
A Multiparty Commutative Hashing
Protocol based on the Discrete

Logarithm Problem

Daniel Zentai1, Mihail Plesa2, and Robin Frot3

{
xtendr

Budapest, Hungary

Abstract. Let X and Y be two sets and suppose that a set of participants P = {P1, P2, . . . , Pn} would like
to calculate the keyed hash value of some message m ∈ X known to a single participant in P called the data
owner. Also, suppose that each participant Pi knows a secret value xi ∈ X. In this paper, we will propose
a protocol that enables the participants in this setup to calculate the value y = H(m,x1, x2, . . . , xn) of a
hash function H : Xn+1 → Y such that:
– The function H is a one-way function.
– Participants in P\{Pi} cannot obtain xi.
– Participants other than the data owner cannot obtain m.
– The hash value y = H(m,x1, x2, . . . , xn) remains the same regardless the order of the secret xi values.

Keywords: Hash functions, Discrete logarithm problem, Anonymization

1 Introduction

Hash functions are very common building blocks of cryptographic protocols like
digital signatures or message authentication codes. In this paper, we will propose a
protocol built around the Chaum-van Heijst-Pfitzmann hash function [1]. The goal
of our protocol is to calculate a hash value in a multiparty setup, i.e. the calculation
is made by multiple participants collaboratively.

Our motivation was the following. Suppose we have to store personal data in a
way that enables us to have access to a certain subset of non-sensitive attributes
(e.g. age or height) and also enables us to keep the confidentiality of more sensitive
attributes (e.g. passport number or name). Anonymization and pseudonymization
may look like very similar concepts, but according to the European Union’s General
Data Protection Regulation (GDPR [8]) this is not the case. Pseudonymized data
can be recovered using some secret information (e.g. a decryption key). Anonymized
data on the other hand cannot be recovered under any circumstances, meaning we
cannot use encryption to anonymize data.

In this paper, we will propose a protocol that enables a set of participants and a
trusted server to calculate a hash value (i.e. anonymize their data) collaboratively.

We impose the following requirements regarding the process of the calculation.
The function H should be a one-way function, the participants (including the server)

David C. Wyld et al. (Eds): BIOM, CRBL, EDUPT, SIP, COMIT -2023
pp. 151-161, 2023. CS & IT - CSCP 2023 DOI: 10.5121/csit.2023.132110

https://doi.org/10.5121/csit.2023.132110
https://airccse.org/csit/V13N21.html

should not learn either each other’s secret values or the plaintext, and the hash value
should be the same regardless of which participant is the data owner (i.e. what is the
order of the participants in the calculation). The reason for the last requirement is
that we want to be able to detect whether two different participants have the same
plaintext without knowing the plaintext itself.

2 Preliminaries

In this section, we will give some basic definitions required throughout our paper.
For the interested reader, we recommend [5] for more information.

Definition 1. A function ϵ : N → R is negligible if for all c ∈ N there exists an
n0 ∈ N such that for all n ≥ n0 we have ϵ(n) < n−c.

Definition 2. A hash function h is a deterministic polynomial time algorithm with
arbitrary input length and fixed output length.

Definition 3. A hash function h is said to be one-way if it is

– Easy to compute, i.e. h outputs h(x) in polynomial time for all x ∈ D(h).
– Hard to invert, i.e. given a hash value y no probabilistic polynomial time algo-

rithm can calculate an x for which y = h(x) with non-negligible probability.

Definition 4. A hash function is said to be collision resistant if no probabilistic
polynomial time algorithm can succeed in finding two values x ̸= x′ ∈ D(h) such
that h(x) = h(x′) with non-negligible probability.

Throughout this paper, we will assume that the discrete logarithm problem de-
fined below is hard, i.e. it cannot be solved by any probabilistic polynomial time
algorithm.

Definition 5. If G is a cyclic group and a, b ∈ G are group elements then the
discrete logarithm problem includes finding an x ∈ G such that ax = b.

There are several cryptosystems based on the hardness of the discrete logarithm
problem. The most popular ones include the Diffie-Hellman key exchange [3] and
the ElGamal encryption [4].

3 Related Work

There are several anonymization techniques available, including but not limited to
k-anonymity, differential privacy, or synthetic data [6]. These methods are designed
either to add noise to the data, add some artificial data to the real data set, or
generalize the data such that the data subject is no longer identifiable from it.

152 Computer Science & Information Technology (CS & IT)

Our method is a bit different in a few aspects. First of all, we propose a purely
cryptographic method, the protocol requires the collaboration of multiple partici-
pants, and the anonymized (i.e. hashed) version of a fixed data record remains the
same regardless of which participant owns the plaintext. The main advantage of this
approach is that this way we allow the participants to calculate the intersection of
their data set without revealing sensitive identifiers.

