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Abstract. This research presents an advanced methodology for estimating the epsilon and minimum
samples parameters in the DBSCAN clustering algorithm using a Stratified Sampling and Grid-Search
approach. Our method showcased notable improvement in eps estimation precision across nine diverse
datasets compared to conventional techniques. By accounting for dataset variations in structure and den-
sity, stratified sampling leads to superior cluster formations. The k-nearest distance graph further refines
these relationships, ensuring a comprehensive understanding of data densities. Additionally, our method
underscores the importance of each dataset’s unique stratum, providing holistic insights. We also introduced
a Grid-Search technique for MinPts estimation with the help of silhouette score, challenging traditional
rule-of-thumb settings. Our approach suggests setting MinPts flexibly, considering the dataset’s specific at-
tributes and has proven its efficacy by enhancing clustering results, with implications for both SS-DBSCAN
and traditional DBSCAN frameworks. This study highlights the potential of parameter estimation in op-
timizing clustering outcomes and computational efficiency.
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1 Introduction

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [1] is an algorithm
that has revolutionized the domain encompassing data mining and machine learning over
the past few decades [1]. Unlike many traditional clustering techniques that rely on spher-
ical assumptions or require explicit knowledge about the number of clusters, DBSCAN
relies on the data’s inherent structure [2], [3]. The algorithm functions by detecting clus-
ters through an assessment of data point density, making it adept at detecting clusters of
varying shapes and sizes and differentiating between cluster points and noise. As DBSCAN
identifies clusters based on the density of data points, it naturally positions clusters within
high-density regions, while outliers tend to reside in low-density areas, as illustrated in
Fig. 1.

However, the effectiveness of DBSCAN is intrinsically tied to its parameters: Epsilon
ϵ and Minimum Samples (MinPts). While ϵ defines the radius to search for neighboring
points [4], MinPts specifies the minimum number of points required to form a dense region
[4]. Although the choice of ϵ has received considerable attention in the literature [5], [6], [7],
[8], [9], [10] and various techniques have been proposed for its determination, the selection
of MinPts has been somewhat overlooked. The ’one-size-fits-all’ approach [11], where a
generic value of MinPts is used across various datasets, can lead to suboptimal clustering
results. The intricacy lies in the fact that the ideal value of MinPts relies on the dataset
size and its inherent structure and distribution.

DBSCAN’s parameters, ϵ and MinPts, are foundational in its operation [12],[13],[14].
While the significance of ϵ in delineating the neighborhood radius is well understood, its de-
termination has often posed challenges, leading to a plethora of research in that direction.
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Fig. 1: DBSCAN Clusters

In our previously accepted work by Gloriana Monko, Masaomi Kimura, ”SS-DBSCAN:
Epsilon Estimation with Stratified Sampling for Density-Based Spatial Clustering of Ap-
plications with Noise”, (to be published), we addressed this challenge by introducing a
novel approach for ϵ parameter estimation using Stratified Sampling. The methodology
was grounded in the idea that by partitioning the data into more homogeneous subsets,
we could more effectively estimate the optimal ϵ value for each subset, leading to en-
hanced clustering results on the consolidated data. Having delved into the intricacies of ϵ
estimation, we now focus on the equally crucial but often overlooked MinPts parameter.
This exploration into MinPts determination using the Grid-Search technique is a natural
progression and extension of our prior work by Gloriana Monko, Masaomi Kimura, ”SS-
DBSCAN: Epsilon Estimation with StratifiedSampling for Density-Based Spatial Cluster-
ing ofApplications with Noise”,(to be published), further enhancing the robustness and
efficacy of the SS-DBSCAN algorithm.

This paper ventures into validating the ϵ selection using stratified sampling techniques
discussed in our previous work and MinPts determination for SS-DBSCAN. Recognizing
the pivotal role of MinPts in defining the granularity of clusters and its impact on the
algorithm’s sensitivity to noise, we introduce a comprehensive methodology for its op-
timization using the Grid-Search technique. Traditionally employed for hyperparameter
tuning in various machine learning algorithms [15], [16], Grid-Search tests a predefined set
of values and evaluates their performance to pinpoint the optimal choice. By extending
the application of Grid-Search to the context of DBSCAN’s MinPts determination, this
research seeks to bridge an existing gap in the clustering domain.

