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ABSTRACT
We present a secure and private blockchain-based Verifiable Random Function (VRF) scheme addressing some lim-
itations of classical VRF constructions. Given the imminent quantum computing adversarial scenario, conventional
cryptographic methods face vulnerabilities. To enhance our VRF’s secure randomness, we adopt post-quantum Ring-
LWE encryption for synthesizing pseudo-random sequences. Considering computational costs and resultant on-chain
gas costs, we suggest a bifurcated architecture for VRF design, optimizing interactions between on-chain and off-chain.
Our approach employs a secure ring signature supported by NIZK proof and a delegated key generation method, inspired
by the Chaum-Pedersen equality proof and the Fiat-Shamir Heuristic. Our VRF scheme integrates multi-party computa-
tion (MPC) with blockchain-based decentralized identifiers (DID), ensuring both security and randomness. We elucidate
the security and privacy aspects of our VRF scheme, analyzing temporal and spatial complexities. We also approximate
the entropy of the VRF scheme and detail its implementation in a Solidity contract. Also, we delineate a method for
validating the VRF’s proof, matching for the contexts requiring both randomness and verification. Conclusively, using
the NIST SP800-22 of the statistical randomness test suite, our results exhibit a 98.86% pass rate over 11 test cases,
with an average 𝑝-value of 0.5459 from 176 total tests.
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1 Introduction

Many cryptographic protocols within blockchain architectures pivot fundamentally on inherent
secure randomness. The Verifiable Random Function (VRF) [1] stands as an exemplar crypto-
graphic element, ensuring the derivation of pseudo-random numbers distinguished by uniqueness,
uniformly spread randomness, and accompanying verifiable proofs. Its extensive application spec-
trum, spanning lotteries [2], proof-of-stake systems [3–5], and protocols prioritizing privacy,
foregrounds the imperative of crafting VRFs with true randomness.

The dynamics of the cryptographic domain accentuate the necessity for VRFs’ adaptation
as they become susceptible, especially to adversarial quantum computing attacks. The Shor’s al-
gorithm [6] for factorization looms as a significant quantum threat to conventional public key
cryptographic paradigms. Anticipating the quantum adversarial attacks, it is incumbent to adopt
post-quantum cryptographic advancements, with the spotlight on quantum defensibility and cryp-
tographic resilience.

In this context, the Learning With Errors (LWE) problem [7] and its structured variant, Ring-
LWE [8], have gained cryptographic prominence due to their innate quantum-attack resilience [9].
Lattice-based cryptographic frameworks, tracing back to Ajtai’s hardness instances such as finding
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shortest vector problems [10], establish an influential cryptographic basis. Ring-LWE’s introduction
of structured noise and secrets within polynomial domains enhances efficiency while preserving
robust security metrics [11].

Distinctively, Ring-LWE surpasses traditional lattice frameworks by streamlining computations
and optimizing key dimensions, leveraging the algebraic intricacies of number-theoretic rings. In
the emergent post-quantum horizon, where prevailing cryptographic infrastructures become sus-
ceptible against quantum-capable algorithms like Shor’s [6], Ring-LWE’s encryption mechanism
inherently guarantees the safeguarding of encrypted content even amidst advanced quantum com-
putation capabilities.

In decentralized frameworks like Ethereum and Algorand, MPC-based VRFs are crucial.
For instance, Algorand extensively employs VRFs for cryptographic self-selection, maintaining
Selective Verifiers (SV) and decision of block creation initiatives, highlighting the pivotal role of
VRFs in preserving decentralized integrity.

Within the Ethereum area, VRFs are particularly central to consensus algorithms underpinning
its decentralized fabric. Ethereum’s transition from a Proof-of-Work to a Proof-of-Stake consensus
protocol, as exemplified in the Ethereum 2.0 Beacon Chain [12], intensifies the significance of
unpredictability in verifiable randomness. This form of randomness guarantees impartial, tamper-
proof validator selections, imperative for block validations and attestations.

While Ring-LWE encryption’s strength is favorable, it essentially introduces additional com-
putational challenges. Particularly for blockchain ecosystems like Ethereum, where computational
complexities have proportional gas costs [13], incorporating Ring-LWE could escalate trans-
actional budget overheads. Arithmetic operations necessitated by Ring-LWE, attributable to its
intricate polynomial nature, may culminate in elevated gas costs as compared to conventional
cryptographic constructs [14].

Addressing these computational and cost challenges, off-chain computation emerges as a viable
alternative. In the domain of MPC-driven VRFs, off-chain computations enable intricate crypto-
graphic operations to offload outside the main net of blockchain, conserving on-chain resources
and curbing associated gas costs.

Yet, off-chain computational approaches come with authenticity and validity concerns. Without
authentic validation, malicious attackers such as Man-in-the-Middle (MIM) might inject spurious
data, compromising system integrity [15]. Herein, the DID-based ring signature scheme [16]
with accompanying NIZK proof, drawing inspiration from the Franklin-Zhang signature [17],
bolstered by the Chaum-Pedersen proof [18] and the Fiat-Shamir heuristic [19], affirms the off-
chain computation’s integrity. These mechanisms vouch for the correctness of off-chain operations,
ensuring adherence to expected outcomes and behaviors. Leveraging the DID-based ring signature
scheme with NIZK proof, blockchain networks can ascertain the genuineness and precision of
off-chain sourced data, fortifying decentralized systems’ trust infrastructure.

Decentralized Identifiers (DID) [20] herald a Self-Sovereign-Identity (SSI) approach for iden-
tity authentication, underlining user-driven control and confidentiality. In MPC-based VRFs, where
various nodes collectively generate random numbers, DIDs impart an augmented obfuscation
layer. By obscuring the connection between real-world identities and their cryptographic counter-
parts, adversarial entities are thwarted from linking and discerning a specific node’s contributory
value. Thus, assimilating DIDs amplifies the VRF’s defense mechanisms, augmenting system
privacy [20]. Additionally, DIDs’ interoperability across diverse platforms and ecosystems en-
hances their applicability, fostering a privacy-preserving milieu for VRF systems. This manuscript
elucidates:

– A post-quantum VRF scheme, integrating DIDs and the ring signature scheme with NIZK
proof, emphasizing off-chain validation.

48                                                Computer Science & Information Technology (CS & IT)



– A smart contract-based VRF, harnessing MPC and Ring-LWE, influenced by Clercq et al.’s
research [21].

– Detailed descriptions of our Solidity and Python implementations, algorithmic methodologies,
and complexity evaluations (Fig. 2).

– Security argumentations, privacy explorations, and entropy assessments for Ring-LWE-based
VRFs.

– NIST SP800-22 [22] outcomes, demonstrating a 98.86% success rate across 11 test cases and
a mean 𝑝-value of 0.5459 from 176 evaluations (Figs. 4, 3, 5, and Table 1).

The organization of this paper is structured as follows: In Section 2, we provide a comprehensive
exploration of VRF and Ring-LWE encryption to lay the foundational groundwork. Section 3
delineates our innovative VRF framework, elucidating its formal instantiation using NIZK proof,
its distributed algorithmic features, and its seamless interfacing with smart contracts. We delve
into the security dimensions in Section 4, accentuating the post-quantum adversarial advantage
probability and crucial VRF key validations. In Section 6.1, we embark on a detailed analysis
of the entropy characteristics of our MPC-based VRF, probing into the theoretical constraints of
its randomness. Section 5 critically examines both the temporal and spatial complexities. The
empirical results, derived from the NIST SP800-22 [22] test suite encompassing 11 test cases for
evaluating randomness, are showcased in Section 6, alongside a depiction of our implementation
using Solidity and Ganache. Section 7 offers a synthesis of our discussions and insights.

