
David C. Wyld et al. (Eds): SIPR, NCWC, BIBC, SOFEA, DSML, ARIA, NLP, CSEN -2023 

pp. 293-305, 2023. CS & IT - CSCP 2023                                                     DOI: 10.5121/csit.2023.131923 

 
CLASSIFICATION AND CLUSTERING OF 

SENTENCE-LEVEL EMBEDDINGS OF 

SCIENTIFIC ARTICLES GENERATED BY 

CONTRASTIVE LEARNING 
 

Gustavo Bartz Guedes1,2 and Ana Estela Antunes da Silva2 

 
1Faculdade de Tecnologia, Universidade Estadual de Campinas (UNICAMP), 

 Limeira, Brazil  
2Hortolândia Campus, Federal Institute of São Paulo, Hortolândia,  

São Paulo, Brazil 
 

ABSTRACT 
 
Scientific articles are long text documents organized into sections, each describing aspects of 

the research. Analyzing scientific production has become progressively challenging due to the 

increase in the number of available articles. Within this scenario, our approach consisted of 

fine-tuning transformer language models to generate sentence-level embeddings from scientific 

articles, considering the following labels: background, objective, methods, results, and 

conclusion. We trained our models on three datasets with contrastive learning. Two datasets are 

from the article’s abstracts in the computer science and medical domains. Also, we introduce 
PMC-Sents-FULL, a novel dataset of sentences extracted from the full texts of medical articles. 

We compare the fine-tuned and baseline models in clustering and classification tasks to 

evaluate our approach. On average, clustering agreement measures values were five times 

higher. For the classification measures, in the best-case scenario, we had an average 

improvement in F1-micro of 30.73%. Results show that fine-tuning sentence transformers with 

contrastive learning and using the generated embeddings in downstream tasks is a feasible 

approach to sentence classification in scientific articles. Our experiment codes are available on 

GitHub. 

 

KEYWORDS 
 
Sentence Classification, Scientific Article Analysis, Contrastive Learning, Embedding 

Generation 

   

1. INTRODUCTION 
 

In the scientific community, knowledge dissemination is done mainly by article publications. A 
scientific article is a long text document, structured in sections. Although articles may differ in 

their structure, they usually share a common structure, which can be described as follows. 

 

 Background: describes the problem and the motivations for conducting the research. 

 Objective: contains the purpose of the research. 

 Methods: details all steps conducted in making the research to guarantee reproducibility. 

 Results: reports the findings. 

 

https://airccse.org/csit/V13N18.html
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Although these elements might be present within articles, the corresponding section may not be 
explicitly defined. As a result, it becomes essential to detect and locate them within the text of an 

article. 

 

In Natural Language Processing (NLP), an embedding represents a text as a fixed-size vector of 
real numbers [1]. An embedding can represent a single unit, such as a word, or a longer sequence, 

such as a sentence or an entire document. Embeddings can be learned by training a deep artificial 

neural network called “sentence transformer (ST) model” on a textual dataset. 
 

Differently from a classification model that predicts a label, an ST model outputs an embedding. 

In this work, we fine-tuned ST models with contrastive learning to generate sentence-level 
embeddings from scientific articles according to their labels, as above mentioned. 

 

A fine-tuning process involves training an existing pre-trained neural network with a particular 

training objective. In our work, we applied contrastive learning, which rearranges the spatial 
distribution of sentences in the embedding space. Thus, by using contrastive learning, sentences 

from the same label get closer in the embedding space, while those from different labels are 

pushed apart. After fine-tuning the ST model, we evaluated the generated embeddings in 
downstream supervised and unsupervised tasks: clustering and classification. 

 

We used three datasets for fine-tuning, one from the computer science domain and two from the 
medical. From the latter, we introduce PMC-Sents-FULL, a novel dataset of sentences from the 

full text of scientific articles in PubMed [2]. 