As we progress through this paper, we will acquaint readers with sections concerning
prior research, the theoretical foundations of our approach, and a comprehensive presen-
tation of our experiments, outcomes, and discussion.
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2 Related Works

The quest for optimized clustering, particularly in the context of the DBSCAN algorithm
and the automatic selection of its parameters, has been the focus of numerous studies in
the field of data mining and machine learning. This section reviews some of the pivotal
works in this domain, shedding light on the evolution of techniques and the current state
of research.

2.1 Eps Selection

Ester et al. [1] laid the foundation for density-based clustering by introducing DBSCAN.
Their work expounded the algorithm’s proficiency in identifying arbitrarily shaped clus-
ters and emphasized the significance of the eps parameter, suggesting k-distance graphs
as a heuristic tool for its determination. The concept of k-distance graphs was further
expanded by Schubert et al. [17]. Their study delved deeper into the methodology, high-
lighting its limitations and suggesting enhancements for more accurate ”elbow” detection.
Starczewski et al.[12] introduced a novel approach to identify pronounced distance spikes
by leveraging the kdist function. This function computes the distances between data points
and their respective kth nearest neighbors within a dataset. Their methodology offers a
fresh perspective on discerning patterns and anomalies in spatial relationships, empha-
sizing the importance of understanding the nuanced interactions between data points
and their immediate surroundings. Advancements in optimizing DBSCAN took a signifi-
cant step forward with the work of Lai et al. [5]. They pioneered an approach grounded
in the ’MVO-multiverse optimizer algorithm’, focusing on the iterative enhancement of
DBSCAN parameters. Their technique provided a dynamic means of achieving the best
clustering results. In a related development, Khan et al. [18] brought forth an adaptive
variant of DBSCAN, appropriately termed adaptive DBSCAN. Their strategy was crafted
with precision to automate the selection of ideal parameter values, including epsilon and
the minimum number of points. Dawid and Krzysztof [19] presented GrDBSCAN, which
partitions data into fuzzy granular representations and subsequently applies density-based
clustering to these derived granules. Their method mainly focused on reducing clustering
execution time.

2.2 MinPts Determination

Another DBSCAN parameter estimation technique considers the determination of the
minimum points parameter. This parameter defines the minimum data points requirement
for establishing a dense region Fig. 1. Schubert et al. [17] suggests an easier way to set
MinPts parameter of DBSCAN by using a default value of 4. It’s purpose is to refine
the density estimate, and for the large datasets, the default setting for MinPts in two-
dimensional data is 4 [1]. On the other hand, [7] suggests setting it to twice the dataset
dimensionality, i.e., MinPts = 2*dim. In cases involving noisy, extensive, high-dimensional
datasets, or those with numerous duplicates, increasing the MinPts value might lead to
improved outcomes. Concerning MinPts, Breunig et al. [20] proposed a method to find
an optimal MinPts value based on the dimensionality of the dataset. They argued that
as the dimensionality of a dataset increases, a larger MinPts value is needed to avoid the
curse of dimensionality. Nevertheless, this strategy may not consistently produce the most
favorable outcomes, particularly in the case of datasets with lower dimensions or varying
densities.
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3 Proposed Methodology

Our proposed methodology offers a straightforward approach to identifying the optimal
eps value using stratified sampling and MinPts value through grid-search. This approach
accommodates the unique characteristics of diverse datasets, enabling us to evaluate our
algorithm’s robustness and versatility across a range of data properties.

3.1 Dataset

In our research, we conducted experiments using two distinct datasets: synthetic datasets
and real-world datasets retrieved from GitHub. These real-world datasets (Iris, Iono,
Sonar, and Arrhythmia) are inherently complex and characterized by many features as
5, 35, 61, and 263, respectively. We applied dimensionality reduction techniques to handle
such high-dimensional data and prepare it for clustering. Specifically, for the real-world
datasets, we employed Principal Component Analysis (PCA) and t-Stochastic Neighbor
Embedding (t-SNE) to transform the original data into a more manageable and informative
representation, resulting in a reduced feature space consisting of two essential features.