2 Preliminaries

2.1 Verifiable Random Function (VRF)

VRFs constitute a cornerstone for a plethora of cryptographic endeavors, emphasizing both un-
predictability and verifiability. Resembling Pseudo-Random Functions (PRFs), VRFs distinguish
themselves by an inherent ability: the generation of a proof for each of its outputs. This guarantees
the verifier that a specific random number is obtained without disclosing the associated input [1].
Formally delineated, a VRF is structured around three polynomial-time algorithms:

– KeyGen: Produces a public key 𝑃𝐾 alongside a secret key 𝑆𝐾 .
– Evaluate: Given 𝑆𝐾 and input 𝑥, it yields an output 𝑦 accompanied by a proof 𝜋.
– Verify: Utilizing 𝑃𝐾 , 𝑥, 𝑦, and 𝜋, it confirms the authenticity of 𝑦.

Micali et al.’s foundational VRF proposal [1] was predicated upon an RSA-based verifi-
able unpredictable signature method, achieving randomness through the Goldreich-Levin hard-
core bit transformation [23,24]. Subsequent breakthroughs, instantiated by the number-theoretical
exponentiation-based PRF from Naor and Reingold [25], and seminal insights by Joux et al. on
specific multiplicative groups [26] where a Decisional Diffie-Hellman problem becomes easy
while the corresponding Computational Diffie-Hellman problem remains hard, have enriched the
subsequent VRF research. The advent of bilinear pairing techniques [27] spurred further novel
signature-oriented VRF designs such as Lysyanskaya’s [28], which harnessed antecedent studies
and the concept of an admissible hash function (AHF). The critical requisites for robust cryp-
tographic capabilities in hash functions [29, 30] have invoked pursuits towards sculpting AHFs
resilient under prevailing security paradigms [31].

Within the blockchain context, VRF’s deterministically unpredictable property is instrumen-
tal in consensus mechanisms, fortifying fairness and obstructing potential adversary influence.
Nonetheless, the emergent quantum computational age introduces vulnerabilities across classical
cryptosystems. Considering VRFs frequently rely on challenges potentially vulnerable to quantum
solutions, like the discrete logarithm problem [32], it’s pivotal to anticipate and counteract these
vulnerabilities.
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Recent research in VRFs, due to Tibor et al., have introduced AHF architectures that bolster
proof evaluation [33–36]. Our proposition takes a distinctive trajectory. By fusing a blockchain-
oriented VRF through Multiparty Computation (MPC) with Ring-LWE encryption, our objective
is to deliver augmented security, adaptability, and efficacy in random number synthesis for decen-
tralized infrastructures.

2.2 Lattice-based Cryptography

A lattice 𝐿 is systematically defined as a discrete subgroup within R𝑛. Conceptually, it’s the
mesh resulting from assimilating all integer linear combinations of 𝑛 linearly independent vectors
b1, b2, . . . , b𝑛 in R𝑛. Such vectors compose the lattice’s basis. Formally expressed as:

𝐿 (b1, b2, . . . , b𝑛) =
{

𝑛∑︁
𝑖=1

𝑥𝑖b𝑖 : 𝑥𝑖 ∈ Z
}

Cryptographically, the hardness of specific lattice challenges, particularly the Shortest Vector
Problem (SVP) and the Learning With Errors (LWE) problem, underpins the security foundations
of lattice cryptography [10, 37].

2.3 Quantum Robustness in Ring-LWE Encryption

Delving deeper into the lattice cryptographic sphere, the Ring-LWE emerges as a streamlined
LWE variant, pivoting from vector realms to polynomial ring domains. This transition bestows
Ring-LWE with computational efficiencies, rendering it fitting for cryptographic operations such
as pseudo-random value generation and Verifiable Random Functions (VRF) [38].

Efforts synergizing Ring-LWE with random value generation have been profoundly influential.
As an exemplar, Abraham’s research elucidates a potent VRF mechanism propelled by Ring-LWE,
emphasizing both agility and fortification [39].

Peikert’s research in 2010 shed light on the quantum-resistant properties of LWE, and con-
sequently, Ring-LWE [40]. This also resonates in subsequent research, notably from Regev and
Lyubashevsky, affirming Ring-LWE’s impermeability against quantum-hostile maneuvers [41,42].

2.4 Chaum-Pedersen Zero Knowledge Logarithm Equality Proof

The Chaum-Pedersen logarithm equality proof [18] allows a prover to assert ”I am aware of 𝑥 such
that ℎ1 = 𝑔𝑥1 and ℎ2 = 𝑔𝑥2 ”, without disclosing 𝑥. Given:

– 𝑔1, 𝑔2: Public group generators.
– ℎ1, ℎ2: Asserted values where ℎ1 = 𝑔𝑥1 and ℎ2 = 𝑔𝑥2 .

The proof operates in the following manner:

1. Prover picks a random 𝑟 and communicates commitments 𝑡1 = 𝑔𝑟1 and 𝑡2 = 𝑔𝑟2 to the verifier.
2. Verifier replies with a random challenge 𝑐.
3. Prover calculates 𝑠 = 𝑟 + 𝑐 × 𝑥 and conveys it.
4. Verifier checks the relations 𝑡1 = 𝑔𝑠1 × ℎ

−𝑐
1 and 𝑡2 = 𝑔𝑠2 × ℎ

−𝑐
2 .

2.5 Fiat-Shamir Transformation

The Fiat-Shamir heuristic [19] converts an interactive zero-knowledge protocol to a non-interactive
version. From an initial commitment and subsequent interaction, the prover derives the challenge
via a deterministic function, generally a cryptographic hash.

To render the Chaum-Pedersen proof non-interactive:
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1. Instead of a verifier’s challenge 𝑐, calculate 𝑐 as 𝑐 = Hash(𝑡1 ∥ 𝑡2 ∥ relevant public information).
2. Choose a random 𝑟 .
3. Determine commitments 𝑡1, 𝑡2.
4. Evaluate 𝑐 = Hash(𝑡1 | |𝑡2 | |additional data).
5. Determine 𝑠.
6. Proof 𝜋 is represented as (𝑡1, 𝑡2, 𝑠).

Proof verification proceeds as follows: Given 𝜋 = (𝑡1, 𝑡2, 𝑠) and associated public information:

1. Determine 𝑐 = Hash(𝑡1 | |𝑡2 | |additional data).
2. Confirm relations for 𝑡1 and 𝑡2 as described in Section 2.4.

Fig. 1. A quantum-secure VRF system incorporating MPC and DIDs, where off-chain Ring-LWE encryption is synthe-
sized with the DID-based ring signature scheme via DKG and NIZK proof.

Algorithm 1 Core VRF computation process
Require: 𝑟𝑜𝑢𝑛𝑑𝐼𝑑 ∈ Z≥0
Ensure: None
1: Require: 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝐻𝑎𝑠ℎ of 3 recent blocks > 0
2: DID Keys 𝑠𝑘𝑖 , 𝑝𝑘𝑖 , 𝑠𝑘′𝑖 , 𝑝𝑘

′
𝑖
← GenerateKeys

3: Encrypted key 𝑠𝑘𝑒𝑛𝑐 ← DelegateKey(𝑠𝑘′
𝑖
)

4: 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑆𝑢𝑚 ←MultiplyandAdd(𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡, 𝑠ℎ𝑎𝑟𝑒)
5: 𝑠𝑒𝑒𝑑 ← EncodeData(𝑏𝑙𝑜𝑐𝑘 , 𝑚𝑠𝑔.𝑠𝑒𝑛𝑑𝑒𝑟, 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑆𝑢𝑚)
6: Emit: OnchainSeedReady(𝑠𝑒𝑒𝑑, 𝑚𝑠𝑔.𝑠𝑒𝑛𝑑𝑒𝑟 , 𝑅, 𝑠𝑘𝑒𝑛𝑐)
7: Off-chain:
8: Cipher texts (𝑐1, 𝑐2) ← rlwe processing(𝑠𝑒𝑒𝑑)
9: 𝑉𝑅𝐹output ← keccak256(𝑐1, 𝑐2)