 

Finally, our research investigates the use of the generated sentence embeddings from the 
contrastive fine-tuned models in supervised and unsupervised tasks. Therefore, our work has the 

following research questions (RQ): 

 
RQ1: Does the use of fine-tuned sentence embeddings for clustering outperform using non-fine-

tuned embeddings? 

RQ2: The performance of traditional classifiers improves when utilizing fine-tuned sentence 

embeddings as opposed to non-fine-tuned embeddings? 
RQ3: Does the use of fine-tuned sentence embeddings as input features for classifiers outperform 

a deep learning model fine-tuned directly as a sentence classifier? 

Our models are available at HuggingFace and our experiments code at GitHub1. 
 

2. RELATED WORKS 
 

In this work, we trained ST models with contrasting learning to generate sentence-level 

embeddings from scientific articles considering the labels: background, objective, methods, 
results, and conclusion. 

 

In this section, we present the related works in three distinct groups. The first is related to 
sentence classification, where a classifier is trained to label each sentence. The second deals with 

text clustering. Finally, the last group addresses the representation of scientific articles, where a 

model outputs a document-level embedding. 
 

The work of Dernoncourt and Lee [3] focuses on the Sequential Sentence Classification (SSC) 

task. This involves labeling each sentence given an input composed of n sequential sentences. 

                                                
1 https://github.com/myblindcode/sentence_embeddings 
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Their work introduced PubMed-RCT 20k and PubMed-RCT 200k datasets, along with the use of 
artificial neural networks, to SCC task. 

 

Jin and Szolovits [4] address SCC by implementing a Hierarchical Sequential Labeling Network 

(HSLN) model. Their HSLN architecture has a context-enriching layer that captures and 
incorporates contextual information from the surrounding sentences of the input sequence. 

Training and testing were performed on PubMed-RCT datasets. 

 
Cohan et al [5] present a model architecture for SCC in scientific articles abstracts. The model 

has a classification layer on top of each [SEP], which is a special sentence separator token in the 

SciBERT model [6]. Therefore, given a set of [SEP] separated sentences, each one is classified 
under a specific label. They also released the CSAbstruct dataset, a manually labeled sentence 

dataset of computer science abstracts. 

 

Brack et al [7] present a unified approach for SCC in cross-domain scientific articles. The 
proposed network architecture is called SciBERT-HSLN, where they used SciBERT to generate 

word embeddings and the HSLN for the sentence classification. In their experiments, they used 

four datasets: two from abstracts and two from full articles texts. Also, a fifth was created by 
mixing these four datasets. 

 

Next, we present related works that focus on text clustering, which is the task of forming groups 
of similar texts. 

 

The work of Subakti et al [8] presents a comparison of text clustering between Term Frequency 

Inverse Document Frequency (TF-IDF) and BERT representations. TF-IDF generates a vector 
representation of text using only term frequency, while BERT captures the context by 

considering the position of terms in a text. BERT outperforms TF-IDF in 28 of 36 metrics. 

Ravi and Kulkarni [9] explore four word-embedding representations using the k-means clustering 
algorithm on social media data in two topics. The study shows that the BERT model achieved the 

highest accuracy of 98% and performed best in clustering when applying the K-means algorithm. 

In the subsequent paragraphs, we discuss related works belonging to the second group, which 

mainly centers around creating representations for scientific articles. 
 

SPECTER [10] is a neural language model that generates document-level embeddings from the 

concatenation of titles and abstract texts of scientific articles. The model was created by fine-
tuning SciBERT with Triplet Margin Loss, where the citation was used as a signal for the 

relatedness of articles. In this way, each sample consists of an anchor article, a cited article that is 

considered a positive sample, and a non-cited as a negative one. Thus, generated embeddings aim 
to capture similarity among articles. 

 

Ostendorff et al [11] explore different sampling strategies to train models with the same 

similarity objective as SPECTER. Their sampling method uses the nearest neighbor strategy from 
a citation graph embedding and improved most of the results compared to SPECTER. 

