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ABSTRACT 
 

In search of a particular lithium battery with reliable safety and high energy, quantities of 

research have been focused on the chemical substances for the Anode and Cathode, respectively. 

In Cui’s laboratory, an efficiency of 98.54% for more than 600 cycles as well as long lifespan 

beyond 900h in a LiCu-Ag@Li cell can be realized. A high cyclability of 98% capacity can be 

achieved after 1000 cycles along with a long lifespan of 1500h in a SiOxCy@Li cell, which both 

prevents electrons from piercing through a separator, and leverages the efficacy of the lithium-

ions via a binder. Thanks to Cui et al. and Severson et al., we either have got approved for or 

searched for the published data regarding the lithium-ion battery’s lifespan and chart a series of 

diagrams that reveal the curve-shaped trend line and unexpected surges in the first, middle and 

last few cycles of a cell’s life. The more a shocking cusp (outliers) surfaces, the more a decline 

steepens. We compare the data from the laboratory to on-board batteries and build a polynomial 

regression in order to predict the life end of those cells. While the non-linear regression is 

unable to best fit every moment of a cell’s decrepitude, our team create a regression model to 

increase the accuracy of predication to an average of 97.693% in the primary test according to 

the first 30-225 cycles, then seek the optimization for longevity forecast by programming solver 

and hyperparameter, and finally find a(non-fixed) relationship between the speed and 

acceleration during the period of a cell’s degradation. SVM model has also been created along 

with its corresponding 3D pattern with Temperature considered and so has the model Multiple 

Regression but the cost/benefit analysis will be continued in future study of relevant subject for 

prediction on newly-bonded cells or all-purpose commercial batteries. 
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1. INTRODUCTION 

In order to combine an on-board battery with higher energy, higher safety and lower cost, this 

paper will present a non-linear regression and an optimized model for best-fitting and forecasting 

the end of the life of Li- batteries. In a laboratory, Cui et al.[1]conjugate SiOxCy to the 3D 

collector as an implosion-proof anode, which indicates an ultra long cyclability in both half and 

full cells. According to an array of the on-board data of more than a hundred of cells with a range 

of 2150 cycles and a maximum of 2300 cycles, a model of non-linear regression is set up to 

predict the end of life for a cell (80% of State of Charge, SoC). Given the three aspects, the 

outliers in the very beginning of a cell’s lifetime, the trend in the first 100 cycles (in consistency 

with the findings of Severson et al.) and the comparison among 3 cycle-groups (30-225, 30-400, 

30-450), we classify, compare and choose in the train set the first 30-225 cycles during which 

period the state of capacity degradation is steady and sound and which can reflect a declining 

trend normally with a negative slope. Machine learning allows the evaluation of life prediction 

with references to the formulas in physics and mathematics. To be specific, the regression model 

designed cannot only be interpreted in the way of big data and statistics whereby we are 95% 

confident that life expectancy of a cell can be predicted with a convergence of accuracy between 

(97.693+0.007) % and (97.693-0.007) % in the test set but it can also be analyzed in calculus and 

physics as to a velocity-acceleration relationship. 

 

 
 

Fig. 1. first derivative and second derivative of discharge capacity in Graph 

 

As the figure shows, a laboratory-used cell runs from Cycle 1 to Cycle 270. The first derivative 

or the degrading speed of CE beats no more than a rate of 0.02 except for the out branches in the 

head, middle (indicative of a critical point), and tail of the two wavelengths, for Cu-Ag Li-battery. 

So does the second derivative or the acceleration rate. 
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2. LIMITATION AND RESTRICTIONS 

Admittedly, the better the chemical property is, the longer life cycle will be and the higher 

coulomb effect becomes. The fact is, however, that it is unattainable to perfect the performance of 

each parameter in a battery. There is no doubt that researchers in this field have long eluded to 

reach a consensus upon measurements as to what kind of lithium-ion battery has verdict as poor, 

good, or excellent since many factors such as safety, energy effect, costs etc. are being offset or 

contradicted to each other. Indicators also have defects: for example, decay rate is conventionally 

calculated by dividing discharge-current-difference ∆Qn−2
discharge

into the number of cycles. Yet the 

equal weight 1/n allocated to each variable is unreasonable since the decreasing rate cannot be 

averaged. Discharge capacity not only ejects sometimes a curve line, sometimes a straight line 

from the initial stage to the end, but it also produces different decay rates, decrease-rejected or 

decrease-accelerated. To trace down its aging by simply creation of a parabola is nearly a mission 

impossible, because the trajectory freely goes beyond the limit of 2500 cycles, as is shown in the 

graphs right below.  