In contrast, the synthetic dataset (2d-20c- no0, elly 2d10c13s, sizes1, square4, and
st900) used in our study was presented in a numerical format and featured only two dis-
tinct attributes. This simplicity facilitated the direct application of our method without
the need for dimensionality reduction. By leveraging dimensionality reduction techniques
for real-world datasets, we aimed to mitigate the challenges posed by the curse of dimen-
sionality while preserving the relevant information necessary for meaningful clustering.
This approach allowed us to ensure the effectiveness of our proposed algorithm across a
spectrum of dataset complexities and dimensions.

3.2 Use of K-neighbors

Our study adopted a K-neighbors approach to determine the optimal values for eps and
MinPts parameters. These two steps are intertwined, such that the outcome of the first
influences the second. The underlying principle is that for a data point to be considered
part of a cluster, it must have a minimum number of neighboring points within a specified
radius, denoted as eps. Therefore, we established a minimum threshold for the number
of neighbors k and computed the distance of each data point to its nearest neighbor. We
considered the size of the dataset under investigation to determine the appropriate number
of neighbors. Subsequently, we calculated the average distance from each data point to
its nearest neighbors. We then applied stratified sampling to the distances derived from
this average distance measurement. This process was finalized by creating a k-distance
graph based on the stratified sampled distances. To identify the optimal epsilon value, we
employed the knee locator technique [21] in conjunction with the elbow method [22] . This
method allows us to pinpoint a specific point on the curve where the rate of change in the
distances shifts significantly, indicating the appropriate epsilon value. Our emphasis on the
average distance captures neighboring points effectively, providing a more comprehensive
view of the local data structure, especially in scenarios where outliers are present; we
described this process well in (our previously accepted paper). By dividing the average
distances into strata and sampling representative distances, this process provides insights
into the underlying data structure while ensuring efficient use of computational resources.

3.3 Agorithms for Epsilon Estimation and MinPts Determination

Algorithm 1 and Algorithm 2 delineate the systematic procedure employed to ascertain
the values of both pivotal parameters, namely, eps and MinPts.
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Algorithm 1 Stratified Sampling for Epsilon Estimation

1: Input:
2: Sample data X, where X = Rd

3: Number of nearest neighbors (k)
4: Number of strata p
5: Number of elements sampled from each stratum m
6: Output:
7: Optimal epsilon ϵ value for constructing a k-nearest distance graph
8: Initialization:
9: Initialize distances array: distances[]
10: Step 1: Compute Distances
11: for each element x in X do
12: for each other element x′ in X do
13: if x is not equal to x′ then

14: Calculate distance using Euclidean formula: µ =
√∑d

i=1(xi − x
′
i)

2

15: Append µ to distances[]
16: end if
17: end for
18: end for
19: Step 2: Order Distances
20: Sort distances[] in ascending order
21: Step 3: Calculate Average Distances
22: Initialize averages array: averages[]
23: for each element x in X do
24: Get the first k distances from distances[] (excluding 0 distance)
25: Calculate average distance: πavgµd = 1

k

∑k
i=1 πiµd

26: Append πavgµd to averages[]
27: end for
28: Step 4: Stratified Sampling
29: Initialize strata array: strata[]
30: for each πavgµd in averages[] do
31: Divide πavgµd into p class intervals of equal size: τp = πavglower-limit

µd − πavgupper-limit
µd

32: Sample m distances from each stratum using sample(τp,m)
33: Append sampled distances to sampled distances[]
34: end for
35: Step 5: Construct k-Nearest Distance Graph
36: Generate a k-nearest distance graph from sampled distances[]
37: Locate optimal ϵ value using knee locator technique
38: Output:
39: Set dmin (optimal value) as ϵ

Algorithm 2 Determine Optimal MinPts

1: distancesStrata: A list of distance values for stratified sampling
2: kneeStrata: A knee locator object used to find the optimal epsilon (eps) value
3: features: The dataset for which DBSCAN clustering is performed
4: Print the average silhouette scores for different MinPts values
5: for i in range(3, n, 1) do
6: Set epsV alue = distancesStrata[kneeStrata.knee]
7: Set minSamples = i
8: Perform SS-DBSCAN clustering on features with parameters:
9: eps = epsV alue
10: MinPts = minSamples
11: Calculate the silhouette score for the clustering result:
12: silhouetteAvg = silhouetteScore(features, db.labels)
13: Print the results:
14: ”For min sample value = ” + str(minSamples)
15: ”The average silhouetteScore is : ”, silhouetteAvg
16: end for
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3.4 Grid-search for MinPts determination

