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ABSTRACT 
 
The "0-1 knapsack problem" stands as a classical combinatorial optimization conundrum, 

necessitating the selection of a subset of items from a given set. Each item possesses inherent 

values and weights, and the primary objective is to formulate a selection strategy that 

maximizes the total value while adhering to a predefined capacity constraint. In this research 

paper, we introduce a novel variant of Cultural Algorithms tailored specifically for solving 0-1 

knapsack problems, a well-known combinatorial optimization challenge. Our proposed 

algorithm incorporates a belief space to refine the population and introduces two vital functions 

for dynamically adjusting the crossover and mutation rates during the evolutionary process. 

Through extensive experimentation, we provide compelling evidence of the algorithm's 

remarkable efficiency in consistently locating the global optimum, even in knapsack problems 
characterized by high dimensions and intricate constraints. 
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1. INTRODUCTION 
 
The 0-1 knapsack problem is one of the most studied combinatorial optimization problems. It 

contains a knapsack with a limited capacity and a set of N items, each with a weight (w) and a 

value (v) [30]. Solving this problem means finding a collection of items that the total weight of 
them is less than or equal to the knapsack capacity and the total value is as large as possible 

[1,11]. 

 
Suppose, W is the capacity of the knapsack (W>0), vector w = (w1, w2,..., wN) and v=(v1,v2,...,vN) 

stand for the weight and the value of items, where wi > 0, vi > 0 , 1≤ i ≤ N. 

Our aim is to find a set of xi where xi (0 < i < N) is equal to 0 or 1 which satisfies the constraints 

of Eq. (1) and Eq. (2) [2]: 
 

 

 

(1) 

 
 

 
(2) 

 

https://airccse.org/csit/V13N18.html
https://airccse.org/csit/V13N18.html
https://doi.org/10.5121/csit.2023.131922


282                                    Computer Science & Information Technology (CS & IT) 

If the i-th item is put into the knapsack then xi =1; otherwise xi =0. 
 

Knapsack problem has numerous applications in theory and real world such as capital budgeting 

problems [3], loading problems [5], resource allocation [4] and project selection problems [6], 

also it can be found as a sub problem of the other general models. 
 

Many methods have been developed to solve the knapsack problem: such as dynamic 

programming [7, 12], branch-and-bound approach [8], ant colony optimization [9, 13], particle 
swarm optimization [10, 14], simulated annealing [15], harmony search algorithm [16], amoeboid 

organism algorithm [17], schema-guiding evolutionary algorithm [20], soccer league algorithm 

[18] and so on. 
 

In the real world, 0-1 knapsack problems usually have high dimension. Available algorithms lose 

their efficiency in solving such high dimensional 0-1 knapsack problems [2]. Hence, these 

algorithms are not suitable enough for real world scenarios. More research on this topic in 
required exploring more efficient and optimized solutions [2]. 

 

A Genetic Algorithm (GA) is a metaheuristic method for solving both constrained and 
unconstrained optimization problems based on a natural selection process that mimics biological 

evolution [28]. The algorithm repeatedly modifies a population of individual solutions. 

 
Cultural Algorithms (CAs) are a population-based optimization technique inspired by the way 

societies preserve and share knowledge. In a CA, individuals within a population interact and 

adapt their knowledge through social learning, guided by a belief space. This belief space 

represents the shared knowledge of the population and plays a crucial role in shaping the 
algorithm's behavior. A cultural algorithm is a branch of evolutionary computation where in 

addition to the population component, there is a knowledge component that is called belief space 

[27]. Cultural algorithm can be seen as an extension of a conventional genetic algorithm. 
 

In this paper, we propose a new approach for solving 0-1 knapsack problem based on CA. Our 

focus is to select items for belief space that result the best solution in minimum time. For this 

purpose, we introduce our situational and normative components. In addition, we employ GA for 
this purpose. In genetic algorithm, we tune parameters and fitness function for having the best 

solution. 

 
The rest of the paper is organized as of the following: Section 2 reviews genetic algorithms and 

cultural algorithms. In Section 3 we introduce the proposed method for solving knapsack problem 

with cultural algorithms. We demonstrate the efficiency and accuracy of our method by 
comparing it to the existing methods in Section 4. Finally, Section 5 concludes the paper. 

