
David C. Wyld et al. (Eds): IoTE, CNDC, ACITY, DPPR, AIAA, NLPTA, WEST, ICSS -2023
pp. 247-259, 2023. CS & IT - CSCP 2023 DOI: 10.5121/csit.2023.132219

HARNESSING CUSTOMIZED BUILT-IN

ELEMENTS: EMPOWERING COMPONENT-
BASED SOFTWARE ENGINEERING AND

DESIGN SYSTEMS WITH HTML5
WEB COMPONENTS

Hardik Shah

Department of Information Technology, Rochester Institute of Technology,

Rochester, New York, USA

ABSTRACT

Customized built-in elements in HTML5 significantly transform web development. These

elements enable developers to create unique HTML components tailored with specific design
and purpose. Customized built-in elements enable developers to address the unique needs of

web applications more quickly, supporting consistent user interfaces and experiences across

diverse digital platforms. This study investigates the role of these features in Component-Based

Software Engineering (CBSE) and Design Systems, emphasizing the benefits of code modularity,

reusability, and scalability in web development. Customized built-in elements enable developers

to address the unique needs of web applications more quickly, supporting consistent user

interfaces and experiences across diverse digital platforms. The paper also discusses the

difficulties and concerns that must be addressed when creating customized built-in elements,

such as browser compatibility, performance optimization, accessibility, security, styling, and

interoperability. It emphasizes the importance of standardization, developer tooling, and

community interaction in order to fully realize the potential of these features. Looking ahead,
customized built-in elements have potential in a variety of applications, including the Internet of

Things (IoT), e-commerce, and educational technologies. Their incorporation into Progressive

Web Apps (PWAs) is expected to further improve web experiences. While obstacles remain, the

article concludes that HTML5 customized built-in elements are a driver for web development

innovation, allowing the production of efficient, adaptive, and user-centric web applications in

an ever-changing digital context.

KEYWORDS

Customized built-in elements, HTML5 Web Components, Component Based Software

Engineering, Design Systems, Web UI development

1. INTRODUCTION

Web development is at the forefront of innovation and user-centric design in today's quickly

expanding digital landscape. The advent of HTML5 customized built-in elements marks a

watershed moment in the realm of web development. These elements, a subset of the Web
Components standard, have the potential to transform software engineering, Design Systems, and

user experience. Their ability to contain exact functionality, visual aesthetics, and interactive

behaviors represents a new paradigm in web development, encouraging code modularity,
reusability, and scalability. Customized built-in elements represent a significant change in the

https://airccse.org/csit/V13N22.html
https://airccse.org/csit/V13N22.html
https://doi.org/10.5121/csit.2023.132219

248 Computer Science & Information Technology (CS & IT)

world of web development. They allow developers to construct their own HTML components
with unique features and behaviors that are similar to typical HTML elements such as <div> or

<p> [6]. This adaptability is key to the ideas of Component-Based Software Engineering (CBSE),

which enable developers to divide complicated applications into modular, granular components

[10]. These components are intended to fit easily into the larger software ecosystem, promoting
modularity, reusability, and maintainability.

Additionally, customized built-in elements have a revolutionary impact on Design Systems,
which are critical in guaranteeing visual consistency and user experience across digital

applications. These elements serve as the foundation for constructing user interface components

by carefully adapting them to match an application's specific design language and brand identity.
This personalization guarantees a consistent and visually appealing user interface across a wide

range of digital products and platforms, improving brand coherence [9]. Cross-browser

compatibility, speed optimization, accessibility, stylistic methods, and security are all factors to

consider when implementing customized built-in elements. Attention to these details is critical
for efficient integration into current online applications. In the future, they are set to revolutionize

the field of web development across a diverse array of applications, including the Internet of

Things (IoT), e-commerce platforms, and educational tech solutions [21]. Their interaction with
Progressive Web Apps (PWAs) has the potential to improve web experiences even further. To

realize their full potential, issues such as browser standardization, accessibility, security,

developer tooling, and community participation must be addressed.

1.1. Objectives and Purpose

The following are the objectives and purpose of this paper:

Objectives:

● Investigate the importance of customized built-in elements in HTML5 Web Components.

● Emphasize their importance in Component-Based Software Engineering (CBSE) and
Design Systems.

● Highlight the advantages that code modularity, reusability, and scalability provide in web

development.

● Promote the broad usage of customized built-in elements to alter software engineering,

improve design coherence, and improve user experience.