 

 

 

Fig.2.a. normalized capacity good fitness line of 

capacity in Cycle 30-225                                          

B. Simulated Parabolas of all the Cells 

 

This paper develops the prediction with simply a polynomial regression model and interprets the 

relationship between the energy efficiency and life span of a battery by employing theoretical and 

experimental results, regardless of temperature fluctuations. One part of data is derived from 

Laboratory of Photoelectric Control on Surface and Interface where the performance of Cu and 

Cu-Ag batteries is registered. Another part is sourced from the paper on the prediction of Li-

battery’s end cycle, where in Sevens on et al. published the data of 139 on-board cells. In the real 

world, data may vary with seasonality and timing, electric resistance (ER), etc. and that is why 

discharge capacity cannot fully explain the variation of degradation in forecast and visualization. 

 

The test results in the laboratory under perform due to outliers and insufficient short-lived 

batteries (for new material trials) despite the featured data that often reads room temperature and 

minuscule internal resistance. 
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Table 1.Measurementof Sample Type 

 

Sample Type Temperature(K) Internal Resistance(ohm/cm) 

Cu 300 8.31E-07 

Cu-Ag 300 6.99E-07 

 

3. SOLUTIONS 

In our experiment, regular or irregular, the outliers frequent a significant deviation from the 

trendline. On one hand, the eerie situation is invariably followed by a phenomenon of 

acceleration of the capacity degradation, i.e., the aberrated values are not meaningless in 

predicting the trend of CE; on the contrary, they herald a faster decline instead, as is illustrated in 

Fig. 3.b.  One the other hand, other outliers can be regarded as noisy to be replaced by the 

corresponding data in the previous cycle, such as the outliers in red circle in Fig. 3. a charted by 

Severson et al., while redundant data in the first and last cycles are deleted as the experimental 

errors. Robust data propel both statistical accuracy and practical application. Thus, the cleaned 

data in a cell’s aging process display a non-linear degradation behavior, thereby helping optimize 

the prediction for further diagnosis and prognosis.  

 

 

 

Fig.3.a. outliers both in on-board cells (Severson)  b. CE in laboratory (Cui)cells 

4. RELATED WORKS 

Previous research is dedicated to the prediction for the cycle life of lithium-ion battery (e.g., 

lithium iron phosphate) by virtue of∆Q(V), the difference of discharge capacity voltage, using the 

first 300, 100 or even merely 5 cycles. Published in 2019, the paper Data-Driven Prediction of 

Battery Cycle Life before Capacity Degradation illustrates how the very best model designed by 

Severson et al.[2] can project the cycle life based on only first 100 cycles (from 2 to 100) of 124 

lithium iron phosphate (LFP) cells whose life cycles range from 150 to 2300. Surprisingly, her 

team found that at least 75% of the cells have higher capacity at cycle 100 relative to cycle 2 

(with a median increase of 0.2%); discharge capacity in three quarters of the cells ticks up in the 

first 100 cycles. Another eminent contribution is that Severson et al. reduce a test error to 9.1% 
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with the first 100 cycles and achieve a classification accuracy of 97.5% within the first 5 cycles. 

Furthermore, another team configure and transform ML models to decrease the error through 

skewness or kurtosis of ΔQ100−10(V). From other research perspective, coulomb efficiency (CE) 

is one of the key indicators to study the degradation of batteries on a cycle-to-cycle basis. In this 

way, Yang Fangfang et al.[3] predict the longevity of the Li-battery cell with an accuracy of above 

95% based on the initial 100-200 cycles. The fitness level of the actual and predicted values 

against Normalized Capacity is later enhanced to such a high level as R-square at 0.9971-0.9979 

with a two-term logarithmic model, as a batch of BAK 18650 LFP batteries are sampled.  In 2021, 

Liu WM [4]uses the regression model (∆Q(V) versus the number of cycle) based on the first 300 

cycles (from 2 to 300) of LFP batteries, abating the test error from 9.1% to 7.3%.  