 

2. RELATED WORKS & BACKGROUND 
 

In this section, we briefly review genetic and cultural algorithms  

 

2.1. Genetic algorithm 
 
Genetic Algorithm is a heuristic algorithm that mimics the process of natural selection [10]. This 

heuristic (aka, Meta heuristic) is used to generate useful solutions in optimization and search 

problems. Genetic algorithms are a subset of Evolutionary Algorithms (EA), which solve 
optimization problems using techniques inspired by natural evolution (e.g inheritance, mutation, 

selection, and crossover) [8]. 
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In a genetic algorithm, a population of candidate solutions in an optimization problem evolves 
toward better solutions. This evolution happens through alteration and mutations in candidate 

solution’s set of properties (usually called chromosomes or genotype). Binary or real vectors can 

represent candidate solutions (genotypes). Based on the problem, other representations can be 

employed. 
 

Usually the iterative evolution process starts from a population includes individuals those are 

generated randomly. We will call the population in each iteration “a generation”. The finesses of 
individuals are evaluated in each generation [13]. Fitness is usually defined by assessing the 

optimization the objective function of a problem. Regarding the results of this evaluation, the 

fittest individuals are selected stochastically, and individuals are altered by recombination and 
mutation functions to form a new generation. The new generation of candidate solutions is then 

evaluated and altered in the next iteration of the algorithm. The algorithm terminates when a 

satisfactory fitness value is achieved (optimization problem solved) or if a maximum number of 

generations have been produced. 
 

The fitness function definition depends to the problem measures the excellence of a candidate 

solution. For instance, in the knapsack problem the objective is to maximize the total value of 
objects that can be put in a knapsack with a fixed capacity [29]. A representation of a solution can 

be a bit array, where each bit represents a different object and the value of the bit (0 or 1) shows 

whether or not the object is chosen to be in the knapsack [30]. Many of such representations are 
invalid, as the total size of objects may exceed the capacity of the knapsack. We can define the 

fitness of the solution to be the sum of values of all objects in the knapsack, if the representation 

is valid or 0 otherwise. 

 

2.2. Cultural Algorithm 
 
Cultural algorithms are a branch of evolutionary computation where in addition to the population 

component, there is a knowledge component called belief space. Cultural algorithms can be 

considered as an extension of a conventional genetic algorithm. 

 
The best individuals of the population update the belief space after each iteration. Here, similar to 

genetic algorithms, the best individuals are selected using a fitness function that assesses the 

performance of each individual in population [19]. The belief space of a cultural algorithm can be 
separated to different categories. These categories represent different domains of knowledge that 

the population has about the search space. Normative and situational are example sub categories 

of belief space. Normative knowledge is a collection of desirable value ranges for the individuals 

in the population component. e.g., acceptable behavior for the agents in the population [14]. 
Situational knowledge includes specific examples of important events - e.g. 

successful/unsuccessful solutions. Figure. 1. shows the block diagram of a Cultural Algorithm. 

 

 
 

Figure 1.  Block diagram of Cultural Algorithm 
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3. PROPOSED METHOD 
 
In this section, we introduce our Cultural Algorithm and the procedure of building the belief 

space. The following sub sections describe each component separately. In formulating the 

Knapsack problem for our CA method, we make several key assumptions. Firstly, we assume a 

discrete representation of items, where each item is represented as a binary variable, indicating 
whether it is included (1) or not included (0) in the knapsack. Secondly, we assume a predefined 

capacity constraint for the knapsack. These assumptions are fundamental to the problem 

formulation in the context of our CA. 
 

3.1. Fitness function 
 
In Section 1, Eq. (1) and Eq. (2) formulate the fitness of a normal knapsack problem. In this 

paper, we propose a new approach for formulating the knapsack problem. 

 
The cultural algorithm builds a chromosome of items for solving the knapsack problem. The 

procedure of chromosome building is described in the following: 

 

Assume that the solution of the knapsack problem is represented by a binary sequence, where ith 
element is 1 if item i is put in the knapsack. The length of chromosome depends on the dimension 

of the problem. For example, for the problem called p5 (in Table 2), its chromosome represents 

the knapsack with 15 items [33].  
 