While there are suggestions and heuristics for choosing MinPts, there is no universally
accepted method for its estimation. The best approach depends on the dataset’s specific
properties and the analysis context. For estimating the MinPts value, we use the grid-
search approach. This method ties the MinPts value to the point density within an eps
radius, making the MinPts value reliant on the initially set number of neighbors. We rec-
ommend setting a lower value for smaller datasets, whereas larger, more complex datasets
benefit from a higher one. Once the eps value is determined, MinPts can be deduced based
on the following criteria:

– For datasets of 3000 samples or fewer, the range for MinPts should be set between 3
and 100, iterating by 1 or n steps while maintaining the eps value derived from the
k-distance graph. The most suitable MinPts value can be selected based on the highest
Silhouette score.

– For datasets exceeding 3000 samples, the range for MinPts should commence from 3
or any number up to a designated maximum number, iterating by n steps. Again, the
eps value extracted from the k-distance graph remains constant. The optimal MinPts
value can be chosen based on the Silhouette score’s pinnacle Fig. 2.

Fig. 2: Grid Search for MinPts

Fig. 3 illustrates the workflow of the enhanced DBSCAN algorithm, termed SS-DBSCAN.
In our study, we utilized two versions of datasets: Synthetic dataset and a Real-world
dataset. Following the preprocessing, both datasets underwent a series of computational
steps. We began by setting number of neighbors k to compute the Euclidean distances
between any two elements in X. From this, we derived the average distance. Stratified
sampling was then employed to ascertain each element’s average distance from its nearest
neighbors.

Subsequently, we carried out a polynomial fitting to construct a k-distance graph, which
aided in pinpointing the eps value using the knee locator. We prefered k-distance method to
determine the eps value in SS-DBSCAN because it offers robustness to noise, adaptability
to local density variations, automatic selection, and flexibility to handle diverse datasets
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effectively. It aligns with the core principles of DBSCAN, which is designed for density-
based clustering in complex and non-uniform data distributions. We then executed a grid
search technique with the eps value in hand to determine the optimal MinPts value.
This process was done by holding the eps value constant and testing a range of values,
starting from 3 up to n. These two parameters, eps and MinPts, were then input into
the DBSCAN algorithm to identify the number of clusters. We used silhouette scores
to gauge the fitting of MinPts. The score that rendered the highest value was selected.
Importantly, in cases where the clustering outcome produced a silhouette score below
1, we systematically improved our results by adjusting the number of neighbors k. This
change directly influenced the distances between any two elements X, which, in turn,
subtly adjusted the eps and MinPts values.

4 Results

To assess the robustness of our methodology, we conducted experiments using two distinct
types of datasets: synthetic datasets and real-world datasets, as elaborated in this section.