5. PHYSICAL  AND MATHEMATICAL  FORMULATIONS 

Coulombic Efficiency Sequence 

𝐶𝐸1=
𝐶𝑑

𝐶𝑐
 , 

where Coulombic Efficient is denoted as CE, Capacity of Discharge as 𝐶𝑑 , and Capacity of 

Charge as 𝐶𝑐. 

 

𝐶𝐸2 = (𝐶𝐸1)′ +𝐶𝐸1+ε 

𝐶𝐸3 = (𝐶𝐸2)′ + 𝐶𝐸2 + ε 

𝐶𝐸4 = (𝐶𝐸3)′+𝐶𝐸3+ε 

… 

𝐶𝐸𝑛−1 = (𝐶𝐸𝑛−2)′ + 𝐶𝐸𝑛−2 + ε 

𝐶𝐸𝑛 = (𝐶𝐸𝑛−1)′ + 𝐶𝐸𝑛−1 + ε 

𝐶𝐸𝑛 = (𝐶𝐸𝑛−1)′ + (𝐶𝐸𝑛−2)′ + (𝐶𝐸𝑛−3)′ + ⋯ + (𝐶𝐸1)′ + 𝐶𝐸1 + ε  (1) 

𝐶𝐸𝑛 − 𝐶𝐸1 = (𝐶𝐸𝑛−1)′ + (𝐶𝐸𝑛−2)′ + (𝐶𝐸𝑛−3)′ + ⋯ + (𝐶𝐸1)′ + ε 

 

Assume that n is the number of the life cycle of a cell, then 

 

 

 

Fig. 4. the quasi-parabola-shaped trend line 
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6. NON-LINEAR REGRESSION MODEL 

 

Since the graph of CE takes on a parabola-like curve, a polynomial (degree=2) regression model 

is set up.  

 

𝐶𝑑 =  𝑎𝑥2 + 𝑏𝑥 + 𝑐, 

 

where x is the cycle of the battery, a is the acceleration of the degradation and b is the speed of 

degradation and c is the initial value of the capacity. 

 

When the critical point does not occur, i.e., a is arbitrarily getting close to 0, the battery degrades 

in a quasi-straight line with the slope, b starting from the initial value, c but the capacity is not 

stable in the first few cycles and therefore our calculation starts from the 30st cycle. We assume 

that b is the initial falling speed as it is the indicator of degradation rate in Cycle30st. Those 

cycles are more likely to compose a positive slope or decreasing line. That is the reason why we 

choose the cycle interval [30, 225). 

 

When the critical point does occur, i.e.,𝑎 ≠ 0, the capacity decreases at an increasing rate and 

bends more sharply, a process that helps shape a curve similar to a parabola.  

 

𝐶𝑑 =  𝑎𝑥2 + 𝑏𝑥 + 𝑐（a<0,indicating that the parabola faces down; b<0, when the initial speed 

goes down, b>0, when the initial speed goes upward）. 

 

To reduce the error, we set up D(x). 

 

Let D(x)=a*𝑥2+b*x+c+ ɛ, 

 

where a, b, c are constants; a is related to acceleration, b initial falling speed, c initial value of 

discharge capacity, and ɛ is the error. 

 

D′ (x)=2 ∗ 𝑎 ∗ 𝑥 + b, 

 

where D′ (x) is the first derivative of discharge capacity, b is the initial value of the falling speed 

of the discharge capacity. 

 

D′′ (x)=2a, 

 

where D’’(x) is the second derivative of discharge capacity, 2a is A, the falling acceleration of the 

discharge capacity.  
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𝐷𝑘 − 𝐷𝑘−1 = 2 ∗ 𝑎 ∗ 𝑥𝑘 + 𝑏                                                               (1) 

𝐷𝑘−1 − 𝐷𝑘−2 = 2 ∗ 𝑎 ∗ 𝑥𝑘−1 + 𝑏(2) 

… 

𝐷3 − 𝐷2 = 2 ∗ 𝑎 ∗ 𝑥3 + 𝑏                                                                    (k-2) 

 

In order to derive the value of 𝐷𝑘 − 𝐷2, add up all the expressions from (1) to (k-2), respectively 

and yield 

 

𝐷𝑘 − 𝐷2 =2*a*(𝑥𝑘 + 𝑥𝑘−1 + ⋯ + 𝑥3) + b*(k-2) 