As presented, related works are based on SSC or document-level embedding generation. Most of 

the approaches use the texts of titles and abstracts only, and when using full texts, the datasets 
have a small number of articles, as in [7], with only 225 articles. 

Differently, the innovations of this work compared to the presented related works are: 

 
1. contrastive learning fine-tuning to generated sentence-level embeddings; 

2. the use of these fine-tuned embeddings in downstream clustering and classification tasks; 

3. release of a novel dataset with sentences extracted from the full text of 1,569 scientific 

articles. 
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3. METHODOLOGY 
 
This work consisted of using the corresponding labels of the sentences present in CSAbstruct [5], 

PubMed-RCT 20k [3], and PMC-Sents-FULL datasets, to fine-tune ST models with contrastive 

learning. Subsequently, we assessed the effectiveness of using these embeddings as input features 

for classifier models and a clustering algorithm. 
 

Our approach, outlined in Figure 1, consists of two stages. In the first stage, highlighted in green, 

we fine-tune an ST model with contrastive learning to generate sentence-level embeddings by 
using each sentence’s corresponding label. Subsequently, we evaluate each fine-tuned ST model 

by encoding the sentences into embeddings and training a classifier according to the 

corresponding labels. As for clustering, we use the generated embeddings. 

 

 
 

Figure 1.  Classification Methodology 

 
The next subsection 3.1 details the contrastive learning fine tuning. Subsection 3.2 presents the 

PMC-Sents-FULL creation. Subsection 3.3 contains the characteristics and analysis of all 

datasets. Finally, subsection 3.4 describes the evaluation process. 
 

3.1. Contrastive learning 
 
Contrastive learning adjusts the network weights so that similar samples get closer in the 

embedding space, whereas dissimilar ones get far. There are two preeminent loss functions for 

contrastive learning: Contrastive Loss [12] and Triplet Loss [13]. 
 

Contrastive Loss expects samples in  format, where  and  are pairs of samples and 

 is the label,  for dissimilar pairs and  for similar. Triplet Loss expects samples in 

 triplet format, where  is an anchor sample,  a similar sample in respect to  and  a 

dissimilar sample in respect to .  

 

In comparison, Contrastive Loss optimization has the downside effect of pushing all similar 
samples to the same point in the embedding space, because it forces the distance between similar 

pairs to zero. On the other hand, Triplet Loss minimizes the distance between anchors and 

positives while maximizing the distance between negatives, thus preserving intra-label variance 
and better adjusting in the presence of outliers. 
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The Triplet Loss function is presented in Equation 1, where  is a distance function (e.g. 

euclidian),  the anchor,  a similar positive sample,  a dissimilar negative sample and  is an 

enforcing margin between  and . 

  

        (1) 

 

In this work, the fine-tuning approach was based on [14] which used Triplet Loss in a Bi-
directional Long Short-Term Memory (Bi-LSTM) neural net architecture in Wikipedia articles. 

They stated, “that sentences belonging to the same section are typically more thematically related 

than sentences appearing in different sections”. 

 
Sentence BERT (SBERT), from [15], is a framework that generates sentence and short text-level 

embeddings. Among the available losses, BatchAllTripletLoss accepts batches of samples in the 

(s, ρ) format, where s is a sentence and ρ the corresponding label. We fine-tuned our models with 
BatchAllTripletLoss function. 

 

BatchAllTripletLoss calculates the loss for every valid triplet present in a batch. This means that 

it treats ρ of the same value as similar samples and ρ with different values as dissimilar. The 
concept behind BatchAllTripletLoss is that through prolonged iterations over the complete 

dataset, all potential positive pairs become observable. 