Our new fitness function verifies the chromosome in construction process. When an item is 

unsuitable for the solution, its violation is calculated using Eq. (3) and a penalty is assigned to the 
old fitness. Our proposed fitness considers enough penalties for all the problems; in other words, 

we have an adaptive penalty for each situation. We indicate this with Eq. (4) 

 

 

 
(3) 

 
(4) 
 

 

Where variable Z in Eq. (3) and Eq. (4) is the value of fitness used in previous researches. The 
way of calculating Z is explained in Eq. (5). Variable d is used in Eq. (4) to address the high 

dimensionality problem. Value of variable d depends on the number of selected items, meaning 

higher dimension knapsack problem results in decreased penalty d. 
 

 
 

(5) 

Using this parameter capacitates fitness in high dimensional problems and ensures the approach 
does not lose efficiency. 

 

3.2. Parameters Setting 
 

Two important parameters of cultural algorithm are crossover rate (Pc) and mutation rate (Pm). 

We proposed a new formula to adjust the crossover rate. The focus of this formula is on iteration 
of the algorithm. At the beginning of the algorithm (means in initial iterations) exploration must 

be maximized and exploitation is in minimum value. In the middle iterations, rate of crossover 

and mutation can be equal for searching entirety of solution space. At the end, maximum 
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exploitation is required for converging the algorithm to a solution. In this respect, in each 
iteration, the rate or probability for cross over and mutation operations is calculated by Eq. (6) 

and Eq. (7). 

 

           
 

 

 
(6) 

 (7) 
 

This formulation has been obtained by trial and error approach based on executing different 

experimentations. 
 

3.3. Crossover and Mutation 
 
Crossover and mutation are two basic operators of GA. Our crossover is a single-point crossover. 

A single crossover point is selected on both parents' chromosome strings. All data beyond that 

point in either chromosome string is swapped between the parent chromosomes [28]. The 

resulted chromosomes are the children. The parent selection mechanism is described in the next 
subsection. 

 

The employed mutation in our algorithm is bit string mutation. Bit string mutation is the mutation 
of bit strings ensue through bit flips at random positions. 

 

3.4. Belief Space 
 

Belief space is an advantage of cultural algorithm compared to the genetic algorithm. In the 

following, we describe how we consider two functions, Accept, and Influence population [32], in 
Figure. 1.  

 

1) Accept: At the first iteration, 10 percent of the best individuals in the population are selected 
for belief space creation. At other iterations, when an individual has a better fitness than the 

individuals in the belief space and up the 50 percent of thing selected for knapsack are different 

from individuals in belief space, belief space is updated with a new individual. Efficacy of belief 

space is in cross over.  
2) Influence population: One of the parents for crossover is selected from belief space and the 

other parent is randomly selected from population. This change is like society. In society when an 

important people change the way of life other people of society accept this change without any 
question and efficacy of important people is very high. 

 

4. EXPERIMENTAL RESULTS 
 

In this section, we expand our comparison of the CA method with a broader range of 
optimization algorithms, including Genetic Algorithms, Particle Swarm Optimization, and 

Simulated Annealing. We present a comprehensive analysis of their performance on various 

benchmark problems, highlighting the strengths and weaknesses of each approach. 
 

Previously, we focused on comparing our CA method with a specific set of algorithms. However, 

to provide a more holistic view of its performance, we have now included these additional 
algorithms in our comparative analysis. 
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Here, the performance of the GA and CA are studied by different experiments. All the 
computational experiments are conducted with Matlab R2013a in Intel® Core™i3 CPU M 350 

@ 2.27GHz with 4 GB RAM system. 

 

In order to comprehensively evaluate the performance of the proposed algorithm, we employ a 
combination of benchmark datasets and custom-generated problem instances. This approach 

allows us to assess the algorithm's effectiveness across a diverse range of problem scenarios, 

encompassing both synthetic instances designed to vary in complexity and dimensions, as well as 
real-world problem instances when applicable and available. 

