
Threshold Key Storage via Fuzzy Extractors
With Applications

Ciarán Mullan

Adva Network Security GmbH

Abstract. We propose a novel threshold key storage scheme that relies on biometric fuzzy extractors
for the derivation of user keys. This approach builds upon the existing framework of password-protected
secret sharing constructions, offering a potential improvement in security and user convenience. Usually
in such schemes, users are required to generate and remember passwords, which in practice can introduce
vulnerabilities and usability issues. By removing this reliance on traditional passwords, our scheme may
enhance the overall security of threshold key storage solutions. Moreover, in situations where password
recovery is not a viable option, our mechanism provides a dependable solution for online private key
storage, ensuring users can access their keys securely and reliably.

Keywords: Key management, secret sharing, threshold cryptography, fuzzy extractors.

1 Introduction

Secret sharing is a cryptographic technique that splits a secret into several shares and
distributes them to a group of semi-trusted parties. The parties learn nothing about the
secret, which can be reconstructed at a later stage only if a certain threshold number
of shares are recombined. One primary application of secret sharing is distributed key
storage. Instead of storing a cryptographic key in a single place where it may be lost or
stolen, it can be secret shared and distributed to a set of storage servers. In this way,
the key does not exist in any single location and by the properties of the secret sharing
scheme, both secrecy and availability of the key is ensured even if a limited number of
shares are compromised. When performing a cryptographic operation, it suffices to gather
enough consistent shares in one place to reconstruct the original key1.

One standout attribute of secret sharing schemes is password-protection, whereby
knowledge of a password is required to reconstruct the secret. This is significant because
in a regular secret sharing scheme, any threshold number of parties can join forces to
compute the secret. Unless this might be considered useful for the application, there is no
reason to permit it. A number of works has been considered in this line [1], [2], [3], with
perhaps the most efficient one to date being Jarecki et al [4]. Despite their appeal, the
drawback to password-protection schemes is that the user must create and remember their
credentials. Forgetting a username or password here is a disaster, as without any recovery
mechanism (only the user ever knows the password), the secret is lost forever.

In this work, we demonstrate that the desirable security features that password-
protection adds to distributed key storage applications can be preserved without requiring
the user to remember any information. For this, we appeal to fuzzy extractors and bio-
metric readings for key derivation. User keys are recomputed on the fly so there is no need
to store them or any private biometric data.

We begin in Section 2 with a discussion of the relevant building blocks. In Section 3 we
include a description of the most competitive password-protected secret sharing scheme to

1 We are not concerned here with more sophisticated cryptographic techniques that involve parties per-
forming computations over their shares, such as in secure multiparty computation.

David C. Wyld et al. (Eds): BIOM, CRBL, EDUPT, SIP, COMIT -2023
pp. 15-23, 2023. CS & IT - CSCP 2023 DOI: 10.5121/csit.2023.132102

https://doi.org/10.5121/csit.2023.132102
https://airccse.org/csit/V13N21.html

date [4], which we use as a basis for our work. In Section 4 we describe our scheme and in
Section 5 we consider two possible applications of the construction. In Section 6 we close
with suggestions for future research.

2 Building Blocks

The cryptographic building blocks we use are Shamir’s secret sharing scheme, threshold
oblivious pseudorandom functions, and fuzzy extractors.

Shamir’s Secret Sharing Scheme

In Shamir’s (t, n) secret sharing scheme [5], let Fq be a finite field of prime power order
q. To share a secret k ∈ Fq, a user first selects values for a threshold parameter t > 1 and
the number n of shares to generate, with n > t. The user then picks random elements
a1, . . . , at−1 ∈ Fq and constructs the polynomial P (x) = k+

∑t−1
i=1 aix

i. For i = 1, 2, . . . , n,
the user generates shares si := (i, P (i)) and distributes si to server Si over secure channels.
To later recover k, the user asks t of the servers to return their shares. Then k can be
constructed using polynomial interpolation as

k := P (0) =

t−1∑
j=0

yj

t−1∏
m=0,m ̸=j

xm
xm − xj

.

Since knowledge of any t−1 shares leaves k undetermined, Shamir’s scheme is both robust
against corruption of up to t−1 servers, and it ensures availability as only t of the n servers
are needed to recreate k.