 

3.2. PMC-Sents-FULL Dataset Creation 
 

PMC-Sents-FULL is based on PubMed Central, which provides open access to a subset of 
medical articles in XML format [2]. We have downloaded about 300,000 articles and performed 

the following procedures to generate the final dataset: 

 
1. Filtered articles that have section titles for the four labels (background, objective, 

methods, and results). We used a keyword list with exact matching and kept only articles 

that had all four labels; 
2. Cleaned the text by replacing references of tables and figures with markers i.e. @table 

and @fig; 

3. Used spaCy, from [16], to split section texts into sentences; 

4. Labeled each sentence using the corresponding section title as the label, including a fifth 
others label. 

 

Finally, due to the filter applied in step 1, PMC-Sents-FULL has a total of 1,569 articles and 
173,092 sentences. PMC-Sents-FULL was stratified split in 80%/10%/10% for 

train/validation/test sets (138,473; 17,309; 17,310). In the next section, we present an analysis of 

the three datasets used in this work. 

 

3.3. Datasets Characteristics and Analysis 
 
Table 1 summarizes the characteristics of the three datasets used in fine-tuning our models: 

CSAbstruct [5], PubMed-RCT 20k [3], and PMC-Sents-FULL. 

 
Table 1.  Datasets Characteristics. 

 

Dataset Domain #Papers Type Labels 

PubMed-RCT 20k Biomedicine 20,000 Abstract 
Background, Objective, 
Methods, Results, 

Conclusion 
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CSAbstruct 
Computer 

Science 
2,189 Abstract 

Background, Objective, 

Methods, Results, 

Other 

PMC-Sents-FULL Medical 1,569 Full Text 

Background, Objective, 

Methods, Results, 

Other 

 
When analyzing the datasets, we found samples with the same sentence text but with different 

labels: 85 in CSAbstruct and 161 in PubMed-RCT 20k. We excluded these samples from all 

training, validation, and test sets. 
The label distribution of the training sets is presented in Table 2. From this, we present the 

following highlights: 

 

 The three datasets share the background, objective, methods, and results labels; 

 PubMed-RCT 20k is the only one that has the conclusion label, but it lacks the other 

label. However, an other label is essential to identify sentences outside of the target 
labels. 

 PMC-Sents-FULL considers the full text of articles, thus, it has a much higher proportion 

of others labels. 

 Comparing CSAbstruct and PMC-Sents-FULL, if we shift the labels for binary values of 

relevant (background, objective, methods, and results) and irrelevant (others), in 
CSAbstruct we have 99,40% relevant and only 0,60% of irrelevant samples whereas in 

PMC-Sents-FULL there is a more even distribution of 46,34% relevant and 53,66% 

irrelevant. 

 
Table 2.  Label Distribution in train sets. 

 

Dataset Label #Sents 

PubMed-RCT 20k 

Methods 59,309 (33%) 

Results 57,908 (32%) 
Conclusion 27,134 (15%) 

Background 21,709 (12%) 

Objective 13,832 (8%) 

CSAbstruct 

Methods 3,611 (32%) 
Background 3,603 (32%) 

Results 3,603 (32%) 

Objective 1,321 (12%) 
Other 66 (3%) 

PMC-Sents-FULL 

Other 74,304 (54%) 

Methods 32,762 (24%) 

Results 16,314 (12%) 
Background 10,265 (7%) 

Objective 4,828 (3%) 

 

Lastly, since we used Triplet Loss for fine-tuning, as detailed in Section 3.1, we created the 
validation sets with one triplet per sample, randomly selecting the positive and negative samples. 

 

3.4. Models Evaluation 
 

To evaluate our models, we compared the embeddings generated from baseline (non-fine-tuned) 

and fine-tuned models using five classification algorithms and one clustering algorithm.  
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For the sentence classification, as in [5] and [7] related works, we measured and reported the F1-
micro metric.  

 

For clustering, we evaluate the fine-tuned models with Adjusted Rand Index (ARI) and Adjusted 

Mutual Information (AMI) clustering agreement measures, and the Silhouette Score (Sil ). ARI 
and AMI are agreement measures between a generated and a known partition. Thus, we used the 

ground truth labels of the test set as the known partition. As for the Sil, it measures the cohesion 

of samples within a cluster and the separation of clusters by computing the mean distances of 
intra and inter clusters samples. 