 

According to Calculus (first derivative) 

𝐷𝑘 − 𝐷𝑘−1 = 𝐷𝑘
′ +  ɛ                                                                (1) 

𝐷𝑘−1 − 𝐷𝑘−2 = 𝐷𝑘−1
′ +  ɛ(2) 

… 

𝐷3 − 𝐷2 = 𝐷3
′ +  ɛ(k-2) 

 

Therefore, 

 

𝐷𝑘 − 𝐷2 = 𝐷𝑘
′ + 𝐷𝑘−1′+…+𝐷3′+ ɛ 

               =∫ 𝐷𝑥 ′𝑑𝑥    
𝑘

3
 

               = 
1

2
∗ (𝐷3

′ + 𝐷𝑘
′ ) ∗ 𝑥𝑘−2   (Area of Trapezoid)         

𝐷𝑘
′ = 𝐷3′  +A*𝑥𝑘−2=b+2a*𝑥𝑘−2 

 

where A is a Constant as acceleration and b is the initial speed of the degradation.  

Therefore, 𝐷𝑘 − 𝐷2 : 

2*a*(𝑥𝑘 + 𝑥𝑘−1 + ⋯ + 𝑥3) + b*(k-2) = 
1

2
∗ (𝐷3

′ + 𝐷𝑘
′ ) ∗ 𝑥𝑘−2 

                                                             =
1

2
*(b+b+2a*𝑥𝑘−2)∗ 𝑥𝑘−2 

                                                             = (b + a*𝑥𝑘−2)∗ 𝑥𝑘−2 

 

𝑥𝑘−2 is a continuous instead of discrete number in life-cycle prediction while k is,however, an 

integer (the last cycle number). We are confident that a and b have multiple relationship, though, 

with minor residuals, unsure about the concrete and certain times between the two variables. 

 

2*a*∑ 𝑥𝑖
𝑘
𝑖=2 +b*(k-2)=(b+a*𝑥𝑘−2)*𝑥𝑘−2 

 

Let’s further do an example and assume that k=813,𝑥𝑘 = 818.29 as a predicted end of life cycle, 

then 

2*a*
(2+818.29)

2
*817+b*811=(b+a*816.29)*816.29 
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By test in python, we prove that a and b have multiple relationship (rounded a minor residue up 

to a whole number). 

7. MACHINE-LEARNING APPROACHES 

We clean the battery data by standardization and normalization and then classify them by train 

and test sets in which some of the cells are further grouped attributive to the negative slope of the 

initial speed and others of the cells to the positive slope, respectively and the classified groups are 

put into two independent loops. By iteration and batch processing, coefficients of the polynomial 

regression, a, b and c are derived, which attests the value of c to be near the initial capacity and b 

to be near the initial speed. More surprisingly, it is noticeable that a and b have a numerical 

relationship. Therefore, we deprive part of a and b values as hyper-parameters and retain the 

remaining for optimization. We have found a non-fixable but multiple relationship between a and 

b. For the value of b is the initial speed of the degradation, the value of a can be assessed and 

reasoned based on the calculated value of b. However, the value of b can be positive or negative, 

which may impact the hypothesis, so we build another consistent algorithmic model between a 

and b in the train set before running data in the test set and finally prove our assumption. 

 

According to the data from the randomly-selected cells, we have tested the accuracy from the 

classified Cycle 30-225, 30-400, 30-450. It turns out that the farther the cycles are chosen, the 

closer the values between the evaluated and actual can be as per the graph. However, when our 

model is applied, the regression line, though unable to fit the actual degradation, can attain an 

accuracy ranging from 93.253% to 99.725% in terms of the prediction based on the data in Cycle 

30-225 better than its counterparts. As is shown below, the data are neither coincident nor 

unexpected in light of the above-shown working on physics and mathematics. It may be observed 

that the battery life ends up with 0.9 instead of 0.85 or 0.80, but barely will the missing data 

affect the outcomes, because the model is built on those data of a typical cell of 919,051 cycle 

index and 139 such cells. No matter how far the experimental data records, the predicted end 

point is expected to fall in proximity to a cell’s actual longevity as follows,  
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Fig. 5. Algorithmic Optimization of the four cells with b <0 represented by illustrations a, b, c and d, 

respectively 

 

Table 2. Statistical Table 

 

 

 

 

 

 

 

 

When the initial speed is greater than zero or b > 0, the model can also be agilely used for the 

train set, as the architecture is designed and developed for a classified result on prediction.  