To ensure that the hash of a fixed message m remains the same regardless of
which participant owns the plaintext, we have to use commutative hashing. In [2]
the authors propose h(x, y) = f(min(x, y),max(x, y)) where f is a collision-resistant
hash function. Unfortunately, a similar approach won’t work in our case since the
participants know nothing about each other’s secret values.

Definition 6. A hash function h : Xn → Yn is commutative, if h(x1, x2, . . . , xn) =
h(σ(x1, x2, . . . , xn)) for all x1, x2, . . . , xn and all σ permutations.

Note that we cannot ensure collision resistance if we use a commutative hash
function, since (x1, x2, . . . , xn) ̸= σ(x1, x2, . . . , xn) (unless σ is the identity permuta-
tion), but h(x1, x2, . . . , xn) = h(σ(x1, x2, . . . , xn)) by definition. Therefore the most
we can do without losing the desired functionality is to ensure one-way property.

4 Hashing Protocol

As a building block of our protocol, we will use the discrete logarithm-based collision-
resistant hash function defined by Chaum, van Heijst, and Pfitzmann [1]

Definition 7. Let p be a prime number such that q = p−1
2

is also a prime number,
and let a and b be primitive elements of the multiplicative group of GF (p). Let
h : GF (q)×GF (q) → GF (p)\{0} be the following function:

h(x, y) = ax · by mod p

The hash function h defined above is collision-resistant if the discrete logarithm
problem is hard [1].

Now, suppose that we have a set of participants P = {P1, P2, . . . , Pn} and a
trusted server represented by a special participant S /∈ P . Also, suppose that the
data owner (i.e. the only participant who knows m is P1, therefore P1 initiates the
hashing protocol).

Let h be the Chaum-van Heijst-Pfitzmann hash function andΠ = (Gen,Enc,Dec)
a public key encryption scheme. Suppose that each participant Pi has two randomly
generated keys xi, yi ∈ GF (q). Also, suppose that P1 wants to hash the message
m ∈ GF (q). In addition, we will suppose that all the messages in the protocol are
sent over a secure channel.

Computer Science & Information Technology (CS & IT) 153

Our protocol proceeds as follows:

Multiparty Commutative Hashing Protocol

1. Upon receiving an upload request from P1, S generates n random numbers
r1, r2, . . . , rn and sends them to the participants in P .

2. Upon receiving r1 from S, P1 calculates h1 = h(x1 +m, y1) and sends

h1|EncKpub
S

(r1)

to S, where Kpub
S is the public key of S.

3. For all i = 2, . . . n, upon receiving ri from S, Pi calculates hi = h(xi, yi) and
sends

hi|EncKpub
S

(ri)

to S.
4. Upon receiving hi|EncKpub

S
(ri) from Pi for all i = 1, . . . n, S checks the random

values r1, r2, . . . rn and stores
∏n

j=1 hj if these are the same values S sent out
at the first step. Otherwise, S outputs an error message.

Note that the purpose of the ri values is not authentication, these just make it pos-
sible for the server to check that every participant took part in the calculation and
therefore

∏n
j=1 hj can be stored as the output of the protocol.

Theorem 1. If the discrete logarithm problem is hard, then H(x1, . . . , xn, y1, . . . , yn) =∏n
i=1 h(xi, yi) is a one-way function.

Proof. Recall that if the discrete logarithm problem is hard, then h is a collision-
resistant hash function. Suppose that H is not a one-way function, thus there exists
a PPT algorithm A that can successfully find a corresponding input to a given value
of H. We will use A to find a collision in h.

From the construction of H, it immediately follows that

H(x1, . . . , xn, y1, . . . , yn) =
n∏

i=1

h(xi, yi)

=
n∏

i=1

axi · byi

= a
∑n

i=1 xi · b
∑n

i=1 yi

= h

(
n∑

i=1

xi,
n∑

i=1

yi

)
(1)

Now let α = H(x, 0, . . . , 0, y, 0, . . . , 0) and run algorithm A on α. Suppose that
A(α) = x∗

1, . . . , x
∗
n, y

∗
1, . . . , y

∗
n.

154 Computer Science & Information Technology (CS & IT)

From this, we can successfully find a preimage of h(x, y) since

h(x, y) = H(x, 0, . . . , 0, y, 0, . . . , 0)

= H(x∗
1, . . . , x

∗
n, y

∗
1, . . . , y

∗
n)

= h

(
n∑

i=1

x∗
i ,

n∑
i=1

y∗i

) (2)

And that is a contradiction since h is collision-resistant (therefore also a one-way
function) if the discrete logarithm problem is hard.

