these datasets. Using a generalized deep-learning model for objects that have never been seen 

before or have no annotation is critical. It also required dataset annotation to be accurate. Deep 

learning performance must be stable under different viewpoints, illuminations, intraclass 
variations, accurate object localization, dense and occluded object detection, speed-up detection, 

etc. 
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In this work, we follow the idea of Liang et al. [5] by splitting the full driving scene into objects 
and background with pointwise fusion using depth images. Our main objective of this study is to 

detect drivable roads from a RGB image. We will leave object detection as the next step of work. 

A depth image is point-wise fused or concatenated to the RGB image. The backbone structure 

consisting of Deeplab V3 [6] and ResNet-18 will then use this image, enabling dilated 
convolution, disabling striding, or disabling pooling in the last layer. Then the output of ResNet-

18 is concatenated to the output layer of ASPP. The objective is to handle two tasks object 

detection and extracting more information from the background. The proposed method is 
compared to the UNet-based method, and the effect of the data augmentation method is 

evaluated. The proposed change significantly reduces computation time and model size but 

performs similarly toUNet. 
 

The remainder of the paper is organized as follows. Section II gives an overview of related work. 

Section III describes the proposed approach. Section IV demonstrates the model pipeline, 

experiments, and results. Section VI concludes the paper. 
 

2. RELATED WORKS 
 

Atik et al. [7] performed a comparative study for automatic building extraction on different data 
sources using DeeplabV3+ architecture with ResNet-18, ResNet-50, Xception, and MobileNetv2 

models. DeeplabV3 with ResNet-18 achieved slightly worse performance in terms of F1 score 

compared with ResNet-50 but better than other models under test. However, they didn’t discuss 

the model size and computational cost. Their study focuses on building extraction. This task 
overall has much fewer objects or details of obstacles that will make it an easier task compared 

with road background understanding. 

 
Mahmud et al. [8] applied DeeplabV3+ architecture with ResNet-18, ResNet-50, and 

MobileNetv2 models to extract the road segment from imagesof unmanned aerial vehicles. Their 

study shows that DeepLab V3+ with Resnet-50 beat DeepLab V3+ with Resnet-18 and Mobile 
NetV2 by 1.39% and 7.25%, respectively, for MeanF1. It has similar drawbacks as [7].  

 

Sadaf et al. [9] suggested transfer learning-based approaches using state-of-the-art semantic 

segmentation models, namely UNet++, PSPNet, PANNet, LinkNet, and DeepLabV3+ to detect 
small-size obstacles under strict lighting and illumination conditions. It is observed that 

DeepLabV3 + ResNet-18 as backbone architecture shows the highest results with a mean 

intersection-over-union score of 64% along with a 95% value of accuracy. 
 

Li et al. [10] showed that one common strategy to improve semantic understanding performance 

is to attain high-resolution feature maps with strong semantic representation. The other strategy is 

to use atrous convolutions and feature pyramid fusion. Inspired by the Optical Flow for motion 
alignment between adjacent video frames, they proposed a Flow Alignment Module (FAM) to 

learn Semantic Flow between feature maps of adjacent levels. They can integrate their module 

into a common feature pyramid structure and exhibit superior performance over other real-time 
methods, even on lightweight backbone networks, such as ResNet-18. 

 

Chen et al. [6] developed the Deeplab V3 model by revisiting Atrous Convolution in applying 
semantic image segmentation. They designed modules that employ Atrous Convolution in 

cascade or in parallel to capturing multi-scale contexts by adopting multiple Atrous rates. The 

output is further augmented with image-level features that encode global context to boost 

performance. They perform comparably with other state-of-the-art models on the PASCAL VOC 
2012 semantic image segmentation benchmark. 