We remark that it is possible to extend Shamir’s efficient scheme in various directions,
such as generalized access structures, dynamic addition of new shares or polynomial (keep-
ing k fixed), changing the threshold value t, and so on. However, we won’t use any of these
options in our scheme.

Fuzzy Extractors

Fuzzy extractors, as introduced by Dodis et al. [6] provide a mechanism that given noisy,
non-uniform input, reliably outputs a (nearly) random string s. The extraction process
takes care of small errors, so that even if the input is changed slightly, the extractor still
outputs the same string s. When used with user biometric input such as a fingerprint or
iris scan, fuzzy extractors can be used to derive user-specific cryptographic keys from s.
We present a formal definition of fuzzy extractors formulated by Boyen [7], as follows.

Let M be a metric space with distance function d, H∞ be the min-entropy function,
D[A1, A2] be the statistical distance between two discrete probability distributions over
a common domain, and let Ul be the uniform distribution over bitstrings of length l. An
(M,m, l, t, ϵ)-fuzzy extractor is a pair of algorithms (E-Gen, E-Reg), where:

– On input w ∈M, the randomized algorithm E-Gen extracts a private string s ∈ {0, 1}l
and a public string P such that for all random variables W overM such that H∞[W] ≥
m and dependent variables (s, P)← E-Gen[W] it holds that D[(s, P), (Ul, P)] ≤ ϵ.

– On input w′ ∈ M and public string P , E-Reg outputs a string s′ ∈ {0, 1}l such that
for any w,w′ ∈ M with d(w,w′) ≤ t and any pair (s, P) ← E-Gen[w], it holds that
s = E-Reg(w′, P).

16 Computer Science & Information Technology (CS & IT)

Threshold Oblivious Pseudorandom Functions

Informally, a family of functions fk : {0, 1}a → {0, 1}b with key k is pseudorandom (PRF) if
fk(x) is efficiently computable given k, x, else without knowledge of k, x, indistinguishable
from random. An oblivious PRF (OPRF) is then a protocol between a user and a server
such that given a PRF family fk, where the user holds x and the server holds k, at the
end of the protocol the user learns fk(x) and the server learns nothing.

OPRFs are still a relatively new cryptographic notion, but due to their numerous appli-
cations are receiving more attention [8]. The OPRF of interest in this work is 2HashDH [2].
Let G be a cyclic group of prime order m, and let H,H ′ be hash functions with ranges
{0, 1}l and G respectively. For a random key k ∈ Zm 2HashDH is defined as

fk(x) := H(x, (H ′(x)
k
).

This PRF may be evaluated obliviously by a user holding x and server holding k as follows.
The user generates a random r ∈ Zm and sends a = H ′(x)r ∈ G. The server replies with
b = ak ∈ G and the user computes fk(x) = H(x, b1/r).

Subsequently, Jarecki et al. [4] extend 2HashDH to a threshold setting (‘2HashTDH’)
by letting k be (t, n)-Shamir secret shared. For a threshold oblivious evaluation, user sends
a = (H ′(x))r to t servers who reply with bi = aki . The user computes b = ak =

∏
bλi
i , where

λi are the Lagrange coefficients. The user can proceed to compute fk(x) = H(x, b1/r). The
constructions are shown secure under One-More Diffie-Hellman style assumptions in the
random oracle model.

TOPPSS: A Concrete Instantiation Using 2HashTDH, Jarecki et al. [4] build a password-
protected secret sharing scheme called TOPPSS, whereby in their concrete instantiation,
the user sets x to be their password pw and the secret key is derived from H(pw,H ′(pw)k).
As our scheme uses this instantiation as a basis, we include a description in Figure 1 which
is reprinted from [4]. The details of the scheme will become clearer in the next section.
For now, note that the quantity sid is taken to be the username, SI is the initial set of
shareholders of size n, SR ⊂ SI is the set of servers2 selected for secret reconstruction,
and ssid is a unique session value.

As Jarecki et al. mention, share distribution must go over secure channels (TLS, for
example). And while it is possible to perform share reconstruction over insecure channels,
to avoid certain man in-the-middle attacks, it is preferable also to use secure channels
for share reconstruction. Furthermore the user is required to remember their username
and password, something which experience tells is not a reliable assumption for a lot of
humans.