 

In all experiments, max iteration is set to 50 and the size of population is 100. The initial 
probability of crossover and mutation are set to Pc=0. 9 and Pm=0.1. the parameter setting has 

been shown in Table 1. 

 
Table 1.  Parameter settings 

 

Description of parameter Parameter name Value 

Cross over rate Pc 0.1 to 0.9 

Mutation rate Pm 1-Pc 

Iteration iter 50 to 2000 

Population size Pop 100 

Dimension D 5 to 1500 

 

At first, we consider ten small 0-1 Knapsack problems which their details (contain weight of item 

w, value of item v, capacity of knapsack W and optimum solution) have been presented in Table 
2 [2]. It should be noted that some studies have used these test cases for evaluating their methods. 

In [9], problems P1 and P2 are solved by an improved ant colony algorithm. P3 is used with a 

sequential combination tree algorithm in [19]. In [21] a greedy-policy-based algorithm examines 
P4. P5 is analyzed with the information about the search space landscape to search optimum 

solution in [22] and [23] has solved P6 in an approach similar to the shrinking boundary method 

P7 and P8 are considered with a nonlinear dimensionality reduction method in [25]. P9 is used by 

a DNA algorithm and P10 is used in [24]. It should be noted that problems Pi where i =3, 4... 10 
have reached to optimum solution in the mentioned papers. The research of [2] presents a survey 

of the above studies and the results. 

 
Table 3 reports the performance evaluation of the four algorithms Binary Gravitational Search 

Algorithm (BGSA) [2], CDGSA [2], GA, and CA (the proposed approach) on the 10 small 

problems described in Table 2. The table includes optimal solution and the best, worst, average, 
and median solution, the standard deviation (std.dev) and average total time (Avg. time) during 

20 independent runs are presented in Table 3. 

 

It should be noted that the solution of 35 means the total value of the selected items in the 
knapsack is equal to the number and a best solution means the optimum selection of items where 

their accumulative numbers yield the total number. Moreover, the worst solution of 83 means the 

minimum outcome of this knapsack is 83. 
 

Table 3 shows that our approach has the faster convergence for the large problems in comparison 

with BGSA and CDGSA. BGSA finds local optimum solutions for many problems (such as Pi, i 
=2, 5, 8, 10). 
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Table 2. dimension, parameters and optimum solution of ten 0-1 knapsack problems (The parameter w 

and v are the weight and value of items, respectively; W is the capacity of the knapsack) 

 

 Dim(N) Parameter (w, W, v) Optimum solution 

P1 10 

w=(95, 4, 60, 32, 23, 72, 80, 62, 65, 46) 

W=269 

v=(55, 10, 47, 5, 4, 50, 8, 61, 85, 87) 

295 

P2 20 

w=(92, 4, 43, 83, 84, 68, 92, 82, 6, 44,32, 18, 56, 83, 25, 96, 
70, 48, 14, 58) 

W=878 

v=(44, 46, 90, 72, 91, 40, 75, 35, 8, 54, 78, 40, 77, 15, 61, 

17, 75, 29, 75, 63) 

1024 

P3 4 

w=(6, 5, 9, 7) 

W=20 

v=(9, 11, 13, 15) 

35 

P4 4 

w=(2, 4, 6, 7) 

W=11 

v=(6, 10, 12, 13) 

23 

P5 15 

w=(56.358531, 80.874050, 47.987304, 89.596240, 

74.660482, 85.894345, 51.353496, 1.498459, 36.445204, 

16.589862, 44.569231, 0.466933, 37.788018, 57.118442, 

60.716575) 

W=375 
v=(0.125126, 19.330424, 58.500931, 35.029145, 

82.284005, 17.410810, 71.050142, 30.399487, 9.140294, 

14.731285, 98.852504, 11.908322, 0.891140, 53.166295, 

60.176397) 

481.0694 

P6 10 

w=(30, 25, 20, 18, 17, 11, 5, 2, 1, 1) 

W=60 

v=(20, 18, 17, 15, 15, 10, 5, 3, 1, 1) 

52 

P7 7 

w=(31, 10, 20, 19, 4, 3, 6) 