 



272                                    Computer Science & Information Technology (CS & IT) 

Multi-sensor fusion with multitasking is a main area associated with this study. F-PointNet [11] 
uses a cascade flow structure to fuse all sensor information into one for training. Liang et al. [5] 

proposed exploiting multiple related tasks for accurate multi-sensor 3D object detection by 

applying an end-to-end learnable architecture that reasons 2D and 3D object detection ground 

estimation and depth completion. They achieved high accuracy using the Kitti dataset 
benchmark. The limitations mainly are less computational speed, stability of point element-wise 

fusion, and its complex model pipeline, to name a few. Besides, only 3D object detection was 

incorporated into the proposed approach. Much critical information is not defined, which needs to 
be extracted again later, such as drivable road vs. drivable. Second, point- and ROI-wise feature 

fusion are based on matrix-element-wise summations. It will be sensitive to matrix relative 

position element shift, rotation, scaling, etc. It is applied to object detection and limited detail in 
background understanding, such as drivable road or driving lane detection. Its process speed is 

ten frames per second. It is not robust enough for road hazards. 

 
 

Figure 3. Multi-sensors and multi-tasking methods for 3D object real-time detection [12] 
The main contribution of our work is as follows: 

 

●  We developed a lightweight image segmentation model made of Deeplabv3 and Resnet-

18 that can find drivable segments from RGB images. 

●  Our light-weight model uses the fused image from depth and RGB images as input. This 

improves model performance compared with the benchmark. 

●  When compared to UNet, our model achieves similar performance in terms of precision, 

accuracy, and F1 score with a significantly smaller size and less training time. 
 

3. APPROACH 
 

In this section, the proposed approach to perform image segmentation is discussed. The 
background image can be split into drivable and non-drivable spaces. Deeplab V3 and UNet can 

perform image segmentation to interpret the image information as a drivable and non-drivable 

section. For the backbone, instead of using large networks such as ResNet-101 proposed in the 

original paper, ResNet-18 was used, which is a much smaller version. This helps to speed up 
training and testing iterations. Furthermore, this smaller model has its advantages in terms of 

computational cost and deployment in edge devices in Autonomous Vehicles. We have followed 

the strategy proposed by [5]. We use the disparity image containing the depth information 
concatenated to the RGB image as a new channel. This helps the model to further understand the 

background information. 
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3.1. Encoder-Decoder Model - UNet 
 

Ronneberger et al. [12] developed a UNet model inspired by Encoder/Decoder for biological 
microscopy image segmentation. This model is implemented in this study per the original paper 

and the referring tutorial [13]. The UNet architecture in Figure 4 comprises two parts, a 

contracting path to capture contexts and a symmetric expanding path that enables precise 
localization. A batch normalization is added to compare with the original structure per referred 

paper. The contracting path is a fully convolutional network consisting of repeated 3X3 

convolutions with zero padding. There is a rectified linear unit after each convolution layer. Then 

there is a 2X2 max pooling operation with stride 2 for down-sampling. At each down-sampling 
step, the number of channels is doubled. The expanding path uses 2X2 up-convolution to halve 

the number of feature channels. Each up-convolution layer concatenates with the corresponding 

extracted low-level feature map from the contracting path. Then, there are two 3X3 convolutions 
followed by a rectified linear unit. The purpose of cropping is to handle the loss of border pixels 

in every convolution. Finally, there is a 1X1 convolution to map each component feature vector 

to the desired number of classes. In total, the network has 23 convolution layers. Reducing the 
number of feature maps while increasing their dimensions. Feature maps from the down-

sampling part of the network are copied to the up-sampling part to avoid losing pattern 

information. Finally, a 1×1 convolution processes the feature maps to generate a segmentation 

map that categorizes each input image pixel. The total number of parameters of UNet is 30M, and 
the model size is 386MB. 