In the next section we’ll see how to overcome these issues whereby the user need not
remember any keys or passwords, whilst maintaining the strong security features that the
concrete instantiation of TOPPSS provides.

3 Threshold Key Storage Via Fuzzy Extractors

We now describe the components of our threshold key storage scheme which comes with
strong security properties yet avoids having users remember credentials such as usernames
and passwords. Since they are derived from a recomputable fuzzy extractor algorithm,
there are no memory or storage requirements placed on the user. Moreover, it is reasonable
to expect yu to contain more entropy than a typical human memorable password. This is

2 Note: in TOPPSS t+ 1 shares are required for reconstruction.

 Computer Science & Information Technology (CS & IT) 17

Fig. 1. Concrete Instantiation of TOPPSS based on 2HashTDH [4].

significant because if an adversary ever learns the OPRF key k, he may start to guess pw
in order to learn K. With more entropy contained in yu, this guessing strategy is much
less likely to succeed.

We will give an example application using these components in the next section, where
it will become clear which party perform which steps.The eight components of our scheme
are: Parameter Selection, OPRF Key Generation, OPRF Key Share Generation, User Key
Generation, Secret Key Generation, OPRF Key Share Distribution, User Key Regenera-
tion, Secret Key Regeneration.

3.1 Parameter Selection

We begin by selecting values for the secret sharing parameters l,m, t, n, where l is the
security parameter (typically l = 128 or l = 256), m a large prime (m ≈ 2l), t the
threshold parameter, and n the number of shares/servers. Choices for t and n depend on

18 Computer Science & Information Technology (CS & IT)

tradeoffs between secrecy, availability, and efficiency. But for example t may be a small
positive integer and n may be a simple function of t, e.g. n = 2t+1 or n = 3t. A description
D = {l,m, t, n} of the scheme, to which we will append other items, is output.

Algorithm 1 Parameter Selection
Input: ∅
Output: Description D = {l,m, t, n}
1: Select values for l,m, t, n and set D = {l,m, t, n}.

3.2 OPRF Key Generation

A random OPRF key k is generated that is to be secret-shared and distributed to the
storage servers.

Algorithm 2 OPRF Key Generation
Input: D = {l,m, t, n}
Output: OPRF key k ∈ Zm

1: Pick k ∈ Zm uniformly at random.

3.3 OPRF Key Share Generation

This is standard (t, n)-Shamir secret sharing of the OPRF key k. Namely, pick a random
degree t−1 polynomial f over Zm subject to the condition that the constant term is equal
to k. For convenience, let the n shares be generated as points (i, f(i)) for i = 1→ n.

Algorithm 3 OPRF Key Share Generation
Input: D, k
Output: Shares K = (k1, . . . , kn) of k

1: Perform (t, n)-Shamir secret sharing of k over Zm.

3.4 User Key Generation

Here we use a fuzzy extractor scheme. The algorithm E-Gen is applied on user biometric
input w (e.g. a fingerprint reading) to produce a random user key yu ∈ {0, 1}l and helper
string P . Quantity yu is used as user input to the threshold OPRF protocol, and replaces
the user password element pw of the TOPPSS scheme.

Algorithm 4 User Key Generation
Input: D, user biometric reading w
Output: User key yu ∈ {0, 1}l and helper string P

1: User U computes E-Gen(w) on input reading w and extracts helper string P and user key yu ∈ {0, 1}l.
2: U stores and backs up P . P may be considered public.

 Computer Science & Information Technology (CS & IT) 19

3.5 Secret Key Generation

In this step the actual secret key K ∈ {0, 1}l is computed. This value is derived from both
the random OPRF key k and the user key yu. Check value C is also created, just as in
TOPPSS, which serves to verify correctness of secret regeneration in a later step. We refer
the reader to [4] for background details.

Algorithm 5 Secret Key Generation
Input: D, k, yu
Output: Check value C, secret K
1: Let G = ⟨g⟩ be a cyclic group of prime order m and let H1, H2, H3 be hash functions with ranges G,

{0, 1}2l, {0, 1}2l respectively. Append to D a description of {G = ⟨g⟩, H1, H2, H3}.
2: Compute v := H2(yu, H1(yu)

k) and output (C,K) := H3(v).

