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ABSTRACT 
 
Lung tuberculosis remains a significant global health concern, and accurate detection of the 

disease from chest X-ray images is essential for early diagnosis and treatment. The primary 

objective is to introduce a cutting-edge approach utilizing the Swin Transformer, designed to 

aid physicians in making more precise diagnostic decisions in a time-efficient manner. 

Additionally, the focus is to reduce the cost of the testing process by expediting the detection 

process. The Swin Transformer is a state-of-the-art vision transformer that employs a 

hierarchical feature representation and shifted window mechanism to enhance image 

understanding. 
 

We employ the NIH Chest X-ray dataset, which consists of 1,557 images labeled as not having 

tuberculosis and 3,498 images depicting the disease. The dataset is randomly split into training, 

validation, and testing sets using a 64%, 16%, and 20% ratio, respectively. Our methodology 

involves preprocessing the images using random resized crop, horizontal flip, and 

normalization before converting them into tensors. The Swin Transformer model is trained for 

50 epochs with a batch size of 8, using the Adam optimizer and a learning rate of 1e-5. We 

monitor the model's accuracy and loss during training and calculate the F1-score, precision, 

and recall to evaluate its performance. 

 

The results of our study reveal a peak training dataset accuracy of 0.88 at the 43rd epoch, while 

the validation dataset achieves its highest accuracy of 0.88 after 20 epochs. The testing phase 
yields a precision of 0.7928 and 0.9008, recall of 0.7749 and 0.9099, and F1-score of 0.7837 

and 0.905 for the "Negative" and "Positive" classes, respectively. The Swin Transformer 

exhibits encouraging performance, and we anticipate that this architecture will be easily 

adaptable and possess considerable potential for enhancing the speed and efficiency of 

diagnostic decisions made by physicians in the future. 
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1. INTRODUCTION 
 
Lung tuberculosis (TB) is a significant global health issue, affecting millions of people 

worldwide, with an estimated 10 million individuals developing the disease and 1.4 million TB- 

related fatalities in 2019 alone [1]. Rapid diagnosis and effective treatment are crucial for 

mitigating the spread of TB and enhancing patient outcomes. Chest X-ray imaging represents a 
commonly employed, non-invasive technique for identifying lung abnormalities, including TB, 

and plays a vital role in the diagnostic process. 

 
The application of deep learning techniques for automating lung TB detection from chest X-ray 

images has garnered substantial interest in recent years. Various convolutional neural network 

(CNN) architectures have been proposed for this purpose, including CheXNet, which 

demonstrated radiologist-level performance in detecting pneumonia, and the ChestX-ray8 project, 
which concentrated on classifying and localizing prevalent thorax diseases. Despite these 

methods achievements, there remain opportunities for enhancing model accuracy and 

generalizability. 
 

The reason behind this method selection for detecting lung tuberculosis from chest X-ray images 

due to its innovative hierarchical feature representation and shifted window mechanism, which 
allows for more efficient capture of both local and global context within images. In medical 

image analysis, capturing both local and global context is particularly important due to the 

inherent complexity and variability of the images. Incorporating both contexts enables the model 

to account for individual variations among patients, identify subtle abnormalities that might 
otherwise be overlooked, and understand the relationships between various structures and features 

within the image. This holistic understanding leads to improved performance, ultimately 

contributing to better patient outcomes through early diagnosis and appropriate treatment 
planning. As a result, this architecture holds significant promise for the future of medical image 

analysis, particularly in the context of disease detection and diagnosis. By successfully applying 

the Swin Transformer in lung tuberculosis detection, researchers and medical professionals can 
unlock its full potential and contribute to improved patient outcomes through early diagnosis and 

timely intervention. 

 

2. RELATED WORK 
 
In recent years, several deep learning-based approaches have been proposed for automated lung 

tuberculosis (TB) detection from chest X-ray images. In this section, we review some of the most 

relevant literature in the field, discuss their limitations, and emphasize the novelty of our work. 
 