 

4. EXPERIMENTS 
 

In this section, we present the fine-tuning training of ST models in the three datasets presented in 
Section 3 and our evaluation approaches. 

 

Training 
 

We have selected two models for fine-tuning: SciBERT2 and all-MiniLM-L6-v2 (MiniLM). 

SciBERT, from [6], was chosen because it is a BERT-based language model for the scientific 
domain. It was trained on the full text of 1.14 million articles from the Semantic Scholar database 

[17]. It is important to note that SciBERT has an input limit of 512 tokens and generates 

embeddings with 768 dimensions. 
 

MiniLM is a language model trained with knowledge distillation, a technique that compresses a 

larger model (the teacher) into a smaller model (the student). The student has a similar or even 
better performance than the teacher, but it has fewer parameters, consuming less computational 

resources to fine-tune and make inferences. The all-MiniLM-L6-v2 is an ST model fine-tuned 

from the pre-trained MiniLM model of [18] on over 1 billion pairs of samples. It has an input 

limit of 256 tokens and generates embeddings with 384 dimensions. 
 

The models were fine-tuned with the following parameters: 

 

 Epochs: 20. 

 Batch Size: 32 for all-MiniLM-L6-v2 (all datasets); 32 for SciBERT (CSAbstruct only); 
and 16 for SciBERT in remaining datasets. 

 Learning Rate: 2e-5. 

 Warm up: 10% of training data. 

 Pooling Method: mean pooling. 

 Loss: BatchAllTripletLoss. 

 

SciBERT and MiniLM were also fine-tuned as classifiers, that is, label prediction instead of 
embedding generation, in all three datasets. These were trained for 20 epochs with a batch size of 

16, and the [CLS] token was used as the sentence representation for classification. 

 

 
 

 

4.1. Evaluation 

 
Our approach for evaluation consisted in comparing the sentence embeddings generated with 
baseline and fine-tuned ST models using clustering and classification.  
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To perform clustering, we utilized the k-means algorithm on the test sets and calculated ARI, 
AMI, and Silhouette scores. ARI and AMI were computed using the partition generated by the k-

means algorithm and the known partition was the labelled test set. We set the total number of 

clusters to be equal to the total of distinct labels present in each corresponding test set. 

 
For the classification task, we use the generated sentence embeddings of ST fine-tuned models as 

the input features to train each classifier. As for the training parameters of the classifiers, only the 

default parameters of KNN were changed. The square root of total samples was used as the 
number of neighbors, and the weight function was set to “distance”, this way closer neighbors 

have more influence when assigning the label.  

 
Finally, F1-micro was computed using each trained classifier and the results are presented in the 

next section. 

 

5. RESULTS 
 
Clustering and classification results are presented in Tables 3 and 4, respectively. The bold marks 

the highest values within each ST model (MiniLM or SciBERT) and the underline the highest 

values among all classifiers, regardless of the ST model. 
 

The first research question (RQ1) assesses the impact of fine-tuning in clustering. Thus, Table 3 

presents the ARI, AMI, and Sil values measured in each test set.Table 3.  Clustering agreement 

measures in the test sets. 

 

Dataset → CSAbstruct PubMed-RCT PMC-Sents-FULL 

Metric→ ARI AMI Sil ARI AMI Sil ARI AMI Sil 

MiniLM          

Baseline 01.11 2.01 2.81 6.40 8.49 1.95 0.21 4.90 2.57 

Fine-Tuned 28.69 31.91 84.39 73.49 66.78 98.98 36.36 30.17 97.51 

SciBERT          

Baseline 6.77 13.05 3.16 22.12 32.67 5.42 5.34 10.99 5.40 

Fine-Tuned 50.72 47.32 30.45 76.09 67.62 51.60 40.62 33.94 27.28 

 
To provide visual information, we used t-distributed Stochastic Neighbor Embedding (t-SNE) to 

plot the samples of CSAbstruct and PubMed-RCT in a 2D graph. Figure 2 gives an overall 

picture of sample distribution in a 2D embedding space for the baseline and fine-tuned SciBERT 

models. This visualization shows a considerable improvement in clustering. 
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Figure 2.  Clustering results with SciBERT 