3.6 OPRF Key Share Distribution

In this step shares K = (k1, . . . , kn) of the OPRF key k are distributed. Here we assume
the existence of (at least) n storage servers Si, i = 1 → n, all of which are capable of
establishing a secure (authenticated, encrypted) channel with whomever distributes the
shares. (For some applications, various concerns may enter here. For example, a user may
be concerned with which countries servers are located in, with which policy the n servers
are chosen, which entities own the servers, etc.)

Algorithm 6 OPRF Key Share Distribution
Input: check value C, OPRF key shares K = (k1, . . . , kn)
Output: D
1: Over a secure channel send (ki, C) to Si.

3.7 User Key Regeneration

If the user wishes to reconstruct their secret key, they first retrieve stored helper string P
and take a new biometric reading; E-Reg(w′, P) is called to reliably recompute user key
yu.

Algorithm 7 User Key Regeneration
Input: User reading w′, helper string P
Output: yu ∈ {0, 1}l
1: Retrieve stored string P .
2: Regenerate user key yu ∈ {0, 1}l by calling E-Reg(w′, P) on new input sample w′.

3.8 Secret Key Regeneration

In this step a threshold oblivious computation is performed to reconstruct the secret K.
About error handling, in some scenarios, the simple check C ′ == C may not suffice as it
does not identify where the error is located, i.e. which shareholder(s) became malicious or
corrupted. If this is a concern, at some extra cost it is possible to include share verifiability

20 Computer Science & Information Technology (CS & IT)

to identify corrupt OPRF key shareholders [2]. Alternatively, assuming the existence of
t consistent shares, a general combinatorial method may be employed to detect corrupt
shares.

Algorithm 8 Secret Key Regeneration
Input: user input yu, t server shares ki
Output: user outputs K

1: U picks a random r ∈ Zm and sends a := H1(yu)
r to t servers Si, i = 1 → t.

2: Server Si replies with bi := aki , C.
3: U computes b = H1(yu)

k via Lagrangian interpolation in the exponents amd computes (C′,K′) =
H3(H2(yu, b)).

4: If C′ == C, U outputs K′. Else, handle error.

4 Application

In this section we describe an application that utilize the above components. The appli-
cation is private key storage, which may be of interest in the cryptocurrency space.

Private Key Storage

In this scenario, consider a crypto-currency user wishing to protect their private key which
unlocks their crypto-assets. Current popular methods for private key derivation use human
language word sequences as seed phrases (BIP39 [9], SLIP39 [10]). The user needs to
privately store this word seed, because if it is lost then the assets are irretrievable. In what
is called Shamir backup, the seed is protected using Shamir’s (t, n) secret sharing, thus
preventing a single point of failure.

Utilizing the above components, we outline an alternative method for private key
generation and backup. Let the user be denoted by U . We assume U holds a biometric
reader X implementing E-Gen and E-Reg, and access to a small number of storage servers
S1, . . . , Sn. As before, we use a group G = ⟨g⟩ of order m and hash functions H1,H2,H3

with ranges G, {0, 1}2l, {0, 1}2l, respectively.

Algorithm 9 Private Key Restoration
1: Key Generation. U selects parameters {l,m, t, n}, takes a reading (yu, P) = E-Gen(w), and generates

a random OPRF key k ∈ Zm. U then computes v := H2(yu, H1(yu)
k) and sets (C,K) := H3(v).

The private key is derived from K. P is stored and backed up, and may be considered public. yu is
discarded. The OPRF key k may optionally be kept offline, under the mattress.

2: Share Distribution. U creates secret shares (k1, . . . , kn) of the OPRF key k and over a secure channel
sends (C, ki) to server Si.

3: Key Regeneration. When it is time to use the private key, U retrieves P and recomputes yu = E-
Reg(w′, P). They then pick a random r ∈ Zm and send a := H1(yu)

r to t of the n servers Si. The Si

reply with bi := aki , C. U computes b = H1(yu)
k via Lagrangian interpolation in the exponents and

computes (C′,K′) = H3(H2(yu, b)). If C′ does not equal C, handle error. Else, U has computed K
and hence the private key.