□

Note that H is still collision-resistant in a somewhat weaker sense. If we fix the xi

and yi values (e.g. we do not let the participants to change their keys) then it is
hard to find two messages m ̸= m′ with the same hash value.

5 Hashing with elliptic curves

Although the Chaum-van Heijst-Pfitzmann hash is a provable secure construction,
it is not widely used in practice because of its running time. One way to make
a discrete logarithm-based protocol more applicable in practice, is to use elliptic
curves.

Definition 8. Let p be a prime number and Ep be an elliptic curve over the finite
field GF (p). Also, let P,Q be points of Ep. The elliptic curve discrete logarithm
problem includes finding a k ∈ Z such that k · P = Q.

The elliptic curve discrete logarithm problem is thought to be even harder than
the aforementioned classical discrete logarithm problem. The Chaum-van Heijst-
Pfitzmann hash function can be defined as follows using elliptic curves.

Definition 9. Let p be a prime number and Ep be an elliptic curve over the finite
field GF (p), moreover assume that |Ep| is a prime n. Let A and B be base points of
Ep such that the discrete logarithm of B is not known. Let h : (Z\nZ)2 → Ep\{O}
be the following function:

h(k, l) = k · A+ l ·B

Theorem 2. The hash function h defined above is collision-resistant if the elliptic
curve discrete logarithm problem is hard.

Proof. Suppose that we can find a collision efficiently, i.e. two pairs of integers
(k, l) ̸= (k′, l′) such that

h(k, l) = k · A+ l ·B = k′ · A+ l′ ·B = h(k′, l′).

We can assume that l′ ̸= l. Otherwise, we would have kA = k′A and thus k = k′.
Since n is prime, l − l′ is invertible modulo n and this gives

k − k′

l′ − l
· A = B.

We successfully solved the elliptic curve discrete logarithm problem.

Computer Science & Information Technology (CS & IT) 155

□

Again, suppose that we have a set of participants P = {P1, P2, . . . , Pn} and a
trusted server represented by a special participant S /∈ P . Also, suppose that the
data owner (i.e. the only participant who knows m is P1, therefore P1 initiates the
hashing protocol.

Let h be the Chaum-van Heijst-Pfitzmann hash function andΠ = (Gen,Enc,Dec)
a public key encryption scheme. Suppose that each participant Pi has two randomly
generated keys ki, li ∈ Z. Also, suppose that P1 wants to hash the message m where
m is a point of an elliptic curve Ep over the finite field GF (p)

Now our modified protocol proceeds as follows:

Multiparty Anonymization Protocol with Elliptic Curves

1. Upon receiving an upload request from P1, S generates n random numbers
r1, r2, . . . , rn and sends them to the participants in P .

2. Upon receiving r1 from S, P1 calculates h1 = h(k1 +m, l1) and sends

h1|EncKpub
S

(r1)

to to S, where Kpub
S is the public key of S.

3. For all i = 2, . . . n, upon receiving ri from S, Pi calculates hi = h(ki, li) and
sends

hi|EncKpub
S

(ri)

to S.
4. Upon receiving hi|EncKpub

S
(ri) from Pi for all i = 1, . . . n, S checks the random

values r1, r2, . . . rn and stores
∑n

j=1 hj if these are the same values S sent out
at the first step. Otherwise, S outputs an error message.

6 Implementation results

We instantiated the protocol both over the multiplicative group of integers modulo
p and over the elliptic curve SECP256k1 [13]. The purpose of our experiment was to
analyze the running time with respect to the number of participants. We discovered
that the elliptic curve implementation is 10× faster than the implementation over the
multiplicative group of integers. For each number of participants, we run 100 trials
of the protocol and average the running time. The results are presented in Table
1. We used the Levenberg-Marquardt algorithm to determine the coefficients of a
linear polynomial that best fit the data [9]. Let N be the number of participants.
We denote by TZp (N) and TEp (N) the running time in seconds of the protocol
implemented over Zp, respectively Ep. The discovered polynomials are shown in (4)
and (5):

TEp (N) = 0.008N − 0.733 (3)

156 Computer Science & Information Technology (CS & IT)

TZp (N) = 0.13N − 42.06 (4)

Num. of participants Running time over Ep

(s)
Running time over Zp

(s)

4 0.028 0.280

8 0.058 0.561

16 0.111 1.122

32 0.222 2.245

64 0.442 4.511

128 0.882 9.065

256 1.772 18.318

512 3.551 37.178

1024 7.135 76.174

2048 14.431 160.599

4096 29.474 352.496

8192 61.157 837.490

16384 132.225 2242.677

Table 1: The running time (s) with respect to the number of participants

Figures 1 and 2 show the running time with respect to the number of participants
as well as the polynomial found by the curve fitting algorithm when implemented
over Ep and over Zp.