10: 𝑠𝑘′
𝑖
← Decrypt(𝑠𝑘𝑜 𝑓 𝑓 , 𝑠𝑘𝑒𝑛𝑐)

11: signature 𝜎 ← RingSign(𝑠𝑘′, 𝑠𝑒𝑒𝑑,𝑉𝑅𝐹𝑜𝑢𝑡 𝑝𝑢𝑡 , 𝑅)
12: NIZK proof 𝜋 ← OffchainSign(𝑠𝑘′, 𝑠𝑒𝑒𝑑,𝑉𝑅𝐹𝑜𝑢𝑡 𝑝𝑢𝑡 , 𝑅)
13: Off-chain to On-chain: Submit To Blockchain(𝜋)
14: On-chain: VerifySign(𝜋, 𝑅)
15: Emit: ComputationFinished(𝑟𝑜𝑢𝑛𝑑𝐼𝑑, 𝜋)
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3 Proposed VRF System

3.1 System Architecture

We propose an advanced VRF scheme tailored for blockchain platforms, incorporating DIDs and
post-quantum secure Ring-LWE encryption [21]. This integrates the DID-based ring signature
method [16] and NIZK proof, utilizing a delegated key generation approach. Our system leverages
lattice cryptography for random number derivation via off-chain from seed inputs, collaboratively
produced on-chain. The comprehensive VRF system is illustrated in Fig. 1. A rigorous analysis of
security and entropy properties is presented in Sections 4 and 6.1.

In Fig. 1, we delineate a high-level architecture of our DID-based VRF mechanism employing
Ring-LWE encryption, highlighting primary protocols and related solutions. The procedure begins
with decentralized MPC-based seed generation on a smart contract. Each participant contributes a
share and a corresponding commitment to generate this seed, efficiently computed within Solidity.
Once the seed is set, an off-chain blockchain monitor, leveraging the Web3 protocol, is notified
and triggers the RLWE enc2() function to apply Ring-LWE encryption. The resulting ciphertexts
𝑐1 and 𝑐2 are relayed to the smart contract through the submitRLWEResult function.

To ensure the validity of off-chain Ring-LWE encryption, we adopted a ring signature scheme,
inspired by Franklin-Zhang [17], enhanced by the Fiat-Shamir heuristic [19] for a non-interactive
commit protocol and the Chaum-Pedersen’s method [18] for NIZK proof generation. A challenge
arose due to the fact that the ring group doesn’t exist in the off-chain, while it exists in the on-chain
facilitating the MPC-based seed generation.

We solved this problem via a delegated key generation protocol. During the on-chain group
setup for MPC and ring signature, each participant 𝑖 generates dual key pairs: (𝑠𝑘𝑖 , 𝑝𝑘𝑖) and
(𝑠𝑘 ′

𝑖
, 𝑝𝑘 ′

𝑖
). The former serves on-chain operations, the latter acts as a delegation instrument.

Both keys are committed to the contract. For MPC seed derivation, 𝑠𝑘𝑖 is deployed. After seed
generation, a designated participant encrypts their 𝑠𝑘 ′

𝑖
using the off-chain party’s public key, 𝑝𝑘off,

and dispatches the encrypted result to the contract. Upon this trigger, the off-chain module deciphers
the content, recovering 𝑠𝑘 ′

𝑖
.

Upon the acquisition of the delegated secret key, the off-chain module effectively impersonates
participant 𝑖, crafting the ring signature. Using 𝑠𝑘 ′

𝑖
, the off-chain module signs, amalgamating

public keys from on-chain contributors, inclusive of 𝑝𝑘 ′
𝑖
. The NIZK proof, attesting to signature

validity, is constructed using the Fiat-Shamir heuristic [19] alongside Chaum-Pedersen’s proof [18].
External parties can then validate the ring signature with the public key set, verifying the off-chain
computation’s authenticity.

The algorithm, detailed in Algorithm 1, delineates the core computational flow of our VRF
system, centered on a confidential DID-based MPC seed creation and Ring-LWE encryption.

3.2 VRF Formal Instantiation:

Given our MPC-based Ring-LWE VRF system, we formalize the functions as follows:

1. Key Generation: Let D be the domain of all possible security parameters. Then, the function
Gen is represented as:

Gen : D → K ×K, 𝑤ℎ𝑒𝑟𝑒 Gen(1𝜆) = (𝑃𝐾, 𝑆𝐾)

for 𝜆 ∈ D, and (𝑃𝐾, 𝑆𝐾) are the public and private key pairs for participants, respectively.
More details are covered in Section 3.4.
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2. Evaluate: Let S,V be the domains of all possible seeds and VRF system output of the tuple
(𝑉𝑅𝐹𝑜𝑢𝑡 𝑝𝑢𝑡 , 𝑃𝑟𝑜𝑜 𝑓𝜋). Then, the function Eval is represented as:

Eval : S → V, 𝑤ℎ𝑒𝑟𝑒 Eval(𝑆𝑒𝑒𝑑) = (𝑉𝑅𝐹𝑜𝑢𝑡 𝑝𝑢𝑡 , 𝜋)

for 𝑆𝑒𝑒𝑑 ∈ S, and 𝑉𝑅𝐹𝑜𝑢𝑡 𝑝𝑢𝑡 is the generated output from the Ring-LWE encryption. More
details are covered in Section 3.3, 3.4.

3. Verify: Let P be the domain of all possible VRF proofs. Then, the function Ver is represented
as:

Ver : P → {TRUE, FALSE}, 𝑤ℎ𝑒𝑟𝑒 Ver(𝜋) = TRUE

if and only if the NIZK proof 𝜋 is valid. More details are covered in Section 3.3, 3.4.

Algorithm 2 DID-based Ring Signature Scheme
1: procedure RingSign(𝑠𝑘′

𝑖
, 𝑆𝑒𝑒𝑑,𝑉𝑅𝐹𝑜𝑢𝑡 𝑝𝑢𝑡 , 𝑅) ⊲ 𝑅 is the set of DID public keys

2: Select random value 𝑡
3: Compute 𝑇 = 𝑔𝑡

4: for 𝑖 = 2 to 𝑛 do
5: Select random values 𝑐𝑖 , 𝑠𝑖
6: Compute 𝑒𝑖 = 𝑔𝑠𝑖 × 𝑌𝑐𝑖

𝑖
7: end for
8: Compute 𝑐′ = 𝐻 (𝑉𝑅𝐹output, 𝑆𝑒𝑒𝑑, 𝑇, 𝑒2, . . . , 𝑒𝑛)
9: Compute 𝑐1 such that: 𝑐1 + 𝑐2 + · · · + 𝑐𝑛 = 𝑐′

10: Compute 𝑠1 = 𝑡 − 𝑠𝑘′
𝑖
× 𝑐1

11: 𝜎 = (𝑇, 𝑐1, 𝑐2, . . . , 𝑐𝑛, 𝑠1, 𝑠2, . . . , 𝑠𝑛)
12: return 𝜎
13: end procedure
14: procedure VerifySign(𝜋, 𝑅)
15: Parse 𝜋 as (𝑉𝑅𝐹output, 𝑆𝑒𝑒𝑑, 𝑠𝑖𝑔𝑚𝑎)
16: Parse 𝜎 as (𝑇, 𝑐1, 𝑐2, . . . , 𝑐𝑛, 𝑠1, 𝑠2, . . . , 𝑠𝑛)
17: for 𝑖 = 1 to 𝑛 do
18: Compute 𝑒𝑖 = 𝑔𝑠𝑖 × 𝑌𝑐𝑖

𝑖
19: end for
20: Compute 𝑐′ = 𝐻 (𝑉𝑅𝐹output, 𝑆𝑒𝑒𝑑, 𝑇, 𝑒2, . . . , 𝑒𝑛)
21: if 𝑐′ = 𝑐1 + 𝑐2 + · · · + 𝑐𝑛 then
22: return True
23: else
24: return False
25: end if
26: end procedure

3.3 Ring Signatures Integrated with VRF

In Algorithm 2, we introduce a DID-based ring signature scheme [16] that provides ambiguous
signer identification, allowing verification of a member’s signature without pinpointing the exact
signer. This ensures inherent anonymity against passive adversaries and ensures adaptive security
under the random oracle model.