The ChestX-ray8 project by Wang et al. (2017) was one of the first major efforts to develop an 

automated system for analyzing chest X-ray images. The project amassed a hospital-scale 

database of over 100,000 chest X-rays, which was used to train a deep convolutional neural 
network (CNN) to classify and localize common thorax diseases, including lung TB. The weakly-

supervised classification was the primary focus of the ChestX-ray8 project. This means that the 

training data was only labeled at the image level, indicating whether or not the image contained a 
particular disease. The CNN was then trained to learn the visual features associated with each 

disease, which could then be used to classify new images. While the ChestX-ray8 project did not 

specifically target TB detection, its work on weakly-supervised classification has had a significant 

impact on the field of medical image analysis. Weakly supervised classification allows for the 
training of large and powerful models on datasets that would be too expensive or time-consuming 

to label manually. This has made it possible to develop automated systems for the diagnosis of a 

wide range of diseases, including lung TB [3]. 
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In 2017, Rajpurkar et al. introduced CheXNet, a 121-layer deep convolutional neural network 
(CNN) architecture based on DenseNet. CheXNet achieved radiologist-level performance in 

detecting pneumonia from chest X-ray images. Despite its impressive performance, CheXNet was 

primarily designed for pneumonia detection rather than TB detection. This is because the training 

data used to train CheXNet was specifically labeled for pneumonia. As a result, CheXNet may 
not be able to generalize as well to TB detection, where the visual features of the disease are more 

subtle. However, CheXNet's success in pneumonia detection demonstrates the potential of deep 

learning for medical image analysis. By developing deep learning architectures that are 
specifically designed for TB detection, researchers can leverage this potential to develop more 

accurate and efficient diagnostic tools for TB [2]. 

 
Lopes et al. (2017) proposed an approach for TB detection using a combination of convolutional 

neural networks (CNNs) and handcrafted features extracted from the images. Handcrafted features 

are manually designed features that are specific to the task at hand. For example, in TB detection, 

handcrafted features could include the size, shape, and texture of lesions in the lungs. CNNs are a 
type of machine learning model that can learn to extract visual features from images. CNNs have 

been shown to be very effective for a variety of image classification tasks, including TB 

detection. Lopes et al. (2017) combined CNNs with handcrafted features to improve the accuracy 
of their TB detection system. They extracted handcrafted features from the images and then 

used a CNN to learn the relationships between these features. The CNN was then able to classify 

the images as having or not having TB. Lopes et al.'s approach achieved high accuracy in 
detecting TB. However, it relied on manual feature engineering, which can be time-consuming 

and may not generalize well to other datasets or imaging modalities. One of the challenges of 

manual feature engineering is that it can be difficult to identify all of the features that are 

important for the task at hand. Additionally, manually designed features may not be generalizable 
to other datasets or imaging modalities. For example, if a manually designed feature is based on 

the size and shape of lesions in the lungs, it may not work well for detecting TB in images that 

have different contrast or resolution [4]. 
 

Vision transformers (ViTs) are a type of machine learning model that has recently achieved state-

of-the-art performance on a variety of computer vision tasks, including image classification, 

object detection, and semantic segmentation. ViTs work by converting images into a sequence 
of patches, which are then processed by a transformer encoder. The transformer encoder is a type 

of neural network that is well-suited for processing sequential data. ViTs have several advantages 

over other types of machine learning models for computer vision tasks. First, ViTs are able to 
learn long-range dependencies in images, which is important for tasks such as object detection 

and semantic segmentation. Second, ViTs are more robust to noise and occlusion than other types 

of models. Despite their advantages, ViTs have not been extensively explored for medical 
imaging and, specifically, TB detection. There are a few reasons for this. First, ViTs are 

computationally expensive to train. Second, ViTs require large amounts of training data. Third, 

there is a lack of publicly available datasets for medical imaging tasks such as TB detection. 

Apart from all these challenges, there is growing interest in applying ViTs to medical imaging 
tasks. ViTs have the potential to improve the accuracy of tasks such as disease detection, 

diagnosis, and treatment planning [5]. 

 

This work is novel because it applies a state-of-the-art vision transformer, the Swin Transformer, 
to the task of lung tuberculosis (TB) detection from chest X-ray images. The Swin Transformer 

offers a hierarchical feature representation and shifted window mechanism, which enables the 

model to efficiently capture both local and global context within images. This is particularly 
relevant in the case of lung TB detection, where both local and global lung patterns are essential 

for accurate diagnosis. In other words, the Swin Transformer is a new type of machine learning 

model that is designed to learn both the local details and the overall patterns in images. This 
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makes it particularly well-suited for the task of lung TB detection, where both the individual 
features of TB lesions and the overall patterns of lung disease are important for making a 

diagnosis. The Swin Transformer has never been used for lung TB detection before, so this 

work is the first to explore its potential for this task. The researchers hope that the Swin 

Transformer will be able to improve the accuracy and efficiency of lung TB detection, which 
could lead to better patient outcomes [6]. 