 

Research questions RQ2 and RQ3 are related to the performance of using the embeddings of the 

fine-tuned models for classification. We present classifier results for each test set using F1-micro 
in Table 4. RQ3 also required fine-tuning SciBERT and MiniLM as classifier models. We use the 

[CLS] token as the sentence representation. In Table 4 these are rows 6 and 17. 

In the next Section 6, we discuss these results and in Section 7 we present our conclusions and 
future works. 

 

6. DISCUSSION 
 

In this section we discuss the results in relation to the research questions RQ1, RQ2, and RQ3. 
First, we see a huge improvement in all clustering metrics of fine-tuned models, as shown in 

Table 3. Considering SciBERT, on average, the values are more than five times higher than 

baseline models. Comparing SciBERT to MiniLM, we observe that SciBERT has higher ARI and 
AMI, but a lower Sil. Therefore, fine-tuning with Triplet Loss greatly improves clustering, which 

answers RQ1. 

 

For classification, when comparing results from the same classifiers, the fine-tuned embeddings 
outperform all but one baseline model, which is SVM for CSAbstruct. SciBERT baseline had 

superior performance, 76.20 against 75.76 (rows 16 and 22 respectively of Table 4). However, 

the difference is only 0.44. 
 

Table 4.  F1-micro in test sets. 

 

ST Model ↓ Dataset → CSAbstruct PubMed-RCT 
PMC-Sents-

FULL 

MiniLM 

Classifier ↓ 

   

Baseline    

(1) Decision Tree 41.59 44.54 46.21 

(2) KNN 57.89 61.61 62.72 

(3) MLP 57.89 74.24 64.01 

(4) Random Forest 55.37 62.01 60.32 

(5) SVM 61.23 77.99 69.55 

 

Fine-Tuned 
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(6) MiniLM [CLS] 68.05 82.40 70.02 

(7) Decision Tree 61.45 79.61 60.01 

(8) KNN 74.65 85.19 71.42 

(9) MLP 70.79 82.99 71.39 

(10) Random Forest 75.02 85.65 71.54 
(11) SVM 61.90 83.00 71.37 

SciBERT 

Classifier ↓ 
   

Baseline 

(12) Decision Tree 50.19 64.54 52.94 
(13) KNN 71.68 82.60 66.76 

(14) MLP 68.57 81.73 66.69 

(15) Random Forest 69.61 81.74 66.49 

(16) SVM 76.20 86.75 72.01 

Fine-Tuned     

(17) MiniLM [CLS] 66.42 82.12 69.97 

(18) Decision Tree 68.57 82.28 71.31 

(19) KNN 77.61 87.05 75.76 

(20) MLP 70.72 86.29 73.25 

(21) Random Forest 78.50 87.19 75.89 

(22) SVM 75.76 87.12 76.27 

 

In tables 5, 6, and 7 we present comparison data for classification in tabular format. There is a 

delta percentage (∆%) column in all tables that displays the difference between the fine-tuned and 

baseline models. 
 

In Table 5, the results for the best classifiers are presented for each dataset. As a result of fine-

tuning, both MiniLM and SciBERT have improved. Notably, MiniLM exhibited an average 
improvement of over three times that of SciBERT, with percentages of 30.73% and 8.45%, 

respectively. This discrepancy can be attributed to the fact that SciBERT was trained in scientific 

texts and has a specific vocabulary, so it is already more adapted to this domain. This observation 
underscores the significant impact that vocabulary alone can wield over embedding 

representations in the context of classification. 

 

 

Table 5.  Best classifiers models comparison. 