Setup Given a ring 𝑅 consisting of participants P = {𝑃1, 𝑃2, . . . , 𝑃𝑛} where each 𝑃𝑖 possesses
a private key 𝑥𝑖 and its public counterpart 𝑌𝑖 = 𝑔𝑥𝑖 . Assuming 𝑐1 and 𝑐2 as RLWE encryption
outputs and 𝑔 as a prime cyclic group 𝐺’s generator. The VRF evaluation function is defined as:

𝐹𝑒𝑣𝑎𝑙 : MPC-Based-Seed→ keccak256(𝑐1, 𝑐2) (1)
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Signature Creation by 𝑷1 When 𝑃1 aims to incorporate the 𝑉𝑅𝐹𝑜𝑢𝑡 𝑝𝑢𝑡 into the signature:

1. Compute 𝑇 using a random 𝑡: 𝑇 = 𝑔𝑡 .
2. For each 𝑖 from 2 to 𝑛, calculate 𝑒𝑖 with randomly chosen 𝑐𝑖 and 𝑠𝑖 .
3. Derive hash 𝑐′ via: 𝑐′ = 𝐻 (𝑉𝑅𝐹output, Seed, 𝑇, 𝑒2, . . . , 𝑒𝑛).
4. Determine 𝑐1 and 𝑠1 with respect to 𝑐′.
5. Construct ring signature 𝜎 and its proof 𝜋.

The proof 𝜋 signifies that the VRF output, 𝑉𝑅𝐹𝑜𝑢𝑡 𝑝𝑢𝑡 , endorsed by an exclusive ring 𝑅 member,
is tied to seed value 𝑆𝑒𝑒𝑑 and attested by signature 𝜎.

Proof Validation The VRF verification function is:

𝐹𝑣𝑒𝑟 : 𝜋 → TRUE or FALSE (2)

To validate the proof 𝜋 related to signature 𝜎 and 𝑉𝑅𝐹𝑜𝑢𝑡 𝑝𝑢𝑡 :

1. For each 𝑖 in 1 to 𝑛, derive 𝑒𝑖 .
2. Calculate hash 𝑐′.
3. Ascertain the signature’s validity based on 𝑃(𝑐′).

Correctness Proof Let’s denote:
– Σ as signature generation.
– Φ as signature verification.

The objective is to assert that given any Seed and VRF output, a validly constructed signature
ensures a successful verification:

∀ Seed, 𝑉𝑅𝐹output, Σ(Seed, 𝑉𝑅𝐹output) =⇒ Φ(𝜋)

1. Assume: Σ(Seed, 𝑉𝑅𝐹output), i.e., the signature generation protocol 𝑃1 is duly executed.
2. From Σ, it follows:
𝑐′ = 𝐻 (𝑉𝑅𝐹output, Seed, 𝑇, 𝑒2, . . . , 𝑒𝑛) and
𝑐1 + 𝑐2 + · · · + 𝑐𝑛 = 𝑐′

3. In Φ, 𝑐′ is recalculated to ascertain 𝑐′ = 𝑐1 + 𝑐2 + · · · + 𝑐𝑛.
4. With 𝐻 being collision-resistant, distinct inputs yield unique outputs. Therefore, a valid Φ

indicates a genuine Σ.
5. Conclusion: Σ(Seed, 𝑉𝑅𝐹output) =⇒ Φ(𝜋).

This confirms the signature’s correctness.

3.4 Delegated Key Generation (DKG)

We describe a method enabling an off-chain entity to generate a DID-based ring signature [16] on
behalf of an on-chain user without exposing the user’s DID secret key.

Protocol
i. Each participant 𝑖 constructs two DID key pairs: (𝑠𝑘𝑖 , 𝑝𝑘𝑖) for on-chain tasks and (𝑠𝑘 ′

𝑖
, 𝑝𝑘 ′

𝑖
)

as a delegation key, as outlined in Algorithm 3.
ii. Participants commit both 𝑝𝑘𝑖 and 𝑝𝑘 ′

𝑖
to the contract.

iii. For the MPC seed creation, participants employ 𝑠𝑘𝑖 .
iv. After MPC seed extraction, a selected participant encrypts 𝑠𝑘 ′

𝑖
using the off-chain component’s

public key, 𝑝𝑘off, and commits it to the contract.
v. The off-chain unit, upon notification, decrypts the value with its private key, 𝑠𝑘off, retrieving

𝑠𝑘 ′
𝑖

to produce the ring signature.
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Algorithm 3 Delegated Key Generation
1: procedure GenerateKeys(∅)
2: (𝑠𝑘𝑖 , 𝑝𝑘𝑖) ← KeyGen
3: (𝑠𝑘′

𝑖
, 𝑝𝑘′

𝑖
) ← KeyGen

4: return (𝑠𝑘𝑖 , 𝑝𝑘𝑖 , 𝑠𝑘′𝑖 , 𝑝𝑘
′
𝑖
)

5: end procedure
6: procedure DelegateKey(𝑠𝑘′

𝑖
)

7: 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐾𝑒𝑦 ← Encrypt(𝑠𝑘𝑜 𝑓 𝑓 , 𝑠𝑘
′
𝑖
)

8: return 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐾𝑒𝑦
9: end procedure

10: procedure OffchainSign(𝑠𝑘𝑒𝑛𝑐 , 𝑆𝑒𝑒𝑑,𝑉𝑅𝐹𝑜𝑢𝑡 𝑝𝑢𝑡 , 𝑅) ⊲ 𝑅 is the set of DID public keys
11: 𝑠𝑘′

𝑖
← Decrypt(𝑠𝑘𝑜 𝑓 𝑓 , 𝑠𝑘𝑒𝑛𝑐)

12: 𝑠𝑖𝑔𝑚𝑎 ← RingSign(𝑠𝑘′
𝑖
, 𝑆𝑒𝑒𝑑,𝑉𝑅𝐹𝑜𝑢𝑡 𝑝𝑢𝑡 , 𝑅)

13: 𝜋 ← (𝑉𝑅𝐹output, 𝑆𝑒𝑒𝑑, 𝑠𝑖𝑔𝑚𝑎)
14: return 𝜋
15: end procedure

Ring Signature via Delegation Protocol With the delegated 𝑠𝑘 ′
𝑖
, the off-chain unit initiates the

DID ring signature as if it were participant 𝑖, as detailed in Algorithm 3.

i. With 𝑠𝑘 ′
𝑖
, the off-chain unit signs and aggregates public keys of on-chain users, including 𝑝𝑘 ′

𝑖
.

ii. The signature’s authenticity is ensured through a non-interactive zero-knowledge (NIZK) proof
via the Fiat-Shamir heuristic melded with Chaum-Pedersen proof.

Verification Observers, using Algorithm 2, can autonomously validate the ring signature against
the aggregated DID public keys, including 𝑝𝑘 ′

𝑖
, affirming the off-chain process’s validity and

integrity.