Purpose:

This paper's goal is to shed light on the transformative potential of customized built-in elements
in current web development. When used successfully, these aspects have the potential to change

software engineering and Design Systems. They improve code modularity, reusability, and

scalability while adhering to CBSE principles. Furthermore, they ensure consistency and
customization in the field of Design Systems, resulting in a unified and visually appealing user

interface. This paper attempts to raise web development by addressing the expectations for

efficiency and adaptability in digital solutions by pushing for the adoption of these aspects.

2. WEB COMPONENTS API AND CUSTOM ELEMENTS

2.1. Custom Elements in HTML5 Web Components

HTML5 Web Components feature a dynamic capability enabling developers to craft and

establish their unique HTML elements, referred to as custom elements. These custom

components provide a distinct and robust feature, allowing developers to encapsulate
functionality, structure, and style similar to their well-known HTML equivalents, such as <div>

Computer Science & Information Technology (CS & IT) 249

and <p>. Custom elements, at the heart of the Web Components standard, serve as a gateway to
increasing HTML's vocabulary [4]. This enhancement streamlines the development of reusable

and modular web application components [3]. The benefit of custom elements is their

adaptability, which allows developers to easily define these elements using JavaScript . Once

defined, these custom elements integrate smoothly into web pages, behaving exactly like any
other HTML element [6].

Figure 1: Example of MyCustomElement and lifecycle events using HTML5 custom elements API.

Source: Adapted from [7]

250 Computer Science & Information Technology (CS & IT)

Figure 2: HTML declaration of MyCustomElement. Source: Adapted from [7]

In this case, we'll make a custom element called <my-custom-element />. This new custom
element is defined in runtime using JavaScript. We established a class MyCustomElement that

extends HTMLElement. If required, we can use attachShadow method to generate a shadow

DOM within its constructor. We build a <my-custom-element /> element and define its content
and styling. Several lifecycle methods required to get access to the component are available as

part of the API - connectedCallback, disconnectedCallback, adoptedCallback and

attributeChangedCallback. Following that, the customElements.define method is used to register
the custom element "my-custom-element" for use in HTML. After you've defined it, you can use

<my-custom-element></my-custom-element> like any other HTML element. If you pass

attributes - size and color, any change to these attribute values will trigger

attributeChangedCallback and eventually log the attribute name in the browser console. This
example implementation highlights the power of HTML5 Web Components' custom elements,

which allow you to construct reusable and encapsulated components with their own behavior and

appearance.

2.2. Customized Built-In Elements: Tailoring Web Components for Specific Needs

A distinct and highly specialized class of entities known as customized built-in elements develops

from the vast geography of the Web Components API. They derive its semantic meaning from

the base element which it is extending. These custom elements are painstakingly developed to
meet individual web applications' precise and frequently sophisticated needs [8]. Developers have

incredible control and accuracy when creating and improving these elements, adapting them to

encompass precise functionality, visual aesthetics, and interactive behaviors [1]. Customized

built-in elements are distinguished by their extensive feature sets, which include a wide range of
properties, methods, and event-driven mechanisms. Each component in this system has been

meticulously crafted to integrate seamlessly with the distinct architecture of a particular

application [8]. This seamless integration is a cornerstone, increasing code modularity and
reusability by enclosing complicated and multifarious functions into self-contained components

[2].

Computer Science & Information Technology (CS & IT) 251

Figure 3: Code example for Customized built-in element. Source: Adapted from [9]

3. ADVANTAGES OF CUSTOMIZED BUILT-IN ELEMENTS

HTML5's custom elements feature allows developers to specify and create their own HTML

elements. These custom components, like built-in HTML elements (e.g., <div>, <p>), can
encapsulate functionality, structure, and styling and are a cornerstone of the Web Components

standard. They offer a robust method to expand the lexicon of HTML, simplifying the process of

developing modular and reusable components for web applications. The beauty of custom

elements is their JavaScript-based definition, allowing them seamlessly integrate into web pages
like any other HTML element. The Web Components API adds a new category of customized

built-in elements, representing a significant advancement in web development. These custom

elements are painstakingly developed to meet individual web applications' distinct and nuanced
needs [10]. Developers possess the distinct ability to design and precisely adjust these

components.