All experiments were performed in Python on an Apple M1 Max platform.

Fig. 1: The running time of the protocol implemented over Ep

Computer Science & Information Technology (CS & IT) 157

Fig. 2: The running time of the protocol implemented over Zp

7 A threshold protocol

One possible relaxation of the protocol is to ensure that any k-element subset of
the participants can calculate the anonymous ID for some fixed 1 < k ≤ n = |P |.
As a building block, we can use Shamir’s secret sharing scheme [10] which works as
follows.
Let F be a finite field and let s0 ∈ F be the secret we want to share with the
participants. Let a1, . . . , ak−1 be elements of F chosen uniformly at random and
f(x) = s0+

∑k−1
i=1 aix

i. Each participant Pi is given a point (xi, f(xi)) of the polyno-
mial f . With Lagrange interpolation, any k element subset of the participants can
now calculate the secret s0 as follows.

s0 = f(0) =
k∑

i=1

f(xi) · ℓi

where

ℓi =
k∏

j=1,j ̸=i

xj

xj − xi

Now we can use this secret sharing scheme to modify our anonymization protocol
in a way that any k element subset of P can calculate the anonymous IDs.
Let h be the Chaum-van Heijst-Pfitzmann hash function and Π = (Gen,Enc,Dec)
a Fully Homomorphic Encryption (FHE) scheme. Suppose that each participant Pi

has a randomly generated key xi ∈ GF (q). Also, suppose that P1 wants to hash
the message m ∈ GF (q). In addition, we will suppose that all the messages in the
protocol are sent over a secure channel.

158 Computer Science & Information Technology (CS & IT)

Multiparty Threshold Anonymization Protocol

1. First, S generates two secret s0 and t0 and distributes them using Shamir’s
secret sharing scheme to the members in P . S uses two different polynomials
f(x) = s0+

∑k−1
i=1 aix

i and g(x) = t0+
∑k−1

i=1 bix
i. Let x1, . . . , xn ∈ GF (p) secret

random elements generated by the respective Pi.
2. Upon receiving EncKpub

i
(xi) from Pi, S sends f(EncKpub

i
(xi)) = EncKpub

i
(f(xi))

and g(EncKpub
i

(xi)) = EncKpub
i

(g(xi)) to Pi where Kpub
i is the public key of Pi.

3. Every pair (Pi, Pi+1) shares with S the quotient xi+1/xi with the Multiply
protocol described below.

4. Upon receiving an anonymization request from P1, S randomly chooses a k
element subset Q ⊆ P . Without loss of generality suppose now that Q =
{P1, . . . , Pk}. Additionally, S generates k random values r1, r2 . . . , rk and sends
ri to Pi ∈ Q.

5. For every participants Pi ∈ Q, S calculates ℓi =
∏k

j=1,j ̸=i
xj

xj−xi
with the stored

quotients and sends ℓi to Pi.
6. Upon receiving r1 and ℓ1 from S, P1 calculates h1 = h(m+ f(x1) · ℓ1, g(x1) · ℓ1)

and sends
h1|EncKpub

S
(r1)

to S where Kpub
S is the public key of S.

7. For all i = 2, . . . k, upon receiving ri from S, Pi calculates hi = h(f(xi)·ℓi, g(xi)·
ℓi) and sends

hi|EncKpub
S

(ri)

to S.
8. Upon receiving hi|EncKpub

S
(ri) from Pi for all i = 1, . . . k, S stores

k∏
i=1

hi = am+
∑k

i=1 f(xi)·ℓi · b
∑k

i=1 g(xi)·ℓi = am+s0 · bt0

if the random values r1, r2, . . . rk are the same values S sent out at the first
step. Otherwise, S outputs an error message.

Note that in step 5, the server S needs to calculate xi

xi−xj
, where xj is not known

by Pi since it is a secret value generated by Pj. We will use a subroutine that solves
this problem. The subroutine uses the fact that xi

xi−xj
can be calculated securely if

we can calculate the product x−1
k · xk+1 securely, since

xi

xi − xj

=

(
xi − xj

xi

)−1

=

(
1− xj

xi

)−1

=
(
1− x−1

i · xj

)−1

and, if j > i,

xj

xi

=

j−1∏
k=i

xk+1

xk

.