 

By demonstrating the effectiveness of the Swin Transformer for lung TB detection, this work 

contributes to the ongoing efforts to improve early diagnosis and treatment of this critical global 
health issue. 

 

3. PROPOSED METHOD 
 
In this work, we propose a method for lung tuberculosis detection from chest X-ray images 

using the Swin Transformer, a state-of-the-art vision transformer architecture. 

 

3.1. Swin Transformer Model 
 

The Swin Transformer is a novel deep learning architecture for computer vision tasks that extends 
the transformer architecture, which was originally developed for natural language processing. 

Transformers are a type of neural network that is well-suited for processing sequential data, such 

as text or images. The Swin Transformer splits the input image into patches, which are then 

processed by a series of transformer layers. Unlike other vision transformers, the Swin 
Transformer employs a hierarchical feature representation, which means that it gradually reduces 

the spatial resolution of the input image through a series of stages. Each stage contains a set of 

transformer blocks and down-sampling operations. The Swin Transformer also employs a shifted 
window mechanism, which allows each patch to interact with neighboring patches and those 

shifted by a certain amount. This mechanism enables the model to capture global context while 

maintaining a local representation of the image. This is particularly important for lung 
tuberculosis detection, where both local and global lung patterns are essential for accurate 

diagnosis. 

 

The Swin Transformer uses a hierarchical feature representation to gradually reduce the spatial 
resolution of the input image through a series of stages. This allows the model to learn features at 

different levels of granularity, from local details to global patterns. 

 
The Swin Transformer uses a shifted window mechanism to allow each patch to interact with 

neighboring patches and those shifted by a certain amount. This enables the model to capture 

global context while maintaining a local representation of the image. 

 
The Swin Transformer has several advantages over other vision transformer architectures for lung 

tuberculosis detection: 

 

 Accuracy: The Swin Transformer has demonstrated state-of-the-art accuracy on a variety 
of lung tuberculosis detection benchmarks. 

 Efficiency: The Swin Transformer is more efficient than other vision transformer 

architectures, which makes it more suitable for deployment in real-world applications. 

 Generality: The Swin Transformer is a general-purpose vision transformer architecture, 

which means that it can be used for a variety of computer vision tasks, including lung 
tuberculosis detection. 
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Overall, the Swin Transformer is a promising new approach to lung tuberculosis detection. It 
has the potential to improve the accuracy and efficiency of lung tuberculosis detection, which 

could lead to better patient outcomes. 

 

 

 
Figure 1. The architecture of Swin Transformer (Swin-T) [6] 

 

3.2. Dataset 
 
The data was used from the National Institutes of Health (NIH). Data is available for registered 

collaborators who have signed the DUA on Aspera at: (https://sharingwith.niaid.nih.gov). The 

January 2022 dataset comprises 6635 chest X-ray images. Out of these images, 1,557 were 

classified as not having tuberculosis, while 3,498 were identified as depicting tuberculosis. The 
dataset was then randomly split into training, validation, and testing sets, using a ratio of 64%, 

16%, and 20%, respectively. 

 
Table 1.  The chest X-ray dataset. 

 

Type ‘Positive’ Class ‘Negative’ Class Total 

Train 2240 997 3237 

Validation 559 249 808 

Test 699 311 1010 

Total 3498 1557 5055 

 
The training and validation datasets are employed to both train the models and adjust them to 

attain optimal weights. Then, the acquired weights and biases are applied to make predictions 

on the test dataset. 
 

3.3. Experiment setting 
 

The chest X-ray images were preprocessed using several techniques to improve the performance 
and generalizability of our model. First, images were resized using a random resized crop with a 

height and width of 512 pixels. Then, horizontal flip augmentation was applied with a probability 

of 0.5. Finally, images were normalized with a mean of (0.491, 0.482, 0.447) and a standard 
deviation of (0.247, 0.243, 0.261). The pre-processed images were converted to tensors using the 

ToTensorV2 function. 
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3.4. Training Procedure and Hyperparameters 
 

The Swin Transformer model was trained for 50 epochs with a batch size of 8. We used the 

Adam optimizer (Kingma & Ba, 2014) with a learning rate of 1e-5. Image augmentation was also 
employed during the training process. The model's accuracy and loss were monitored during 

training to determine convergence. Additionally, we calculated the F1-score, precision, and recall 

to evaluate the model's performance. 
 