 

 

 

Fig. 6.AlgorithmicOptimization of the two cells with b > 0 represented by illustrations a and b, respectively 

Battery index Actual  Predicted Accuracy 

1 [813] [818.29] 99.349% 

2 [490] [508.81] 96.161% 

3 [666] [668.83] 99.575% 

4 [541] [577.50] 93.253% 

5 [1009] [1011.78] 99.725% 

6 [828] [833.46] 99.341% 
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Table 3. Statistical Table 

 

 

 

 

 

 

After all, statistics include probability and it cannot escape from errors. In the first test, a majority 

of cells satisfy an accuracy above 90% out of 139 cells but some parameters still need to be 

algorithmically optimized to better the predicative results. 

8. EXPERIMENTAL RESULTS 

In the first stage, we take advantage of the model of polynomial regression to simulate and 

predict the life cycle of cells with an accuracy from 93.253% to 99.725% for the majority of cells, 

although the success rate is far from perfection. The reason is that the degradation of a cell is not 

a free fall without the control of electric resistance (ER) or fluctuation of temperature. 

Multivariate model should have been considered with ER included, for example, but theoretically, 

the relationship among currents, ER and Voltage is well known in physics I=V/R and thus we can 

represent V and R with capacity (I). The variable discharge capacity can empirically reflect the 

lurking variables, voltage and ER in the non-linear regression model. 

 

In the second stage, we run the model in the train set and test set, respectively and the accuracy 

can reach above 95% in average with RMS 14.531 in the train set and 74.081% with RMS 

466.388 in the (before-classification) test set. The percentage accuracy for the cells can be 

averaged as high as 97.693% in the primary test (for 88 cells) and 97.313% in the secondary test 

(for 118 cells). Further experiment needs to be continued in order to explore the relationship 

between a and b or between the acceleration and speed of li-ion battery degradation. 

 

Fig. 7. python code in calculating RMS 

 

 

 

 

Battery index Actual longevity Predicted Accuracy 

34 [824] [829.415] 99.343% 

7 [1045] [1068.448] 97.756% 
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In the third stage of optimization, programing solver and embedded loops are used to minimize 

the variance between the actual value and predicted value. Probability distribution and 

distribution density have been used for a wide range of data to test the regression model of 

optimized-to-be parameters.  Different approaches including Multivariate Regression and 

Support Vector Machine (SVM) have been applied and will be compared when other variables 

such as temperature are involved. More importantly, we need to know to which extent ER and 

temperature impose on the performance of the battery, although pre-heating system has been 

widely applied into the on-board battery. 

 

 

 

Fig. 8. Errors and Accuracy 

 

9. CONCLUSION 

We observe the behavior of the coulombic efficiency and thus create a model of polynomial 

regression. Inspired by the previous works and citing the open-access data, we train and test the 

model for the prediction of the cells’ life span which finally reaches a relatively high percentage 

accuracy for a majority of cells. 

 

Non-linear regression heavily depends on the data, some of which are disproportionately model-

friendly while others not, thereby causing overfitting or underfitting [5]. The change of parameters 

is thus deployed for parameter optimization. Our model, though not following the trajectory of 

the fall, is still able to forecast the life expectancy with RMS 27.576 for 88 cells. The secondary 

test has been done with a continued predictability of the regression model and the errors of the 

prediction can be decreased to within 5% for a wider range, 118 tested cells. 
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Complex event processing (CEP), including discharge capacity with regard to temperature, 

material, ER, etc. is required to align the generally decreasing trend of a cell’s degradation to the 

data visualization and associated usage [6]. The model of non-linear regression passes the primary 

and secondary tests, both with high performance. Despite the models of SVM and multiple 

regression that may not reach our expectation, the fitness level of the life cycle of a particular cell 

can arrive at r-square 0.9030 and adjusted r-squared 0.9024 with multivariate statistics. To wrap 

up, this paper interprets, integrates and illustrates powerful algorithms, statistical modes, physical 

formula and coding in python, and deploys ML models to obtain the above results, which will be 

upgraded for future impacts and implications. 
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