 

Contrastive learning fine-tuning greatly benefits classifiers that use distance as the similarity 

measure for inference. This is the case with KNN, which, at inference time, searches for the 
closest similar sample in the vector space. Therefore, Table 6 compares the KNN performance of 

fine-tuned and baseline models. It shows that KNN has had a considerable improvement. We also 

ST Model / Dataset 
Best CLS 

Model 

F1-Micro 
∆% 

Fine-Tuned Baseline 

MiniLM     

CSAbstruct Random Forest 75.02 55.37 35.48% 

PubMed-RCT Random Forest 85.65 62.01 38.11% 

PMC-Sents-FULL Random Forest 71.54 60.32 18.60% 

   Average 30.73% 

   Std. 8.64 

SciBERT     

CSAbstruct Random Forest 78.50 69.61 12.78% 

PubMed-RCT Random Forest 87.19 81.74 6.66% 

PMC-Sents-FULL SVM 76.27 72.01 5.92% 

   Average 8.45% 

   Std. 3.07 
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introduced a last column that shows small differences between KNN and the best classifiers in 
Table 5. 

 

With the results of Tables 5 and 6, we conclude that fine-tuned embeddings for classification 

outperform the performance of non-fine-tuned embeddings, answering RQ2. 
 

Table 6.  KNN classifiers comparison. 

 

ST Model / Dataset 
F1-Micro 

∆% 
∆% Best 

Model Fine-Tuned Baseline 

MiniLM     

CSAbstruct 74.65 57.89 22.44% -0.50% 

PubMed-RCT 85.19 61.61 27.68% -0.54% 

PMC-Sents-FULL 71.42 62.72 12.17% -0.17% 

  Average 20.76% -0.40% 

  Std. 6.44 0.17 

SciBERT     

CSAbstruct 77.61 71.68 7.64% -1.15% 

PubMed-RCT 87.05 82.60 5.11% -0.16% 

PMC-Sents-FULL 75.76 66.76 11.88% -0.68% 

  Average 8.21% –0.66% 
  Std. 2.79 0.40 

 

Finally, Table 7 is a comparison between our approach and SciBERT and MiniLM language 

models trained as sentence classifiers. Our approach outperforms these classifiers in all datasets. 

Which answers RQ3 positively. 
 

Table 7.  Comparison best models with [CLS] Fine-Tuned. 

 

ST Model / Dataset Best Classifier 

F1-Micro 

∆% 
ST Fine-Tuned 

LM Fine-

Tuned 

MiniLM     

CSAbstruct Random Forest 75.02 68.05 9.29% 

PubMed-RCT Random Forest 85.65 82.40 3.79% 

PMC-Sents-FULL Random Forest 71.54 70.02 2.12% 

   Average 5.07% 

   Std. 3.06 

SciBERT     

CSAbstruct Random Forest 78.50 66.42 15.39% 

PubMed-RCT Random Forest 87.19 82.12 5.81% 

PMC-Sents-FULL SVM 76.27 69.97 8.26% 
   Average 9.82% 

   Std. 4.06 

 

7. CONCLUSION 
 

This work presented an approach to sentence classification of scientific articles by fine-tuning ST 
models with contrastive learning and using the generated embeddings for clustering and 

classification. The fine-tuned models were evaluated against two baseline (non-fine-tuned) 

models, specifically SciBERT and MiniLM. 

 
As for MiniLM and SciBERT, the latter has the overall best performance. We point to the 

following reasons: a) SciBERT has a vocabulary from the scientific domain; b) SciBERT 
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supports an input size that is the double of MiniLM (512/256) and outputs an embedding twice 
the size (768/384). 

 

In respect to the three research questions presented in the introduction (Section 1), we have a 

positive response to all of them, since fine-tuned models have outperformed baseline models. 
Lastly, for future work, it is important to assess the results with larger batch sizes since this 

creates more variability in the loss function and impacts the training process. Also, define new 

methods to enrich the semantics of generated embeddings considering a larger context, and 
finally, explore other contrastive loss functions. 
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