 

 
Figure 4. UNet Architecture  

(Blue Boxes Represent Feature Map Blocks with Indicated Shapes) [9] 

 

3.2. Deeplab V3+ 
 
Deeplab family [14] has been extensively studied since it was introduced. Using Atrous 

Convolutions, Atrous Spatial Pyramid Pooling (ASPP), Global Pooling, and Conditional Random 

Fields (CRF) brought about significant performance improvement. In this work, DeeplabV3+ 
architecture is used, which removed the CRF post-processing layer while keeping the Atrous 

Convolution layers, ASPP, and Global Pooling in the Encoder, and adding a skip connection to 

feed low-level feature from encoder to decoder, as is shown in Figure 5 [6]. The original paper 

performed better than previous versions of Deeplab papers with this architecture. 
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Figure 5. Deeplab V3+ [6] 

 

For the backbone, instead of using large networks such as ResNet-101 proposed in the original 
paper, ResNet-18 is used, which is a much smaller version. This helped to speed up training and 

testing iterations. Furthermore, this smaller model has its advantages in terms of computational 

cost and its feasible deployment in edge devices in Autonomous Vehicles. 

 
The PyTorch official implementation of ResNet-18 serves as the base model, with adjustments 

made to enable dilated convolution while disabling striding and pooling in the final layer. It's 

worth noting that the official ResNet-18 implementation does not inherently support dilation, 
unlike ResNet-34 and larger variants [15]. This prevents the last layer from reducing the width 

and height of the feature map, which gives a wider feature map as the output of the encoder, 

which reduces the up-sampling ratio in the decoder. Eventually, it improves the accuracy of the 
results. 

 

 
 

Figure 6. Deeplab with ResNet-18 using Pointwise Fused Image Input 

 

Our proposed model is shown in Figure 6. We first use the disparity image containing the depth 
information concatenated to the RGB image as a new channel. This helps the model to further 
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understand the background information. This new input image has four channels, including three 
RGB channels and one depth channel. It is sent into the ResNet-18. The output of the first layer 

of ResNet-18 was taken as a low-level feature and fed to be concatenated with the output layer of 

ASPP, as suggested in the original Deeplab V3+ paper. This gives the original low-level 

information in the decoder for better performance.  
 

3.3. Model Output, Optimizer, and Loss Function 
 

In implementing both UNet and DeeplabV3+ models, the output layer is a 2-channel tensor with 

the same width and height as the input image. The output tensor is then paired with a 

corresponding binary mask for loss function calculation. The loss function selected is channel-
wise Cross Entropy loss. Adam optimizer is used with a learning rate tuned at 6e-6 and weight 

decay tuned at 7e-6. 

 

3.4. Dataset 
 

The Cityscape dataset [16] is used as the vehicle driving scene. The left image with 8 bits and 
corresponding disparity images are used in this study. It contains 30 classes, 50 cities, and good 

and medium weather, 150,000 images, 5000 fine annotated images, and 20,000 coarse annotated 

images. The total dataset size is 324GB. 
 

4. PIPELINE, EXPERIMENTS, AND RESULTS 
 

In this section, the model pipeline is explained. The obstacles and lessons learned are discussed. 

This section focuses on setting up a model pipeline for Drivable VS. Non-drivable road image 
segmentation and on benchmark UNet and Deeplab v3. 

 

4.1. Data Pre-Processing 
 

The first obstacle encountered was the scale of the dataset. The Cityscapes dataset has 5000 

annotated 2048x1024 images with fine annotations. The first training trial is the UNet with 
original-sized images and labels. Training the UNet model with a batch size larger than four was 

not feasible. Considering that an Nvidia GeForce RTX 3090 GPU was used for training, this 

bottleneck caused by the size of the UNetmodel, and the size of the images is quite surprising. To 
overcome this, a script was written to downsize the Cityscapes images and labels from 

2048x1024 to 1024x512. As a result, it is successful in training UNet with batch=8 and ResNet-

18 DeeplabV3+ with batch=32. Another pre-processing for the data is converting the original 
labels to same-sized binary masks. The original labels are 3-channel RGB images with different 

colors. denoting different semantic classes. Since the target domain is drivable space, RGB labels 

are converted into 1-channel binary masks with the same width and height. This mask is then 

used in the loss function. For the disparity image, there is no pre-processing. It is concatenated to 
the RGB image as 4th channel. 