Customized built-in elements are defined by their adaptability, frequently spanning a diverse set
of attributes, methods, and events, all precisely crafted to integrate seamlessly with the

architecture of a particular application [5]. These components act as foundational elements that

promote reusability and the modular structure of code. They achieve this by encapsulating
complex and specific functionalities within self-sufficient, readily deployable units. This

transformational approach to web development improves software development productivity and

develops a culture of modular, manageable, and scalable code [10].

252 Computer Science & Information Technology (CS & IT)

Figure 4: Word count component implemented as a Customized built-in element.

Source: Adapted from [11]

Computer Science & Information Technology (CS & IT) 253

Figure 5: Source code for Word count component. Source: Adapted from [11]

Customized built-in elements are the foundations that allow developers to navigate the complex

landscape of web application development with precision and grace, providing bespoke solutions

to match the particular demands of any digital venture. For instance, <p is=”word-count” />
element can provide a consistent and feature-rich paragraph component with a word count feature

which is consistent across different web applications, reducing the need for third-party libraries

and ensuring a uniform look and feel. Similarly, a element implemented
using customized built-in elements API can automatically fetch and display a user profile picture

from a defined source, simplifying the process of user interface development. To conclude,

customized built-in elements give developers the accuracy and flexibility they need to handle the

unique needs of their digital projects, making web development more efficient and adaptable to a
wide range of applications and industries.

254 Computer Science & Information Technology (CS & IT)

4. APPLICATIONS OF CUSTOMIZED BUILT-IN CUSTOM ELEMENTS

4.1. Elevating Component-Based Software Engineering (CBSE)

Introducing customized built-in elements is disruptive in Component-Based Software
Engineering (CBSE). These aspects are essential in systematically creating software components,

allowing developers to break complex and multifaceted applications into more manageable,

granular entities. Each of these components has been painstakingly designed to interact with the
overall architecture and requirements of the software system [3]. Customized built-in elements

prove to be the cornerstone in this process, infusing CBSE with a profound feeling of modularity,

reusability, and maintainability [12]. Developers start on a quest to optimize the development

process to unparalleled levels of efficiency by carefully utilizing these factors. The intrinsic
compatibility of customized built-in parts with web application core architecture ensures that

software components coexist healthily within the larger software ecosystem [6].

In real-world CBSE projects, customized built-in elements can be used to create complex data

grids and interactive dashboards that are central to enterprise applications. Consider the case of

an E-commerce company which has several dashboards in their online public shopping web

application to represent latest sales and recent orders for the customer. Building new dashboards
from scratch would come at an extremely high effort and cost. Customized built-in elements can

address these challenges by allowing reusability of existing components in the Dashboards by

migrating to customized built-in elements to provide a seamless and interactive user experience
for data manipulation. However, developers face challenges such as ensuring the performance

and security of these components. Custom elements help address these challenges by allowing

encapsulation of functionality, which can lead to performance optimizations and better security
through shadow DOM.

4.2. Design Systems Empowered by Customized Built-In Elements

The adaptability of customized built-in pieces extends much beyond the limitations of

Component-Based Software Engineering (CBSE). These aspects emerge as vital instruments with
transformative potential within the vast area of web-based Design Systems [5]. Design

frameworks, serving as repositories for recyclable web UI components, design principles, and

established guidelines, are crucial in maintaining uniformity and consistency across various

digital platforms and brand environments, thereby supporting design and user experience [4].
Within this framework, customized built-in elements stand tall as the foundation upon which

many UI components manifest. These elements are used to precisely build buttons, input fields,

navigation bars, and critical interface elements. What distinguishes them is the artistry of
customization, which perfectly aligns each aspect with the application's distinctive design

language and brand identity. This thorough alignment is the key to developing a coherent and

visually appealing user interface that connects with the brand's character.

Organizations are prepared to start on a journey of frictionless consistency by seamlessly

incorporating customized built-in elements into Design Systems [5]. They may easily transmit a

consistent and visually pleasant user interface throughout the varied spectrum of their digital
products and platforms using these elements as their base [12]. Consequently, individuals can

traverse online environments experiencing both comfort and aesthetic appeal, due to the inventive

brilliance of customized built-in elements. This marks the dawn of a novel phase in the evolution
of Design Systems development. [3].