4.1 Experiments from the synthetic dataset

2d-20c-no0 Dataset: The 2d-20c-no0 dataset is a synthesized collection comprising
1,517 data points, each defined by attributes X and Y. By implementing our novel method;
we derived an epsilon value of roughly 1.01432 and a MinPts of 13. This configuration
produced a clustering silhouette score of 0.635, indicating a robust clustering arrangement
Fig. 5. For benchmarking, the standard DBSCAN was deployed with eps set to 0.40150 and
MinPts at 4, leading to a silhouette score of 0.418 Fig. 4. Thus, although both techniques
showcased good performance, our method demonstrated superior clustering precision, re-
sulting in 19 clusters that match the actual dataset labels and 58 noise points, compared
to DBSCAN’s 35 clusters with 173 noise points.
sizes1 Dataset: The sizes1 dataset comprises 1,000 instances, each defined by two fea-
tures: X and Y. Utilizing our proposed method, we estimated an epsilon value of ap-
proximately 2.78358 and determined a MinPts value of 69. Applying these parameters
to the SS-DBSCAN algorithm led to identifying 4 well-defined clusters, along with 18
noise points. These results align with the dataset’s actual 4 class labels. Additionally,
the clustering outcome achieved a silhouette score of 0.569 Fig. 7, which suggests a well-
structured cluster arrangement. On the other hand, the DBSCAN algorithm, from the
calculated eps=1.93697 and default MinPts value of 4. This approach yielded a lower sil-
houette score of 0.146 Fig. 6, with a single cluster and 3 noise points. Consequently, our
method demonstrated a substantially better performance in clustering effectiveness.
elly 2d10c13s Dataset: The elly 2d10c13s dataset contains 2,796 instances with two
features, X and Y. Using our method with SS-DBSCAN, we obtained an epsilon value of
about 0.53009 and a MinPts value of 124. This resulted in a single cluster along with 102
noisy data points, although its performance fell short of expectations despite a respectable
silhouette score of 0.450 Fig. 9. In contrast, standard DBSCAN with different parameters
yielded a lower silhouette score of 0.249 Fig. 8. Overall, clustering was not effective for
this dataset.
square4 Dataset: The square4 dataset consists of 1,000 instances, each characterized
by two features, X and Y. Using our proposed method, we estimated an epsilon value of
approximately 2.63267 and selected a MinPts value of 122. When these parameters were
applied to the SS-DBSCAN algorithm, we identified 4 well-defined clusters and detected 86
noise points. These results correspond to the square4 dataset’s actual labels. The clustering
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Fig. 3: SS-DBSCAN Flow Diagram
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Fig. 4: DBSCAN=0.418 Fig. 5: SS-DBSCAN=0.635

Fig. 6: DBSCAN= 0.146 Fig. 7: SS-DBSCAN=0.569

Fig. 8: DBSCAN= 0.249 Fig. 9: SS-DBSCAN=0.450
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outcome yielded a silhouette score 0.402, indicating a well-structured cluster arrangement
Fig. 11. Compared with the DBSCAN algorithm, with parameters set at eps=1.57385
and MinPts=4. This approach resulted in a lower silhouette score of 0.295 and produced
only one cluster and 6 noise points Fig. 10. Hence, our approach showcased exceptional
performance in the context of clustering effectiveness.

Fig. 10: DBSCAN=0.295 Fig. 11: SS-DBSCAN=0.402

st900 Dataset: The st900 dataset comprises 900 instances, each described by two fea-
tures: X and Y. Utilizing our proposed method, we estimated an epsilon (eps) value of
approximately 0.68156 and selected a MinPts value of 45. In this case, the SS-DBSCAN
algorithm successfully identified 8 clusters and detected 124 noise points, while DBSCAN
identified only one cluster. SS-DBSCAN achieved a silhouette score of 0.342, suggesting
a reasonably well-structured cluster arrangement Fig. 13. We also implemented the DB-
SCAN algorithm using parameters eps=0.45121 and MinPts=4. This approach yielded a
significantly lower silhouette score of 0.114 Fig. 12. Consequently, our proposed method
demonstrated substantially superior performance in terms of clustering effectiveness.

Fig. 12: DBSCAN=0.114 Fig. 13: SS-DBSCAN= 0.342
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4.2 Experiments from real-world dataset

From our experimental analysis, real-world datasets displayed a consistent pattern, al-
though the results were generally suboptimal except for the Iris dataset. This dataset
exhibited superior performance across both the SS-DBSCAN and conventional DBSCAN
algorithms. Notably, all these real-world datasets (Iris, Iono, Sonar, and Arrhythmia) have
a significant number of dimensions, featuring 5, 35, 61, and 263 attributes, respectively.
Our analysis revealed a notable trend: the SS-DBSCAN algorithm consistently outper-
formed the conventional DBSCAN algorithm across these diverse datasets. Nonetheless,
it was noted that the excellence in cluster formation tended to diminish with the augmen-
tation of dataset dimensionality, implying that although SS-DBSCAN exhibits enhanced
performance accross all dataset compared to DBSCAN, its efficacy might encounter limi-
tations when dealing with datasets of higher dimensions.