Discussion

First note that the user only needs to store P (well, along with the parameters of the
scheme and locations of the shares). Since P is assumed to pose no security risk, it may

 Computer Science & Information Technology (CS & IT) 21

be stored and backed up in any reliable manner. Next note that even if an adversary
learns a threshold number of shares of the OPRF key k, no information is leaked about
the private key. Hence an adversary cannot steal the underlying crypto-assets by stealing
the shares. Contrasted with the Shamir backup approach, this is an advantage, and the
worst an adversary could do it to destroy the shares (in which case the private key is still
recoverable, if k was safely stored offline). Another nice property is that a travelling user
need only carry the reader X , which by itself contains no information. So in theory, the
private key may exist only in volatile memory when in use.

One shortcoming of the scheme is that the servers need to perform a computation,
namely modular exponentiation. So a regular storage server will need adapting to imple-
ment this. There are also open questions surrounding how to implement a fuzzy extractor
which confidently satisfies the theoretical definition. Practical instances of fuzzy extractors
need to be carefully assessed in terms of their entropy output, both in terms of intra-user
and inter-user aspects. An interesting approach worthy of further investigation is to explore
the efficacy of machine learning when performing biological readings for cryptographic key
generation [11].

Conclusion

In this work, we introduced fuzzy extractors as a mechanism for protecting secret shares in
threshold key storage schemes. The solution removes requirements on users having to re-
member passwords, which is of particular importance when password recovery mechanisms
are not available.

Acknowledgment

This work has been partially funded in the framework of the CELTIC-NEXT project AI-
NET-PROTECT (Project ID C2019/3-4) by the German Federal Ministry of Education
and Research (#16KIS1279K).

References

1. A. Bagherzandi, S. Jarecki, N. Saxena, Y. Lu, “Password-protected secret sharing.” In Proceedings of
the 18th ACM conference on Computer and Communications Security, 2011, October, pp. 433-444.

2. S. Jarecki, A. Kiayias, H. Krawczyk, “Round-optimal password-protected secret sharing and T-PAKE
in the password-only model,” In Advances in Cryptology–ASIACRYPT 2014: 20th International Con-
ference on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan,
ROC, December 7-11, 2014, Proceedings, Part II 20 2014, Springer Berlin Heidelberg, pp. 233-253.

3. S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu, “Highly-efficient and composable password-protected
secret sharing (Or: how to protect your bitcoin wallet online).” In IEEE European Symposium on
Security and Privacy – EuroS&P 2016, pp. 276–291.

4. S. Jarecki, A. Kiayias, H. Krawczyk, J. Xu, “TOPPSS: cost-minimal password-protected secret sharing
based on threshold OPRF,” In Applied Cryptography and Network Security – ACNS 2017, Springer,
2017, pp. 39-58.

5. A. Shamir, “How to share a secret,” Communications of the ACM 22.11, 1979, pp. 612-613.
6. Y. Dodis, L. Reyzin, A. Smith, “Fuzzy extractors: How to generate strong keys from biometrics and other

noisy data,” In Advances in Cryptology-EUROCRYPT 2004: International Conference on the Theory
and Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004. Proceedings 23,
Springer Berlin Heidelberg, 2004, pp. 523-540.

7. X. Boyen, “Reusable cryptographic fuzzy extractors,”. In Proceedings of the 11th ACM conference on
Computer and Communications Security 2004 Oct 25, pp. 82-91.

8. S. Casacuberta, J. Hesse, A. Lehmann, “SoK: Oblivious Pseudorandom Functions,” In 2022 IEEE 7th
European Symposium on Security and Privacy (EuroS&P) 2022 Jun 6 pp. 625-646.

9. https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki

22 Computer Science & Information Technology (CS & IT)

10. https://github.com/satoshilabs/slips/blob/master/slip-0039.md
11. Z. Wu, Z. Lv, J. Kang, W. Ding, J. Zhang, “Fingerprint bio‐key generation based on a deep neural

network,” International Journal of Intelligent Systems. 2022 Jul; 37(7), pp. 4329-58.

 Computer Science & Information Technology (CS & IT) 23

© 2023 By AIRCC Publishing Corporation. This article is published under the Creative Commons Attribution
 (CC BY) license.

	Threshold Key Storage via Fuzzy Extractors With Applications
	Introduction
	Building Blocks
	Threshold Key Storage Via Fuzzy Extractors
	Parameter Selection
	OPRF Key Generation
	OPRF Key Share Generation
	User Key Generation
	Secret Key Generation
	OPRF Key Share Distribution
	User Key Regeneration
	Secret Key Regeneration

	Application