Algorithm 4 Off-chain Blockchain Listener for Ring-LWE Computation
1: function handle event(𝑒𝑣𝑒𝑛𝑡)
2: 𝑠𝑢𝑚𝐻𝑎𝑠ℎ← 𝑒𝑣𝑒𝑛𝑡 [′𝑎𝑟𝑔𝑠′] [′𝑠𝑢𝑚𝐻𝑎𝑠ℎ′]
3: 𝑐1, 𝑐2← rlwe processing(𝑠𝑢𝑚𝐻𝑎𝑠ℎ)
4: 𝑡𝑥 ℎ𝑎𝑠ℎ← contract.functions.submitRLWEResult(𝑐1, 𝑐2)

.transact()
5: 𝑡𝑥 𝑟𝑒𝑐𝑒𝑖𝑝𝑡 ← 𝑤3.𝑒𝑡ℎ.waitForTransactionReceipt(𝑡𝑥 ℎ𝑎𝑠ℎ)
6: if 𝑡𝑥 𝑟𝑒𝑐𝑒𝑖𝑝𝑡.𝑠𝑡𝑎𝑡𝑢𝑠 == 1 then
7: print(”Result and proof submitted successfully!”)
8: else
9: print(”Submission failed.”)

10: end if
11: end function
12: function blockchain listener
13: 𝑤3←Web3(Web3.HTTPProvider

(′ℎ𝑡𝑡 𝑝 : //𝑙𝑜𝑐𝑎𝑙ℎ𝑜𝑠𝑡 : 8545′))
14: comment: Assuming contract ABI and address are available
15: 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 ← 𝑤3.𝑒𝑡ℎ.contract
(𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 𝑎𝑑𝑑𝑟𝑒𝑠𝑠, 𝑎𝑏𝑖 = 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 𝑎𝑏𝑖)

16: 𝑒𝑣𝑒𝑛𝑡 𝑓 𝑖𝑙𝑡𝑒𝑟 ← contract.events.OnchainMpcSeedReady
.createFilter( 𝑓 𝑟𝑜𝑚𝐵𝑙𝑜𝑐𝑘 =′ 𝑙𝑎𝑡𝑒𝑠𝑡′)

17: while True do
18: for all 𝑒𝑣𝑒𝑛𝑡 in 𝑒𝑣𝑒𝑛𝑡 𝑓 𝑖𝑙𝑡𝑒𝑟.get new entries() do handle event(𝑒𝑣𝑒𝑛𝑡)
19: end for
20: end while
21: end function
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3.5 Off-chain Ring-LWE Computation

The off-chain Ring-LWE computation is encapsulated within the blockchain event listener designed
for Ethereum, as delineated in Algorithm 4. For deployment, we opt for Ganache1. This listener
anticipates the OnchainMpcSeedReady event, subsequently triggering the Ring-LWE encryption
mechanism. Key operations are:

1. RLWE Execution (rlwe processing function): Engages an external binary (LWE.exe) for
Ring-LWE encryption. Upon receiving a seed (sumHash), the binary is activated and its output
seized.

– Error-handling ensures smooth encryption.
– The encrypted output is extracted post-binary execution.

2. Event Management (handle event function): Post event-detection, this manages ensuing
actions, primarily:

– Deriving the sumHash from the event.
– Utilizing sumHash for RLWE encryption.
– Relaying the encryption, denoted as c1 and c2, back to the Ethereum contract and verifying

its successful transmission.
3. Ethereum Network Connection (blockchain listener function): Establishes the Ethereum

connection via Web3 in Python. Detailed steps include:
– Establishing a Web3 connection to an Ethereum node.
– Configuring the smart contract using its ABI and address.
– Continuously tracking the OnchainMpcSeedReady event and, when detected, invoking
handle event.

The blockchain listener is adeptly triggered via the on-chain event and ensures off-chain Ring-
LWE cryptographic computations and the corresponding return of the encrypted outputs.

3.6 Ring-LWE Encryption: RLWE enc2()

The RLWE enc2() function, presented in Algorithm 5 and inspired by [21], realizes the encryption
mechanism of the Ring-LWE. Given a message, public key, and value polynomials denoted as
𝑚(𝑥), 𝑎(𝑥), and 𝑝(𝑥) respectively, all within the polynomial ring 𝑅, and leveraging the Number
Theoretic Transform (NTT) from [43], the encryption procedure is summarized as:

1. Encode 𝑚(𝑥) by scaling with 𝑄

2 , denoted as encoded m(𝑥) where 𝑄 is a system parameter.
2. Sample three error polynomials 𝑒1(𝑥), 𝑒2(𝑥), and 𝑒3(𝑥) from a predefined error distribution.
3. Update 𝑒3(𝑥) as 𝑒3(𝑥) = 𝑒3(𝑥) + encoded m(𝑥).
4. Transform 𝑒1(𝑥), 𝑒2(𝑥), and 𝑒3(𝑥) into the NTT domain.
5. Determine the ciphertext polynomials as:

𝑐1(𝑥) = 𝑒2(𝑥) + 𝑎(𝑥) · 𝑒1(𝑥)
𝑐2(𝑥) = 𝑒3(𝑥) + 𝑝(𝑥) · 𝑒1(𝑥)

6. Organize coefficients of 𝑐1(𝑥) and 𝑐2(𝑥) for transmission.

1 https://trufflesuite.com/ganache/
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Algorithm 5 RLWE enc2 Encryption Algorithm
1: procedure rlwe processing(𝑠𝑒𝑒𝑑)
2: comment: Assuming LWE.exe takes seed value as a command-line argument
3: 𝑟𝑒𝑠𝑢𝑙𝑡 ← subprocess.run( [”./𝐿𝑊𝐸.𝑒𝑥𝑒”, str(𝑠𝑒𝑒𝑑)])
4: if 𝑟𝑒𝑠𝑢𝑙𝑡.returncode ≠ 0 then
5: raise Exception(f”RLWE Encryption failed with error: result.stderr”)
6: end if
7: 𝑐1, 𝑐2← 𝑟𝑒𝑠𝑢𝑙𝑡.𝑠𝑡𝑑𝑜𝑢𝑡.strip()()
8: return Ciphertexts 𝑐1, 𝑐2
9: end procedure

10: procedure RLWE enc2(a, c1, c2, m, p)
11: encoded m← 𝑚 × 𝑄

2
12: 𝑒1, 𝑒2, 𝑒3 ← knuth yao2() × 3
13: 𝑒3 ← 𝑒3 + encoded m
14: 𝑒1, 𝑒2, 𝑒3 ← fwd ntt2(𝑒1), fwd ntt2(𝑒2), fwd ntt2(𝑒3)
15: 𝑐1 ← 𝑒2 + 𝑎 × 𝑒1
16: 𝑐2 ← 𝑒3 + 𝑝 × 𝑒1
17: 𝑐1, 𝑐2 ← rearrange2(𝑐1), rearrange2(𝑐2)
18: end procedure

4 Security and Privacy

4.1 Assumptions

Let 𝜆 be the security parameter, while 𝜖 (𝜆) denotes a negligible function relative to 𝜆. The function
Gen(1𝜆) generates distinct DID keys for participants. 𝑃𝑟 [·] denotes an event’s likelihood andM is
the space of input messages.

– Ring-LWE Postulation (Quantum Resilient): Considering quantum machines can effi-
ciently tackle discrete logarithm and integer factorization, but not the Ring-LWE, we infer the
Ring Learning With Errors challenge remains quantum-resistant.

– Quantum Random Oracle Hypothesis (QROM): Hash functions, for instance,keccak256(),
are deemed quantum-proof and function as a quantum random oracle, meaning unforeseen out-
comes remain unpredictable even to quantum requests.

– Integrity of Private Ring Signatures: Any polynomial-time opponent is incapable of
producing a legitimate distinct ring signature devoid of the private key.