Computer Science & Information Technology (CS & IT) 255

Consider a huge e-commerce company with many digital channels, such as a website, mobile
app, and even voice-activated purchasing assistants. The company decides to establish a complete

design system in order to maintain a uniform and visually appealing user experience across all of

these platforms. This design system has components in the component library based on HTML5

customized built-in elements. The corporation can migrate their existing buttons in their
application to the customized built-in element called ‘SignUp’ by adding just one attribute to

their existing HTML5 buttons and importing the new design system library. This SignUp button

has been precisely crafted to complement the company's brand identity and design language. It
includes variables such as size, color, and shape, allowing developers to adjust button look based

on platform constraints while maintaining brand consistency.

Here's how this example relates to Design Systems empowered by customized built-in elements:

 Consistency: The e-commerce company guarantees that buttons throughout its website,

app, and voice-activated assistants have a uniform look and feel by leveraging

customized built-in elements like <button is=”SignUp”>Sign Up</button>.

 Alignment with Brand Identity: Using the customization options in <button
is=”SignUp”>, the organization may align each button with its individual brand identity,

resulting in a consistent and visually appealing user interface.

Customized built-in elements, such as <button is=”SignUp”>, serve as modular building blocks

within the design system. The same API can be used to generate a variety of UI components such

as input fields, navigation bars, and other elements, enabling reusability and efficient design
revisions. As a result, customized built-in elements enable the organization to create a unified

design system that assures a coherent and visually appealing user experience across varied digital

products and platforms while accommodating platform-specific requirements.

5. CONSIDERATIONS IN IMPLEMENTING CUSTOMIZED BUILT-IN

ELEMENTS

To effectively utilize HTML5 customized built-in elements, one must possess an in-depth

knowledge of the technical intricacies and design elements involved in web development. These

elements, while powerful, come with a set of considerations that developers must address to
ensure their effective integration into web applications. Firstly, browser compatibility is a

primary concern. While modern browsers have embraced the Web Components standard,

discrepancies remain in how different browsers handle custom elements, necessitating the use of
polyfills for unsupported features [13]. Developers must test their custom elements across a

spectrum of browsers to guarantee consistent behavior and appearance [6].

Performance optimization is another critical consideration. Custom elements can introduce

performance bottlenecks, particularly if they contain complex logic or are used extensively on a

page. Developers should measure the impact of their elements on page load times and runtime

performance, optimizing through techniques such as lazy loading and avoiding excessive DOM
manipulation. Accessibility is a non-negotiable aspect of web development. Designing

customized built-in elements should always consider accessibility, making sure they are

functional and accessible for individuals with disabilities. This includes semantic structure,
keyboard navigability, and ARIA roles where appropriate.

Styling customized elements requires a strategy that balances encapsulation with flexibility.

While Shadow DOM provides style encapsulation, developers must also provide a means for
consumers of the element to customize styles as needed, often through CSS custom properties or

256 Computer Science & Information Technology (CS & IT)

slots. State management within custom elements must be handled with care to avoid tightly
coupling the elements to a specific state management solution. Instead, elements should expose a

clear API for state updates and changes. Security considerations are paramount, as custom

elements can be susceptible to the same range of vulnerabilities as any web technology.

Developers must sanitize content to prevent cross-site scripting (XSS) and ensure that any data
bindings are secure.

Interoperability with other web components and frameworks is essential. Custom elements
should be designed to work within different contexts and alongside other components, which may

involve managing events and data flow between components. Testing customized built-in

elements is as important as testing any other part of the application. Automated testing should
cover the functionality of the element, its response to state changes, and its behavior under

different conditions. Documentation is often overlooked but is critical for the adoption and

maintenance of custom elements. Comprehensive documentation should cover the API, usage

examples, and any quirks or limitations [5]. Lastly, lifecycle management is a technical
consideration where developers must handle the creation, connection, disconnection, and attribute

changes of custom elements with lifecycle callbacks provided by the Web Components API [12].

In summary, the implementation of HTML5 customized built-in elements requires careful
consideration of cross-browser compatibility, performance, accessibility, styling, state

management, security, interoperability, testing, documentation, and lifecycle management.

Addressing these considerations is crucial for the successful integration of custom elements into
modern web applications.

6. FUTURE OF CUSTOMIZED BUILT-IN CUSTOM ELEMENTS

The horizon for customized built-in elements is expansive and promising, with the potential to
revolutionize web development in profound ways. As we look to the future, several applications

and challenges come into focus, heralding a new era of innovation and user-centric design.