Computer Science & Information Technology (CS & IT) 159

Two-Party Multiplication Protocol

1. Multiply(x, y) takes two inputs from two different parties: x from P1 and y
from P2.

2. P1 generates a random number r1 and sends r1 · x to P2 who then generates a
random number r2, calculates r1 · x · r2 · y and sends it to the server.

3. The server also generates a random value rS, calculates rS · r1 · x · r2 · y and
sends it back to P1.

4. P1 calculates r−1
1 · rS · r1 · x · r2 · y = rS · x · r2 · y and sends it to P2.

5. P2 calculates r−1
2 · rS · x · r2 · y = rS · x · y and sends it to the server.

6. The server calculates r−1
S · rS · x · y = x · y.

Note that in both versions of the protocol, if the server is corrupted, it can
brute-force the hash values. Indeed, if Pi is the data owner during the first run
then S learns h(xj, yj) (or already knows (s0, t0) in the threshold protocol) for all
j ∈ P\{Pi}. And if Pu ̸= Pi is the data owner during the second run then S learns
h(xi, yj) (or h(f(xi), g(xi) in the threshold protocol) as well. We can prevent this
if the participants agree on a random number R using some group key exchange
protocol and run the protocol on the message R ·m instead of m. Other participants
besides S cannot perform this attack since every message is sent over a secure
channel.

Also note that it is possible to double the size of the plaintext space if P1 sends
h(m1+x1,m2+ y1) (or h(m1+ f(x1) · ℓ1,m2+ g(x1) · ℓ1) in the threshold case) with
(m1,m2) ∈ GF (p)2.

8 Conclusion

We proposed a protocol that enables a set of participants to calculate a one-way
commutative hash function collaboratively in a way that all of the participants have
to take part in the computation, and this fact is verifiable by a trusted server and no
participant other than the data owner has access to the plaintext. We also proposed
a threshold protocol where any k-element subset of the participants can run the
protocol successfully.

A possible future direction would be to construct a decentralized version of the
protocol or make the protocol post-quantum.

Our implementation was purely experimental and was not made for efficiency.
One possible direction of research is to create an efficient implementation of the
protocol using low-level parallelizable instruction or FPGA [11][12].

References

1. D. Chaum, E. Van Heijst, and B. Pfitzmann. Cryptographically strong undeniable signatures, uncondi-
tionally secure for the signer. Advances in Cryptology-CRYPTO ’91, volume 576 of Lecture Notes in
Computer Science, pages 470-484. Springer-Verlag, (1992).

160 Computer Science & Information Technology (CS & IT)

2. Goodrich, Michael T., and Roberto Tamassia. Efficient authenticated dictionaries with skip lists and
commutative hashing. Technical Report, Johns Hopkins Information Security Institute, 2000.

3. W. Diffie, M. E. Hellman. ”New Directions in Cryptography. IEEE Transactions on Information Theory.
22 (6): 644–654 (1976).

4. T. ElGamal. A Public-Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. IEEE
Transactions on Information Theory. 31 (4): 469–472. (1985.)

5. J. Katz, Y. Lindell. Introduction to modern cryptography. CRC Press, (2007).
6. Marques JF, Bernardino J. Analysis of Data Anonymization Techniques. InKEOD 2020 (pp. 235-241).
7. S. Mart́ın, P. Morillo, J.L. Villar, Computing the order of points on an elliptic curve modulo N is

as difficult as factoring N, Applied Mathematics Letters, Volume 14, Issue 3, Pages 341-346, ISSN
0893-9659 (2001.)

8. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the
protection of natural persons with regard to the processing of personal data and on the free movement of
such data, and repealing Directive 95/46/EC (General Data Protection Regulation). OJ L 119/1 (2016).

9. Ranganathan, A. The levenberg-marquardt algorithm. Tutorial On LM Algorithm. 11, 101-110 (2004)
10. A. Shamir. How to share a secret, Communications of the ACM, (1979.)
11. Brown, S., Rose, J. FPGA and CPLD architectures: A tutorial. IEEE Design & Test Of Computers.

13, 42-57 (1996)
12. Peleg, A., Weiser, U. MMX technology extension to the Intel architecture. IEEE Micro. 16, 42-50

(1996)
13. Chen, L., Moody, D., Randall, K., Regenscheid, A. & Robinson, A. Recommendations for discrete

logarithm-based cryptography: Elliptic curve domain parameters. (Lily Chen, Dustin Moody, Karen
Randall, Andrew Regenscheid, Angela Robinson, 2023)

Computer Science & Information Technology (CS & IT) 161