– MPC Integrity: Predicting or altering the concluding MPC result is computationally daunting
for adversaries unless they dominate a majority of the members.

4.2 Formal VRF Requirements

Uniqueness Within a VRF framework, uniqueness asserts that a consistent output is generated for
any particular input.

Proof: Designate Φ as our VRF mechanism. Given an input 𝑚 (our MPC seed), and the DID
key set (𝐷𝐼𝐷𝑠𝑘 , 𝐷𝐼𝐷 𝑝𝑘):

∀𝑚𝑖 , 𝑚 𝑗 ∈ M (𝑖 ≠ 𝑗), ∃! VRFoutput such that Φ(𝑚𝑖 , 𝐷𝐼𝐷𝑠𝑘) = Φ(𝑚 𝑗 , 𝐷𝐼𝐷𝑠𝑘) = VRFoutput

Verifiability For VRF, verifiability guarantees a verifier can authenticate an output 𝑦 and its
associated proof 𝜋 for an input 𝑥.

Proof: Given Input 𝑚 (MPC seed), VRF outcome 𝑦, Proof 𝜋, and DID keys 𝐷𝐼𝐷𝑠𝑘 and
𝐷𝐼𝐷 𝑝𝑘 .
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If the prover generates 𝑦 and 𝜋 using 𝑚 and 𝐷𝐼𝐷𝑠𝑘 :

𝑦, 𝜋 = Φ(𝑚, 𝐷𝐼𝐷𝑠𝑘)

The verifier, applying 𝐷𝐼𝐷 𝑝𝑘 , can ascertain 𝑦 as the legitimate VRF result for 𝑚:

∀𝑚 ∈ M, 𝑦, 𝐷𝐼𝐷 𝑝𝑘 , 𝜋, Φ(𝑚, 𝐷𝐼𝐷 𝑝𝑘 , 𝜋) ⇒ 𝑦 = VRFoutput(𝑚)

This indicates a consistent outcome when the verifier uses the public key and proof to authenticate
the input.

Randomness For a VRF system, randomness ensures that the output appears random and un-
predictable. Given a VRF output 𝑦 for an input 𝑥, without the associated proof 𝜋, one cannot
distinguish 𝑦 from a random value.

Proof: Given an Input 𝑚, VRF output 𝑦, Proof 𝜋, Adversary A trying to distinguish 𝑦 from
a random value, without the proof 𝜋, the advantage Adv of A in distinguishing 𝑦 from a random
value is negligible:

∀𝑚 ∈ M, 𝑦, without 𝜋, Adv(A(𝑦)) ≤ 𝜖 (𝜆)
We’ve demonstrated that the MPC-based Ring-LWE VRF system integrated with the DID-based
ring signature and NIZK proof satisfies the three pivotal properties of a VRF: uniqueness, veri-
fiability, and randomness. These properties, complemented by the security guarantees from our
previous discussions, affirm that the VRF system is robust and secure.

4.3 MPC-based Seed Integrity

The integrity of the MPC-based seed relies on the commitments made by participants. Under the
assumption of a random oracle model for the hash function, the probability that an adversary can
produce a commitment for a value without knowing that value is negligible. Formally:

Pr[𝑆𝑒𝑒𝑑′ ← A(Commitments) : 𝑆𝑒𝑒𝑑′ = 𝑆𝑒𝑒𝑑] ≤ 𝜖 (𝜆)

4.4 Unforgeability under Chosen Message Attack (CMA)

For all messages 𝑚1, 𝑚2, . . . , 𝑚𝑘 chosen adaptively by A, where signatures 𝜎1, 𝜎2, . . . , 𝜎𝑘 of
VRF outputs are produced, the probability that A produces a new valid signature 𝜎∗ for a new
message 𝑚∗ without knowledge of the DID private key that signed the DID-based ring signature is
negligible.

Pr[𝜎∗ ← A(𝑚1, 𝜎1, . . . , 𝑚𝑘 , 𝜎𝑘) :

Φ(𝑚∗, 𝜎∗) = True ∧ 𝑚∗ ∉ {𝑚1, . . . , 𝑚𝑘}] ≤ 𝜖 (𝜆)

4.5 Post-Quantum Security

Definitions

– Let 𝑅𝐿𝑊𝐸𝑞,𝜒 be the Ring-LWE problem with modulus 𝑞 and error distribution 𝜒.
– A𝑅𝐿𝑊𝐸 is a polynomial-time adversary A trying to solve the Ring-LWE problem.
– A𝑆𝑉𝑃 is an adversary trying to solve the approximate SVP in ideal lattices.
– 𝛼 is the approximation factor for the SVP problem.

Ring-LWE Problem Given a random polynomial 𝑎 from a ring 𝑅𝑞 and a ”noisy” product
𝑏 = (𝑎 × 𝑠) + 𝑒 mod 𝑞 where 𝑠 is a secret polynomial and 𝑒 is an error polynomial drawn from 𝜒,
the goal is to recover 𝑠 or distinguish 𝑏 from a random polynomial.
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Security Proof for RLWE enc2

i. Ring-LWE Assumption: It’s computationally infeasible for a polynomial-time quantum or
classical adversary to solve the Ring-LWE problem or distinguish between a valid Ring-LWE
sample and a random one.
∀ Ring-LWE samples 𝑠,

𝑃𝑟 [𝑠′ ← A𝑅𝐿𝑊𝐸 (𝑎, 𝑏) : 𝑠′ = 𝑠] ≤ 𝜖 (𝜆)

ii. Reduction to SVP: If there exists a polynomial-time algorithm A𝑅𝐿𝑊𝐸 that can solve the
𝑅𝐿𝑊𝐸𝑞,𝜒 problem, then there exists an algorithm A𝑆𝑉𝑃 that can solve the 𝛼-approximate
SVP in ideal lattices in polynomial time. ∀ lattices derived from Ring-LWE samples,

𝑃𝑟 [𝑣′ ← A𝑆𝑉𝑃 (𝐿𝑎𝑡𝑡𝑖𝑐𝑒) : | |𝑣′ | | ≤ 𝛼 × ||𝑣𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 | |]

≥ 𝑃𝑟 [𝑠′ ← A𝑅𝐿𝑊𝐸 (𝑎, 𝑏) : 𝑠′ = 𝑠]

Here, 𝑣𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 is the shortest non-zero vector in the lattice. The 𝛼-approximate SVP requires
finding a vector whose length is within 𝛼 times the shortest vector.

iii. Post-Quantum Security: Given that SVP in ideal lattices is believed to be hard for quantum
computers (there’s no known polynomial-time quantum algorithm for this problem), the security
of Ring-LWE and, in turn, RLWE enc2() remains even in the presence of quantum adversaries.
∀ quantum adversary queries to 𝑅𝐿𝑊𝐸𝑞,𝜒,

𝑃𝑟 [𝑠′ ← A𝑅𝐿𝑊𝐸 (𝑄𝑢𝑎𝑛𝑡𝑢𝑚𝑄𝑢𝑒𝑟𝑖𝑒𝑠) : 𝑠′ = 𝑠] ≤ 𝜖 (𝜆)

Overall, the security of the RLWE enc2() function, as used in our VRF system, hinges upon
the hardness of the Ring-LWE problem, which can be reduced to the hardness of the SVP in ideal
lattices. This provides assurance of the post-quantum security of the function.

4.6 DKG Security

– Confidentiality: Employing asymmetric encryption ensures that 𝑠𝑘 ′
𝑖

remains confidential on-
chain. Only the off-chain component, possessing 𝑠𝑘off, can decrypt this.

– Integrity: The ring signature confirms the integrity of the computation executed by the off-
chain component.

– Redundancy: For backup, multiple participants might delegate their keys. This allows the
off-chain component to choose from any of the provided keys, should one be unavailable.