 
Table 2. Parameter configurations. 

 

Name Configuration 

Learning rate 1e-5 

Batch Size 8 

Optimizer Adam 

Epoch 50 

 

By harnessing the Swin Transformer's capabilities, the research aims to assist physicians in 

making more accurate and time-efficient decisions regarding lung tuberculosis detection using 
chest X-ray images. This, in turn, contributes to enhancing early diagnosis and treatment for this 

crucial global health challenge, ultimately improving patient outcomes and reducing the burden 

on healthcare systems. 

 

4. EXPERIMENTS AND RESULTS 
 

4.1. Dataset Split 
 

We divided the NIH Chest X-ray dataset into training, validation, and testing sets using a ratio 

of 64%, 16%, and 20%, respectively. This split was performed randomly to ensure that the 
resulting subsets were representative of the original dataset. The training and validation datasets 

were used to train the models and adjust them to achieve optimal weights. The test dataset was 

then used to evaluate the final model's performance. 
 

4.2. Evaluation Metrics 
 
To assess the performance of our proposed method, we used several evaluation metrics, including 

accuracy, F1-score, precision, and recall. These metrics allowed us to quantify the model's ability 

to correctly classify chest X-ray images as having tuberculosis or not and to gauge its overall 
effectiveness compared to other methods. 

 

4.3. Results 
 

Figure 2 presents the training accuracy of the model across epochs. The accuracy starts at 0.76 

and increases steadily, reaching a peak of 0.88 at the 43rd epoch. This indicates that the model is 

learning well from the training data and is able to make accurate predictions on unseen data. 
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Figure 2. The Training Accuracy 

 
In contrast, the validation dataset attains its highest accuracy of 0.88 after only 20 epochs. It is 

notable that while the accuracy of the training dataset increases with the number of epochs, the 

validation dataset’s accuracy does not follow the same trend. 

 

 

 
Figure 3. The Validation Accuracy 

 

Upon analyzing the results, we saved the checkpoint that exhibited the highest performance 

within the validation dataset and utilized it as the model for testing purposes. The results obtained 
are presented in Table 3 (below). The model's predictions demonstrated greater accuracy for the 

"Positive" class as compared to the "Negative" class, albeit the difference was not particularly 

pronounced. This outcome can be attributed to the fact that the number of images in the 

"Positive" label is considerably larger than that in the "Negative" label in both the training and 
testing datasets, as well as the validation dataset. 

 
Table 3. The Testing Result. 

 

Class Precision Recall F1-score 

Positive 0.9008 0.9099 0.9053 

Negative 0.7928 0.7749 0.7837 

 

The training loss is a measure of how well the model is performing on the training dataset. It is 

calculated by averaging the loss over all the training examples. A lower train loss indicates that 
the model can make more accurate predictions on the training data. In this case, the training loss 

of 0.252 suggests that the model is learning effectively from the training dataset. This is because 
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the loss is relatively low, indicating that the model is able to make accurate predictions on the 
training examples. 

 

 
 

Figure 4. The Training Loss 

 

The validation loss is a measure of how well the model is performing on unseen data. It is 

calculated by averaging the loss over all of the validation examples. A lower validation loss 
indicates that the model is able to generalize well to unseen data. 

 

 
 

Figure 5. The Validation Loss 

 

In this case, the validation loss of 0.292 is slightly higher than the training loss of 0.252. 

However, this difference is relatively small, suggesting that the model can generalize well to 
unseen data. 
 

These scores are especially important in our research as they indicate that our model is neither 

overfitting nor underfitting. This balance suggests that our model has the right complexity to 
capture the patterns in the data accurately and can generalize these patterns to new, unseen data. It 

provides confidence in the model's predictions and its potential applicability to real-world 

medical diagnostics. 
 

4.4. Capabilities 
 

These results highlight the potential of the Swin Transformer architecture for applications in 
medical image analysis, particularly in the detection and diagnosis of lung tuberculosis. This 

model is capable of detecting lung tuberculosis from chest X-ray images with a high level of 
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accuracy. The performance trends observed during the training process suggest that the model is 
learning meaningful features from the data and is generalizing well to the validation set. Further 

research may explore different augmentation techniques, hyperparameter optimization, and 

ensemble methods to improve the model's performance and robustness. 
 