Iris dataset Fig. 14 and Fig. 15

Fig. 14: DBSCAN=0.872 Fig. 15: SS-DBSCAN=0.872

Iono dataset Fig. 16 and Fig. 17

Fig. 16: DBSCAN=-0.183 Fig. 17: SS-DBSCAN=0.385
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Sonar dataset Fig. 18 and Fig. 19

Fig. 18: DBSCAN=0.022 Fig. 19: SS-DBSCAN=0.440

Arrhythmia dataset Fig. 20 and Fig. 21

Fig. 20: DBSCAN=0.100 Fig. 21: SS-DBSCAN=0.177

4.3 SS-DBSCAN Validation

We employed several metrics in validating the robustness of our algorithm SS-DBSCAN
Table 1, which are the Silhouette Score (SS), Normalized Mutual Information (NMI),
Adjusted Rand Index (ARI), Homogeneity Score (HS), and Completeness Score (CS) to
ensure a comprehensive assessment of our clustering results.

– a) Silhouette analysis is utilized to pinpoint the optimal cluster count for continuous
scale data, like Euclidean distances, and it excels when clusters are clearly distinct.
Rousseeuw [23]first presented the Silhouette as a tool to assess clustering performance.
This technique considers both the likeness and differences or average closeness, between
clusters. It’s especially beneficial for clusters that are roughly spherical [24]. In our
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study, we also leveraged silhouette analysis to corroborate the validity of our approach.
There major three steps happens when validating using silhouette [23] [24].

a (i) =
1

|CI| − 1

∑
J∈CI,i̸=j

d (i, j)

First, the centroid is taken into account. Let’s label this centroid as i and the neigh-
boring data points as j. We then determine the distances between i and j, denoted as
d(i, j).

Next, we turn our attention to another cluster and measure the distances between
these clusters using a specific formula

b (i) = min
1

J ̸= I |Cj|
∑
J∈CJ

d (i, j)

Lastly, The efficacy of the clustering model is gauged by:

b (i) >> a (i)

Assigning a silhouette value to a specific data point, denoted as i.

s (i) =
b (i)− a (i)

max {a (i) , b (i)}
, if |CI| > 1

If the silhouette values predominantly lie closer to 1 within a range from -1 to 1, it
indicates a robust model.

– b) Normalized Mutual Information (NMI) serves as an additional metric to gauge the
resemblance between two cluster patterns or a comparison of a clustering to its baseline
truth. It captures the mutual details shared between two clustering outcomes, produc-
ing values that range from 0 (suggesting entirely distinct clusterings) to 1 (indicating
compatible clusterings with possible permutations). NMI’s framework draws upon in-
formation theory principles, factoring in mutual information and entropy, to establish
this similarity.

Mutual Information (MI) can be portrayed as a derivation of Shannon’s entropy values
and their conditional counterparts, as referenced in [25].

((I (X;Y ) = H (X)−H (X|Y ) = H (Y )−H (Y |X)

The boundaries for mutual information are outlined in [26]:

0 ≤ I (X,Y ) ≤ min (H (X) , H (Y ))

NMI (X,Y ) =
I (X;Y )

min (H (X) , H (Y ))

where

(X;Y )

is the mutual information between clusters XandY

(H (X) andH (Y ))

are the entropies of the clusters XandY, respectively.
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– c) The Rand Index (RI) [27] and its refined counterpart, the Adjusted Rand Index
(ARI) [28], rank among the most recognized metrics for evaluating the congruence
between distinct partitions. Originating from the realm of clustering analysis, these
indices offer a quantifiable measure of how similar or different two data groupings are.
Over the years, both RI and ARI have been embraced across diverse domains and have
become the go-to metrics for cluster validation, as evidenced by numerous studies and
applications in fields cited in references [29].

RI
(
P (1), P (2)

)
=

a+ d

a+ b+ c+ d
=

(
n
2

)
+
∑k1

u=1

∑k2
v=1 n

2
uv − 1

2

(∑k1
u=1 n

2
u. +

∑k2
v=1 n

2
.v

)
(
n
2

)
where a quantifies the pairs of points that share a segment in both partitions, while
b tallies the pairs residing in separate segments across both partitions. On the other
hand, c and d keep track of pairs of points that align in one partition’s segment but
diverge in the other, considering both possible arrangements, as delineated in reference
[30].