 

4.2. Data Augmentation 
 

To overcome overfitting issues, various data augmentation techniques have been applied, 

including translation, rotations, scaling, and blurring. Among these augmentations, 
translation/rotation/scaling are applied to both the input image and label mask to maintain 

consistency, while blurring is only applied to the input images. The augmentations are 

implemented in the dataset, which was built upon the PyTorch Dataset class. These 
augmentations will also improve the real-life robustness of models under study because the 
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cameras on autonomous vehicles will suffer from noises caused by vibration, weather change, 
and motion blur. 

 

4.3. Training 
 

PyTorch was used as the Deep Learning framework for training. Train/Val was made a 9:1 split 

on the Cityscapes training set. For both UNet and Deeplab-R18, training the models involved 50 
epochs and nearly 3000 images from the Cityscapes training set. For testing, the Cityscapes 

validation dataset is used, which contains about 1000 images. 

 

4.4. Problems Encountered and Solved 
 

There are several other problems encountered during the implementation. First, the Pytorch 
package is incompatible with MacOS. For example, for data loaders, if the number of workers is 

larger than 0, it will fail. This is because PyTorch 3.8 multi-channel processing has spawned as 

the default instead of the fork on the Macbook. Additionally, initializing libiomp5.dylib error is 

reported during model testing and validation. This is because Intel MKL functions (e.g., FFT, 
LAPACK, BLAS) are threaded with the OpenMP technology. However, it is not needed on 

macOS since Accelerate Framework has already used OpenMP. These issues have been fixed 

after adjusting model parameters for Mac OS. Secondly, solving the problem by relying on the 
CPU is not appropriate. With all 5000 images downsized to 256X128, it takes around 3 hours for 

a Macbook Pro with 2.3 GHz 8-Core Intel Core i9 to train a model using Deeplab-R18. When 

UNet is used, the process will be terminated by Mac OS due to being out of memory. Ultimately, 
NVIDIA GeForce RTX 3090 is used to train the model. Even with this upgraded GPU, at an 

image size of 1024X512, the max batch size with UNet is 8. The max batch size using Deeplab-

R18 is 32. This indicates that Deeplab-R18 is less computationally costly than UNet. 

 
To study the effect of data augmentation, the training/test result between Deeplab-R18 with and 

without data augmentation is further compared. The original model shows a very stable and 

smooth loss VS. epoch curve for training sessions. However, the validation loss curve has many 
spikes and indicates an unstable condition under noise. After implementing image augmentation, 

the validation loss curve is much smoother. 

 

5. EXPERIMENTS AND RESULTS 
 
These efforts proved to work quite well in comparison between the ResNet-18-based 

DeeplabV3+ (Deeplab-R18) and the UNet architecture. Table 1 compared the scale and 

complexity between the two models and found that Deeplab-R18 has significant advantages. 
 

Table 1.  COMPLEXITY: UNET VS DEEPLAB. 

 
Metrics Total-Param Total Multi-Add Train Time 

UNet 31M 436.9GB 10hrs 

Deeplab-R18 15M 55.8GB  2hrs 

 

To assess the effectiveness of training models, namely UNet and Deeplab-R18, for this image 
segmentation task, we utilize accuracy and F1 score as performance metrics. Initially, UNet was 

employed with twice as many parameters as Deeplab-R18. Both models have similar 

performance, as shown in Table 2. As Deeplab-R18 has a smaller network than UNet and 
autonomous cars require fast in-device inference speed, putting more in-depth performance 

improvement effort into the Deeplab-R18 model makes sense. 
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Table 2.  ACCURACY, PRECISION, RECALL, F1 SCORE COMPARISON: UNET VS DEEPLAB. 