– Revocation: A key pair update mechanism allows any participant to revoke or replace their
delegation key pair, if they suspect potential misuse.

– Non-repudiation: The utilization of a specific delegated key for the ring signature holds the
corresponding participant accountable, ensuring they cannot repudiate their involvement.

4.7 DID Privacy (GDPR Compliance)

By using DIDs, we ensure that every participant has a self-sovereign identity which enhances
privacy. With unique DIDs, the system ensures that participants can prove their identity without
revealing any personal data. Our DID-based private ring signature scheme in Section 3.3 further
ensures that even when a participant signs, their specific identity remains hidden among the
members of the ring. DIDs, as a decentralized identity, provide users control over their identity
without relying on centralized authorities. In this context, DIDs are used for verification rather than
identification, ensuring participants’ actions are verifiable without revealing their exact identities.
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Given the DID-based ring signature and QROM, the ability of any adversary (including quantum
adversaries) to link a signature to a specific DID or to single out any individual signer becomes
negligible. Thus, the system satisfies GDPR2 requirements in terms of unlinkability, inference
protection, and prevention of singling-out. Formally: ∀ DID in the ring,

𝑃𝑟 [DID∗ ← A(𝜎) : DID∗ is the actual signer] ≤ 𝜖 (𝜆)

5 Complexity Analysis

In this section, we provide an in-depth complexity analysis of the proposed MPC-based Ring-
LWE VRF system. We break down the major components and evaluate both their time and space
complexities, providing insights into the system’s efficiency.

5.1 Temporal Complexity

– MPC Seed Generation: Predominantly driven by hashing, with complexity Θ(𝑘) per opera-
tion. Basic arithmetic tasks run in Θ(1), culminating in a total complexity of Θ(𝑛 + 𝑘) for 𝑛
participants.

– RLWE enc2() Function: The primary factor is polynomial multiplication with complexity
Θ(𝑀 log𝑀). Accompanying operations like NTT and rearrangements align with this com-
plexity.

– submitRLWEResult() Function: Centralized around hashing, the complexity is Θ(𝑘).
– Signature Generation: Exponentiation tasks, notably 𝑇 , exhibit a complexity of Θ(log 𝑝),

where 𝑝 is the group modulus. Including iterations across participants, the complexity scales
to Θ(𝑛 × log 𝑝).

– Total Time Complexity: Summing up the components yields:

Θ(𝑛 + 2𝑘 + 𝑀 log𝑀 + (𝑛 + 1) log 𝑝)

5.2 Space Complexity

The space complexity of cryptographic systems is largely influenced by the data structures and
variables used during computation.

– MPC Seed Generation: Given its hashing nature, it would require space proportional to the
number of participants, i.e., Θ(𝑛).

– RLWE enc2() Function: Being polynomial-based, it demands space proportional to the poly-
nomial degree, leading to a space complexity of Θ(𝑀).

– submitRLWEResult() Function: This function, being related to hashing and data verification,
would require a space complexity of Θ(𝑘), which is the output size of the hash.

– DID-based Ring Signature Generation: The dominant space overhead here comes from the
storage of random values 𝑐𝑖 and 𝑠𝑖 for all participants. Thus, its space complexity is Θ(𝑛). The
storage of the exponentiated values, such as 𝑇 , is constant, adding only a fixed overhead.

– Aggregate Space Complexity: The combined space complexity, taking into account all the
components mentioned, can be articulated as:

Θ(𝑛 + 𝑘 + 𝑀)

2 https://gdpr-info.eu/recitals/no-26/

60                                                Computer Science & Information Technology (CS & IT)

https://gdpr-info.eu/recitals/no-26/


Fig. 2. Log-scaled Complexity Contributions in VRF System.

5.3 Efficiency Approximation

Our assessment underscores that the efficiency of the MPC-based Ring-LWE VRF system largely
depends on both the number of participants, 𝑛, and the polynomial degree, 𝑀 . Although constants
𝑘 and 𝑝 do affect the system, their impact remains static. For peak performance, adjusting the values
of 𝑛 and 𝑀 based on the computational power of the hosting environment is pivotal, especially for
high-frequency use cases or resource-limited settings.

For the sake of delineating dominant complexities as outlined in Sections 5.1 and 5.2, we assign
typical values to our parameters: 𝑘 , 𝑛, 𝑀 , and 𝑝. Note that these are approximations and can differ
in practical applications.

– 𝑘 (hash size) = 256 (common in cryptographic hashes)
– 𝑛 (number of participants) = 10
– 𝑀 (polynomial degree) = 1024 (standard in RLWE operations)
– 𝑝 (group modulus) = A 2048-bit prime

With log2(2048) ≈ 11, we consider log 𝑝 ≈ 11 in our calculations. Using these, we evaluate
complexities as:

– Hashing: Θ(𝑘) = 256
– Participants iteration: Θ(𝑛) = 10
– Polynomial tasks: Θ(𝑀 log𝑀) = 1024 × 10 = 10240
– Multiple exponentiations: Θ(𝑛 × log 𝑝) = 10 × 11 = 110
– Singular exponentiation: Θ(log 𝑝) = 11

Applying a logarithmic scaling, we deduce:

– Hashing: log2(256) ≈ 8
– Participants iteration: log2(10) ≈ 3.3
– Polynomial tasks: log2(10240) ≈ 13.3
– Multiple exponentiations: log2(110) ≈ 6.8
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– Singular exponentiation: log2(11) ≈ 3.5

The approximations based on our analysis are delineated in Fig. 2 with a comprehensive summary
table.

Table 1. Summary of NIST SP800-22 Test Suite Results

Test Case Name Total Tests Average P-Values Pass Fail Pass %
Approximate Entropy Test 16 0.3929 16 0 100.0

Frequency Test within a Block 16 0.4246 16 0 100.0
Cumulative Sums Test 16 0.4107 16 0 100.0

Discrete Fourier Transform (Spectral) Test 16 0.5096 16 0 100.0
Frequency (Monobit) Test 16 0.4883 16 0 100.0

Linear Complexity Test 16 0.6370 15 1 93.75
Test for the Longest Run of Ones in a Block 16 0.5632 16 0 100.0
Non-overlapping Template Matching Test 16 0.8817 16 0 100.0

Overlapping Template Matching Test 16 0.6907 13 3 81.25
Runs Test 16 0.4968 16 0 100.0
Serial Test 16 0.5087 16 0 100.0

Total 176 0.5459 172 4 98.86

6 Evaluation and Deployment

6.1 Entropy Estimation

For our MPC-based VRF scheme, we approximate the generated randomness as a random variable
𝑋 ranging [0, 2256 − 1]. The entropy of 𝑋 is computed considering its probability distribution
function (PDF):

1. The seed, considered uniformly distributed over [0, 2256−1], produces a Ring-LWE encryption
[21]. This encryption’s PDF mirrors the seed’s.

2. The Ring-LWE encryption, derived deterministically from the seed, retains this PDF.
3. Randomness is crafted using a distributed MPC [44]. It’s shaped as a weighted summation of

participant commitments, with weights guided by participant shares.
4. Each commitment, deemed uniformly distributed over [0, 2256 − 1], is independent, providing

a consistent PDF.
5. Participant shares, static and independent, yield a delta-function PDF at their value.
6. Summation weights are normalized, ensuring randomness stays within [0, 2256 − 1]. The

resulting PDF is a truncated sum of commitments, cut-off at 2256 − 1.