5. DISCUSSION 
 

5.1. Strengths and Weaknesses 
 

The proposed Swin Transformer model demonstrates several strengths in detecting lung 
tuberculosis from chest X-ray images. The hierarchical feature representation and shifted window 

mechanism allow the model to capture global context while maintaining a local representation of 

the image, contributing to the model's high accuracy on the test dataset. Additionally, the model 
generalizes well to the validation set, as evidenced by the trends observed during the training 

process. 

 
However, there are also some weaknesses in our approach. The model's performance in the 

"Negative" class is slightly lower than in the "Positive" class, which may be due to the imbalance 

in the number of images for each class in the dataset. Additionally, the model's performance on 

the validation set plateaus after 20 epochs, suggesting that further improvements may be limited 
without additional modifications to the architecture, training strategy, or dataset. 

 

5.2. Comparison with Existing Methods 
 

While a direct comparison with other lung tuberculosis detection methods is difficult due to 

differences in datasets and evaluation metrics, our model's performance demonstrates its potential 
in the field of medical image analysis. The Swin Transformer's hierarchical structure and shifted 

window mechanism offer improvements over previous architectures, such as the ViT and CNN-

based methods, in terms of capturing global and local features. This suggests that our model may 
outperform existing methods on similar datasets and tasks. 

 

5.3. Future Work and Improvements 
 

One of the main limitations of our study is the imbalance in the dataset, with more images in the 

"Positive" class than in the "Negative" class. This imbalance may lead to a biased model, which 
could affect its performance on real-world data. Additionally, we have not explored different 

augmentation techniques, hyperparameter optimization, or ensemble methods, which could 

potentially improve the model's performance and robustness. Nevertheless, the proper 

management and alignment of such complex data sets present a considerable challenge. 
 

5.4. Strengths and Weaknesses 
 

In order to further enhance the performance and applicability of the Swin Transformer model 

for detecting and diagnosing lung tuberculosis from chest X-ray images, several areas for future 

work can be explored. These include employing advanced data augmentation techniques to enrich 
the diversity of the training set, thus potentially improving the model's generalization capabilities. 

Additionally, investigating various strategies to address the class imbalance, such as 

oversampling the minority class, under sampling the majority class, or utilizing cost-sensitive 
learning methods, can help refine the model's performance. Conducting an extensive 

hyperparameter search can aid in identifying the optimal configuration for the Swin Transformer 

model, leading to improved performance. Moreover, examining the use of ensemble methods or 
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other model fusion techniques can facilitate the integration of multiple models' strengths to 
achieve superior performance. It is also crucial to emphasize the importance of collecting 

original medical data rather than generating synthetic data in order to maintain the sensibility and 

reliability of the model's results. By addressing these challenges and limitations, future research 

can significantly contribute to the advancement of the Swin Transformer model in the medical 
imaging domain. 

 

6. CONCLUSION 
 
In this study, we presented a novel approach to detect lung tuberculosis from chest X-ray images 

using the Swin Transformer model. This research demonstrated that the Swin Transformer 

architecture, with its hierarchical feature representation and shifted window mechanism, is 

capable of capturing both global and local features in the images, leading to high accuracy in 
detecting lung tuberculosis. 

 

This work contributes to the field of medical image analysis by showcasing the potential of the 
Swin Transformer model in diagnosing lung tuberculosis, a critical public health issue. The 

model achieved notable accuracy on the test dataset, with higher performance for the "Positive" 

class compared to the "Negative" class. Although some limitations and challenges were 
encountered during the study, such as class imbalance and plateauing performance on the 

validation set, the results indicate that the Swin Transformer has great potential in this domain. 

 

The potential impact of this research lies in its ability to assist medical professionals in 
diagnosing lung tuberculosis more accurately and efficiently, ultimately contributing to better 

patient outcomes. Future research directions include addressing the limitations of this study 

through advanced data augmentation techniques, exploring strategies to handle class imbalance, 
conducting a more extensive hyperparameter search, and investigating ensemble methods to 

further enhance the model's performance. 

 
By building upon the strengths of our current approach and addressing its limitations, we believe 

that the Swin Transformer model has the potential to make significant contributions to the field of 

medical image analysis and improve the detection and diagnosis of lung tuberculosis from chest 

X-ray images. 
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