 

Metrics Accuracy Precision Recall F1-score 

UNet-wo-Aug 0.977 0.955 0.947 0.949 

UNet-w-Aug 0.977 0.955 0.947 0.949 

Deeplab-R18-wo-Aug 0.978 0.944 0.955 0.941 

Deeplab-R18-w-Aug 0.979 0.948 0.954 0.947 

 
Figure 7 shows the overall comparison in terms of accuracy, precision, recall, and F1 score. It 

shows that Deeplab-R18 models can achieve similar overall performance as the UNet model with 

the smaller size.  
 

 
 

Figure 7. Performance Metrics Comparison 
 

 
 

Figure 8. Loss comparison of Deeplab-R18 with and without Augmentation 
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In Figure 8, it can be clearly observed that there is an overfitting issue during training causing 

high evaluation loss. We have implemented image augmentation by performing image 

translation, rotation, and blurring. This helps to improve the model overfitting issue demonstrated 

in Figure 8 significantly. 
 

Figure 9 shows the ground truth of one scene and the prediction on the right by Deeplab-R18. It 

successfully highlighted the drivable road segment. On the other side, based on the validation of 
the segmentation image, one thing noticed is that UNet tends to have some false negative regions. 

This might be due to the similarity between the road's texture and the vehicle hood's texture.  

 
      Ground Truth                    Prediction                  Ground Truth                    Prediction 

 
 

Figure 9. Predicted Result by Deeplab-R18 VS Ground Truth 

 

Ground Truth                                                   Prediction 

 

 
 

Figure 10. Issues Related to Deeplab-R18 Prediction 
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However, there are also challenging issues related to the proposed approach, as shown in Figure 
10. It doesn’t work well with segmenting area near small objects or mistakenly segmenting area 

that is not labeled as drivable area. This issue's main challenge is that this area highlight has the 

same texture and color as the drivable road. The model has been trained with images that have 

those areas highlighted as drivable areas. The cause of the issue is two sides. First, the training 
dataset doesn’t have a consistent mask for the corner cases. Second, the model treats all areas to 

have the same weight. 

 
In summary, a similar high performance is achieved with much less computational cost by using 

Deeplab-R18. With data augmentation implemented, the overfitting issue has been addressed, 

and the robustness of the model has been improved. In the end, predicated segmented images are 
very close to ground truth images with an accuracy of 97.8%, recall of 95.4%, precision of 

94.6%, and F1 score of 94.7%.  

 

6. CONCLUSIONS 
 
This paper extends the work by Liang et al. [8] by splitting full driving scenes into objects and 

backgrounds. The disparity image is concatenated with the RGB image as input to the Deeplab-

R18 model. Predicated images are very close to ground truth images with an accuracy of 97.8%, 
recall of 95.4%, precision of 94.6%, and F1 score of 94.7%. By comparing the predicted image 

with augmentation and without augmentation, it can be clearly observed that data augmentation 

can help to address the overfitting issue. This can help to improve model robustness. However, 

the predicted image with augmentation falsely classifies the area of the sidewalk and the area 
near the post or obstacle as a drivable road. Superior accuracy is achieved with much less 

computational cost by using Deeplab-R18. On the other side, UNet tends to have some false 

negative regions. It doesn’t work very well to distinguish the similarity between the road's texture 
and the vehicle hood's texture. This study extracted the output of the first layer of ResNet-18 as 

low-level features to be concatenated with the output layer of ASPP. This helps Deeplab-R18 

achieve faster speed than UNet with similar accuracy by reducing model parameter size and 
multiplication times.  

 

In the future, there are two main areas we are going to work on. The first is to customize loss 

function weight for areas close to the vehicle hood and an obstacle to improve model accuracy. 
Second, we will evaluate the proposed model to perform object detection tasks in the 3D world. 
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