ARI
(
P (1), P (2)

)
=

RI − E(RI)

max(RI)− E(RI)

– d) Homogeneity and completeness scores can be concisely defined as follows: A clus-
tering outcome exhibits homogeneity when every one of its clusters contains data
points belonging exclusively to a singular class [31]. Conversely, a clustering outcome
demonstrates completeness when all data points associated with a specific class are
consolidated within a single cluster [31]. Homogeneity score is calculated as:

h =

{
1 if H(C,K) = 0

1− H(C|K)
H(C) else

Where:

H(C | K) = −
|K|∑
k=1

|C|∑
c=1

ack
N

log
ack∑|C|
c=1 ack

H(C) = −
|C|∑
c=1

∑|K|
k=1 ack
n

log

∑|K|
k=1 ack
n

Completeness score is calculated as:

c =

{
1 if H(K,C) = 0

1− H(K|C)
H(K) else

Where:

H(K | C) = −
|C|∑
c=1

|K|∑
k=1

ack
N

log
ack∑|K|
k=1 ack

H(K) = −
|K|∑
k=1

∑|C|
c=1 ack
n

log

∑|K|
c=1 ack
n
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In this context, N signifies the data points within a dataset, which can be divided into
two subsets: a collection of classes denoted as C = ci|i = 1, . . ., n, and a set of clusters
designated as K = ki|1, . . ., m. The clustering algorithm generates a contingency table
denoted as A, representing the clustering result. Within this table, A = aij, with each
aij indicating the count of data points belonging to class ci and present in cluster kj
[30]

Table 1: Table 1: DBSCAN Parameters Vs SS-DBSCAN Parameters

DBSCAN SS-DBSCAN

Datasets SS NMI HS ARI CS SS NMI HS ARI CS

2d-20c-no0 0.418 0.883 0.905 0.774 0.862 0.635 0.971 0.973 0.963 0.969
elly-2d10c13s 0.249 0.001 0.001 0.000 0.389 0.450 0.064 0.035 0.011 0.481
sizes 0.146 0.003 0.002 0.000 0.109 0.569 0.870 0.885 0.905 0.856
square4 0.295 0.003 0.002 0.000 0.062 0.402 0.649 0.689 0.681 0.613
st900 0.114 0.002 0.001 0.000 0.263 0.342 0.758 0.756 0.709 0.760
Iris 0.872 0.734 0.776 0.568 1.000 0.872 0.734 0.776 0.568 1.000
Sonar -0.022 0.125 0.103 -0.001 0.159 0.440 0.063 0.079 0.046 0.052
Arrhythmia 0.100 0.030 0.016 0.023 0.181 0.177 0.168 0.147 0.056 0.195
lono -0.183 0.061 0.554 0.044 0.155 0.385 0.334 0.627 0.276 0.245

The experimental results obtained from nine diverse datasets unequivocally highlight the
effectiveness of our proposed approach in precisely estimating the values of eps and MinPts
for the SS-DBSCAN algorithm. Utilizing SS-DBSCAN for cluster identification consis-
tently outperforms DBSCAN, as evidenced by superior scores across various validation
metrics as shown in Fig. 22, Fig. 23, Fig. 24, Fig. 25 and Fig. 26.

Fig. 22: Silhouette Score Graph Fig. 23: NMI Score Graph

5 Discussion

This study introduced an enhanced methodology for estimating the eps and MinPts pa-
rameters in the DBSCAN clustering algorithm by leveraging stratified sampling combined
with k-neighbors and Grid-search approaches. Drawing on experimental results from nine
diverse datasets, we observed a marked improvement in the precision of eps and MinPt
determination with our method when matched against established techniques.
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Fig. 24: Homogeneity Score Graph Fig. 25: ARI Score Graph

Fig. 26: Completeness Score Graph

5.1 Eps Estimation Through Stratified Sampling

A significant aspect of stratified sampling is its capacity to account for dataset structure
and density variations. This consideration is instrumental in forming superior clusters. By
constructing a k-nearest distance graph, we captured the intricate relationships between
data points based on their relative proximities. This technique gave us the opportunity to
explore deeper into the localized traits of each subgroup, furnishing a more comprehensive
portrayal of relationships spanning the entire dataset. Furthermore, our approach under-
scores the essential contribution of each distinct stratum or subgroup within the dataset,
ensuring that the insights extracted are comprehensive and do not overlook critical nuances
specific to any particular subgroup.