Denote commitment and share of participant 𝑖 as 𝐶𝑖 and 𝑆𝑖 respectively. 𝑅 symbolizes the ran-
domness from the VRF system, with 𝑛 as the maximal participant count in the VRF MPC contract.
Then, the PDF of 𝑅 is given by:

𝑃𝐷𝐹𝑅 (𝑟) =
1
𝑍

∫ 2256−1

0

(
𝑛∏
𝑖=1

𝑃𝐷𝐹𝐶 (𝐶𝑖)
)
× 𝛿

(
𝑟 −

∑𝑛
𝑖=1𝐶𝑖 · 𝑆𝑖∑𝑛

𝑗=1 𝑆 𝑗

)
𝑈 (0, 2256 − 1) (𝑟)𝑑𝑟 (3)

where𝑈 (𝑎, 𝑏) is the uniform distribution over the range [𝑎, 𝑏], and 𝑍 is the normalization constant
given by:

𝑍 =

∫ 2256−1

0

(
𝑛∏
𝑖=1

𝑃𝐷𝐹𝐶 (𝐶𝑖)
)
𝑈 (0, 2256 − 1) ×

(∑𝑛
𝑖=1𝐶𝑖 · 𝑆𝑖∑𝑛

𝑗=1 𝑆 𝑗

)
𝑑𝑟 (4)

To calculate the entropy of our hybrid VRF system, we first need to calculate the Shannon
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Fig. 3. 𝑃-value results from the NIST SP800-22 Test Suite

entropy [45] of the 𝑃𝐷𝐹𝑅 (𝑟) formula. The Shannon entropy is given by the following formula:

𝐻 = −
∫ 2256−1

0
𝑃𝐷𝐹𝑅 (𝑟) log2(𝑃𝐷𝐹𝑅 (𝑟))𝑑𝑟 (5)

Using the definition of 𝑃𝐷𝐹𝑅 (𝑟), we have:

𝐻 = −
∫ 2256−1

0

[
1
𝑍

∫ 2256−1

0

(
𝑛∏
𝑖=1

𝑃𝐷𝐹𝐶 (𝐶𝑖)
)
× 𝛿

(
𝑟 −

∑𝑛
𝑖=1𝐶𝑖 · 𝑆𝑖∑𝑛

𝑗=1 𝑆 𝑗

)
𝑈 (0, 2256 − 1) (𝑟)𝑑𝑟

]
× log2

[
1
𝑍

∫ 2256−1

0

(
𝑛∏
𝑖=1

𝑃𝐷𝐹𝐶 (𝐶𝑖)
)
× 𝛿

(
𝑟 −

∑𝑛
𝑖=1𝐶𝑖 · 𝑆𝑖∑𝑛

𝑗=1 𝑆 𝑗

)
𝑈 (0, 2256 − 1) (𝑟)𝑑𝑟

]
𝑑𝑟

(6)

This is a complex expression due to the nested integrals and delta function. Now, making use of
the properties of the delta function:∫ 2256−1

0
𝑓 (𝑟)𝛿(𝑟 − 𝑎)𝑑𝑟 = 𝑓 (𝑎) (7)

We can simplify our expression for entropy. Additionally, as the commitments 𝐶𝑖 are uniformly
distributed over [0, 2256 − 1], their PDF is:

𝑃𝐷𝐹𝐶 (𝐶𝑖) =
1

2256 (8)

Substituting this in, the entropy formula simplifies further:

𝐻 = −
∫ 2256−1

0

(
1
𝑍

(
1

2256

)𝑛
𝑈 (0, 2256 − 1) (𝑟)

)
× log2

(
1
𝑍

(
1

2256

)𝑛
𝑈 (0, 2256 − 1) (𝑟)

)
𝑑𝑟 (9)

Given that𝑈 (0, 2256 − 1) (𝑟) = 1 for 𝑟 in [0, 2256 − 1], this can be further simplified to:

𝐻 = −
(

1
𝑍

(
1

2256

)𝑛)
log2

(
1
𝑍

(
1

2256

)𝑛)
× 2256 (10)

This is the final specific formula for the estimated entropy of 𝐻.
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6.2 Randomness Evaluation

We used the NIST SP800-22 [22] test suite to evaluate the randomness attributes of binary sequences
produced by our MPC-based Ring-LWE VRF system. From the suite, we utilized 11 out of the
15 tests, excluding the ‘Binary Matrix Rank Test’, ‘Maurer’s Universal Statistical Test’, ‘Random
Excursions Test’, and ‘Random Excursions Variant Test’ due to our data pattern discrepancies.

As summarized in Table 1 and Fig. 3, the system’s performance is exemplary with the majority
of tests achieving average 𝑝-values centered around 0.5, which signifies optimal randomness.
Notably, the ‘NonOverlappingTemplate’ test yielded an exceptional average 𝑝-value of 0.881706.

Out of 176 tests, only 4 failed, marking an impressive pass rate of about 98.86%. The ‘Lin-
earComplexity’ and ‘OverlappingTemplate’ tests recorded one and three failures, respectively.
However, these failures merely suggest certain statistical patterns in isolated cases rather than a
system-wide randomness flaw.

To sum up, our MPC-based Ring-LWE VRF system showcases strong randomness as validated
by the NIST SP800-22 results, underscoring its reliability for applications necessitating quality
random sequences.

Fig. 4. Uniformly Distributed VRF outputs. The normalized values were derived from the raw 256-bit values.

6.3 System Deployment

We used Ganache to deploy our hybrid VRF system based on Truffle and Remix environment, which
is a personal blockchain that allows to test and deploy smart contracts on a local network without
incurring the cost and time delay associated with deploying on the main Ethereum network. The
unique contract address, comprised of 160 bits, is represented by the hexadecimal value ”0xd914
5CCE 52D3 86f2 5491 7e48 1eB4 4e99 43F3 9138”. Concurrently, the contract creation transaction
hash is given by ”0x6e8c 5bda 09f1 4004 b75a 02b4 14fd 05c8 def8 70d8 0e65 d029 7dcc 364c
059b b9db”. The execution of the creation transaction necessitated the expenditure of 3,425,664
gas units. Fig. 4 provides a visual representation of the output VRF distribution, where the uniform
distribution property is observed for both the MPC-based VRF on-chain seeds and the final R-LWE
VRF outputs. Fig. 5 shows more characterized uniform distribution of ones in histogram along
with scattered dispersion of the generated MPC-based seeds and Ring-LWE VRF outputs. Fig. To
illustrate as an example, the 256-bit VRF output value was ”0x46a6 f730 ead6 a473 1204 e2d9
e96c e2ed 9b5c d9df 0cda e614 bde6 e986 c68e 9ccd” when the MPC-based on-chain seed was
given as ”0x9a23 982c 68ed 7fa1 4863 a3b1 d796 22fe 6f7b 9a28 fd06 dd1c 41d0 7f1b b9c1 708e”.
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Fig. 5. The distribution of ones in 128-bit blocks and scattered distribution of VRF seeds and output. The average ratios
of ones were observed as 0.4912 and 0.4934 in the MPC-based seeds and Ring-LWE VRF output, respectively.

7 Conclusion

This paper presents a blockchain-based VRF scheme to address quantum threats to traditional
cryptographic protocols, leveraging post-quantum Ring-LWE encryption. To tackle the compu-
tational overhead and gas costs of Ring-LWE, our architecture seamlessly merges on-chain and
off-chain computations. Off-chain operations are verified via a DID-based ring signature with
a Non-Interactive Zero-Knowledge (NIZK) proof and delegated key generation, inspired by the
Chaum-Pedersen proof and Fiat-Shamir Heuristic. By integrating multi-party computation (MPC)
and blockchain-based decentralized identifiers (DID), our VRF enhances randomness while bol-
stering security and privacy. Evaluations highlight the model’s robustness, evidenced by its 98.86%
pass rate on 11 standard tests from the NIST SP800-22 suite and an average 𝑝-value of 0.5459 across
176 tests. The results validate the VRF’s theoretical rigor and practical suitability for scenarios
demanding verifiable randomness.
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