W=50 

v=(70, 20, 39, 37, 7, 5, 10) 

107 

P8 23 

w=(983, 982, 981, 980, 979, 978, 488, 976, 972, 486, 486, 

972, 972, 485, 485, 969, 966, 483, 964, 963, 961, 958, 959) 
W=10000 

v=(981, 980, 979, 978, 977, 976, 487, 974, 970, 485, 485, 

970, 970, 484, 484, 976, 974, 482, 962, 961, 959,958, 857) 

9767 

P9 5 

w=(15, 20, 17, 8, 31) 

W=80 

v=(33, 24, 36, 37, 12) 

130 

P10 20 

w=(84, 83, 43, 4, 44, 6, 82, 92, 25, 83, 56, 18, 58, 14, 48, 

70, 96, 32, 68, 92) 

W=879 

v=(91, 72, 90, 46, 55, 8, 35, 75, 61, 15, 77, 40, 63, 75, 29, 

75, 17, 78, 40, 44) 

1025 

 
In addition, we execute our approach on the other eight knapsack problems to evaluate its 

performance on the high dimensional problems. Weight and value of items are randomly 

generated in this problem and the number of items is as 100, 200, 300, 500, 800, 1000, 1200 and 
1500 respectively, and the other parameter (corresponding knapsack’s capacity) is 1100, 1500, 

1700, 2000, 5000, 10000, 14000 and 16000 respectively. – vi (i =1,..., N)∼ rand(50, 100)           – 

wi (i =1,..., N)∼ rand(5, 20) 
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All the reported results of this experiment have been obtained among 10 independent runs in 
which the best, worst, average, median solution and the standard deviation (std.dev) are presented 

in Table4 

. 
Table 3. The results of the BDGSA, CDGSA, GA and CA on knapsack problems, 

OP means the optimum solution 

 

P OP Method Best Worst Average Median 
Avg. 

time (s) 

P1 295 

BGSA 

CDGSA 

GA 

CA 

295 

295 

295 

295 

4 

0 

294 

295 

269.45 

169.81 

294.73 

295 

204.75 

197.25 

295 

295 

0.12 

0.19 

0.31 

0.40 

P2 1024 

BGSA 

CDGSA 

GA 

CA 

972 

1024 

1024 

1024 

83 

551 

846 

830 

892.05 

721.86 

1012.34 

1004.63 

631.75 

768 

1008 

993.52 

3.14 

2.14 

0.26 

0.35 

P3 35 

BGSA 

CDGSA 

GA 

CA 

35 

35 

35 

35 

0 

0 

35 

35 

34.35 

24.52 

35 

35 

29 

28 

35 

35 

0.03 

0.05 

0.29 

0.31 

P4 23 

BGSA 

CDGSA 
GA 

CA 

23 

23 
23 

23 

0 

0 
23 

23 

21.55 

14.96 
23 

23 

17.75 

18 
23 

23 

0.04 

0.04 
0.27 

0.29 

P5 
481.0

694 

BGSA 

CDGSA 

GA 

CA 

475.4784 

481.0694 

481.0694 

481.0694 

59.79 

26.76 

398 

402.05 

410.81 

249.88 

469.78 

473.41 

321.77 

282.23 

451.50 

465.52 

1.84 

1.14 

0.25 

0.26 

P6 51 

BGSA 

CDGSA 

GA 

CA 

52 

52 

52 

52 

1 

0 

51 

52 

47.06 

37.12 

51.85 

52 

41.5 

38 

52 

52 

0.21 

0.26 

0.24 

0.26 

P7 107 

BGSA 

CDGSA 

GA 

CA 

107 

107 

107 

107 

0 

5 

107 

107 

94.35 

66.03 

107 

107 

74 

80.5 

107 

107 

0.03 

0.04 

0.30 

0.30 

P8 9767 

BGSA 
CDGSA 

GA 

CA 

9758 
9767 

9767 

9767 

2316 
2316 

9725 

9732 

9740.8 
8971.56 

9749.13 

9753.64 

8445 
9254.1 

9747.6 

9749.2 

4.21 
3.26 

0.32 

0.36 

P9 130 

BGSA 

CDGSA 

GA 

CA 

130 

130 

130 

130 

0 

0 

130 

130 

116.35 

94.10 

130 

130 

98.25 

106 

130 

130 

0.03 

0.04 

0.25 

0.26 

P10 1025 

BGSA 

CDGSA 

GA 

CA 

953 

1025 

1025 

1025 

116 

116 

934 

1002 

875.25 

749.51 

1004.97 

1015.67 

633.25 

832.92 

1016 

1014.58 

3.29 

3.38 

0.30 

0.36 

 
From Table 4 it is clear that the proposed method is faster to solve the high dimensional 0-1 