5.2 MinPts Estimation Through Grid-Search

Traditionally, MinPts often uses rule-of-thumb values or formulae such as 4 or 2 times the
dimensionality of the data. Our study argues against this practice, particularly in scenarios
involving high-dimensional or non-uniformly dense datasets. Our grid-search methodology
sets a flexible range for MinPts, maintains a constant, calculated eps value, and selects the
best MinPts based on silhouette score metrics. Though our experiments commenced with a
minimum value of 3, we note that this might not be universally applicable and caution that
the range may need to be adjusted according to the specificities of the dataset in question,
but the minimum number should be at least 3. The grid-search approach manifested its
efficacy by delivering improved clustering results, not just in SS-DBSCAN but also showing
promise for enhancing outcomes in conventional DBSCAN algorithms compared to default
values.

5.3 Sensitivity of the SS-DBSCAN on Different Parameter Choice

The sensitivity analysis of SS-DBSCAN’s parameters reveals that smaller sampling sizes
tend to increase variance in density and distance estimations, potentially diminishing the
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algorithm’s robustness and leading to the detection of less quality clusters. Conversely,
larger sampling sizes offer a more accurate data representation but may incur heightened
computational demands. In terms of epsilon, reducing its value yields more clusters but
can result in cluster fragmentation, while increasing it may merge clusters and compromise
fine-grained structures. Striking a balance between sampling size and epsilon is essential,
as smaller sizes may necessitate larger epsilon values, and vice versa. Achieving parameter
robustness and generalization across diverse datasets is a pivotal objective, with evaluation
metrics like silhouette scores aiding in quantifying the impact of parameter variations on
clustering quality.

On the other hand, the selection of MinPts is primarily guided by the pursuit of the
optimal silhouette score. However, situations may arise where multiple MinPts values yield
identical silhouette scores and cluster counts. In such instances, it is prudent to opt for
the lower MinPts value, as it tends to produce clusters with a reduced number of outliers,
thus contributing to a more refined clustering outcome.

5.4 Robustness, Versatility, and Less Computational Overhead

A notable strength of our suggested method lies in its adaptability and resilience when
applied to diverse datasets. Regardless of variations in scale, dimensionality, or density, our
methodology consistently aligns with the unique attributes of each dataset, highlighting
its widespread applicability and potential for extensive use. Another salient advantage of
employing the stratified sampling approach is its efficacy in analysis. Focusing on targeted
segments could expedite computational processes, presenting a significant reduction in
computational overhead, especially pertinent in scenarios involving voluminous datasets.
This streamlined approach not only improves the accuracy of the clusters but also aug-
ments the overall efficiency of the clustering process.

6 Conclusion

This research presented an innovative methodology to optimize parameter estimation
within the DBSCAN clustering algorithm. By integrating stratified sampling and a k-
neighbors approach, we achieved enhanced accuracy in eps parameter estimation, as ev-
idenced by tests across nine diverse datasets. Our method outperforms traditional tech-
niques and underscores the importance of a tailored approach to handle datasets of varying
scales, dimensions, and densities.

Furthermore, our grid-search technique for MinPts estimation challenges conventional
norms, highlighting the necessity for flexibility, especially in the face of high-dimensional
or non-uniformly dense datasets. This flexible approach, grounded in silhouette score met-
rics, indicates a promising path forward for clustering algorithms, suggesting potential
enhancements within our SS-DBSCAN variant and extending to traditional DBSCAN
frameworks.

While our approach has demonstrated encouraging outcomes, forthcoming investiga-
tions could delve into the influence of alternative stratification methods, scrutinize scala-
bility concerns, or assess the performance of the method on extensive datasets. Our study’s
findings accentuate the proposed methodology’s robustness, versatility, and computational
efficiency, emphasizing its broad applicability. As clustering remains a cornerstone in data
analysis, the implications of our research are far-reaching, promising improved results
across various domains.
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