knapsack problems in comparison to BGSA and CDGSA. Another observation that can be 

deduced from Table 4 is that the proposed method has gained better results in solving some of the 
high dimensional 0-1 knapsack problems. 
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Table 4.   The results of GA, CA (proposed method), DGSA and CDGSA on eight random large 

knapsack problems 

 

P Method Best Worst Average Median 

P11 

DGSA 

CDGSA 

GA 

CA 

7029 

7245 

7142 

7230 

6034 

5172 

5401 

5358 

6602.01 

6449.20 

6521.73 

6543.74 

6715 

6581 

6645 

6613 

P12 

DGSA 

CDGSA 

GA 

CA 

11024 

11168 

11752 

11985 

9821 

8267 

9498 

9462 

10429.58 

11006.5 

11375.23 

11451.51 

10598 

11063 

11401 

11498 

P13 

DGSA 

CDGSA 

GA 
CA 

13892 

14025 

14017 
14043 

12957 

12730 

11245 
11176 

13379.2 

13602.09 

13704.61 
13729.54 

13420 

13732 

13808 
13784 

P14 

DGSA 

CDGSA 

GA 

CA 

21891 

27451 

27516 

27421 

20063 

22173 

21542 

22067 

20957.14 

25903.55 

25781.46 

25642.84 

21164 

26508 

26461 

26553 

P15 

DGSA 

CDGSA 

GA 

CA 

47213 

55048 

54634 

56842 

45810 

47204 

45006 

44529 

46431 

52761.37 

51637.76 

52387.63 

46605 

53892 

52953 

53532 

P16 

DGSA 

CDGSA 

GA 

CA 

70825 

73698 

73438 

72983 

68941 

69752 

65645 

67632 

69730.12 

70454.38 

69893.45 

70532.68 

69940 

71653 

71748 

70985 

P17 

DGSA 

CDGSA 
GA 

CA 

89617 

90139 
91834 

92745 

86752 

86984 
54738 

60536 

88013.75 

89452.64 
86375.91 

87753.52 

88351 

89953 
87840 

88421 

P18 

DGSA 

CDGSA 

GA 

CA 

109541 

111964 

112753 

115948 

107203 

108927 

102231 

107255 

108429.8 

110726.79 

109893.63 

111735.86 

108870 

111248 

111051 

112372 

 

In another experiment, we have selected four medium and large problems for evaluating the 
performance of our Cultural Algorithm. We have reported the convergence diagram of this 

experiment in Figure. 2. 
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Figure. 2. Convergence diagram for different size knapsack problems(a) For large problem p13. (b) For 

medium problem p2 form table 3. (c) For medium problem p5 from table 3.  (d) For large problem p17. 

 

5. CONCLUSION 
 

Knapsack problem is an NP-hard problem. Several algorithms have been developed to solve this 
problem in this paper, we improve GA by adjusting the rate of mutation and crossover in the 

evolution of the population. In addition, we employ the proposed cultural algorithm by 

constructing a belief space and considering its influence on the population. We apply both GA 
and CA to solve 0-1 knapsack problems. Experimental results show the superior efficiency and 

accuracy of the proposed method compared to the other algorithms. 

 
While the CA method shows promise in solving the Knapsack problem, it is essential to 

acknowledge its limitations. One limitation is that the CA's performance may be sensitive to its 

parameter settings, requiring careful tuning. Additionally, the CA may struggle with high-

dimensional problem spaces or problems with complex constraints. Future research should 
explore strategies to mitigate these limitations and improve the algorithm's robustness. 
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