Emerging Applications: The future applications of customized built-in elements are diverse.
Within the domain of the Internet of Things (IoT), these components act as the medium for

intricate interactions between devices, facilitating user-friendly control interfaces and enhanced

visualization of data [13]. In e-commerce, customized elements can provide unique shopping

experiences with interactive and personalized components that enhance user engagement [14].
Educational technology can leverage these tools to develop interactive and adaptive learning

settings tailored to each student's unique requirements [15].

Integration with Progressive Web Apps (PWAs): Customized built-in elements are set to play a

significant role in the development of Progressive Web Apps (PWAs). They can be used to create

app-like experiences within the browser, complete with offline capabilities and device-specific

integrations [16]. This synergy will likely drive further adoption of PWAs as businesses seek to
provide seamless experiences on both desktop and mobile [9].

7. CHALLENGES AND CONSIDERATIONS

Despite the potential, there are challenges that need to be addressed. One of the primary concerns

is the standardization across browsers. While major browsers support custom elements, there are

inconsistencies in implementation that can lead to compatibility issues [17]. Performance
optimization is another challenge, as the complexity of custom elements can impact load times

and runtime efficiency [18].

Computer Science & Information Technology (CS & IT) 257

Enhancing Accessibility: Accessibility will remain a critical challenge. When creating
customized built-in components, it's essential to prioritize accessibility from the beginning. These

components should adhere to the Web Content Accessibility Guidelines (WCAG) to ensure they

are accessible and user-friendly for individuals with disabilities [19].

Security Implications: Security is another area of concern. Custom elements that handle data

must be designed to prevent vulnerabilities such as cross-site scripting (XSS) and ensure data

privacy [20].

Tooling and Developer Experience: Advancing the design of more advanced tools will be crucial

for facilitating the creation and upkeep of customized built-in elements [5]. Integrated
development environments (IDEs) and frameworks will need to evolve to provide better support

for debugging and testing these components [21].

Standardization and Community Engagement: The evolution of web standards will continue to
shape the future of customized built-in elements. Active engagement with the web standards

community will be crucial to ensure that the development of custom elements aligns with the

evolving needs of the web [22].

In conclusion, the future of customized built-in elements is bright but requires careful navigation

of emerging technologies, standards, and user expectations. As the web continues to evolve, these
elements will be at the forefront of creating more dynamic, efficient, and user-friendly web

applications.

8. CONCLUSION

HTML5 customized built-in elements represent a pivotal advancement in the realm of web

development. They provide developers with a robust mechanism for crafting bespoke HTML

components that possess specific functions and aesthetics. This approach significantly enhances
modularity, reusability, and scalability within web applications, marking a new era in web

development. This transformative technology has the potential to reshape both Component-Based

Software Engineering (CBSE) and Design Systems, ensuring that software development becomes

more efficient and design remains visually cohesive. By addressing the unique needs of web
applications, customized built-in elements provide a path to a more streamlined and effective

development process. Their adaptability allows for a high degree of customization and alignment

with a brand's design language, fostering consistent user interfaces and experiences across
various digital platforms. While the adoption of customized built-in elements brings immense

promise, it also raises important considerations, such as browser compatibility, performance

optimization, accessibility, security, and developer tooling. Addressing these issues is essential

for the seamless and effective incorporation of these elements into web applications. Looking
ahead, the future of customized built-in elements is bright, with potential applications in diverse

fields and their integration into Progressive Web Apps (PWAs). However, ongoing efforts in

standardization, accessibility, security, tooling, and community engagement will be crucial to
unlock their full potential. In an ever-evolving digital landscape, HTML5 customized built-in

elements serve as a beacon of innovation and a catalyst for enhanced web development practices.

They empower developers to create efficient, adaptable, and user-centric web applications,
ensuring that the web continues to evolve to meet the ever-growing expectations of digital

consumers.

258 Computer Science & Information Technology (CS & IT)

REFERENCES

[1] M. Nadeem, H. Afzal, M. Idrees, S. Iqbal, and M. R. Asim, “A Review Of Progress for Component

Based Software Cost Estimation From 1965 to 2023.” arXiv, Jun. 06, 2023.

doi:10.48550/arXiv.2306.03971.

[2] Margaret Savage, Tigmanshu Bhatnagar, Cynthia Liao, Mathilde Chaudron, Jeffrey Boyar, Dennis

Laurentius, George Torrens, Katherine Perry, Priya Morjaria, Felipe Ramos Barajas, Barbara

Goedde, Catherine Holloway, “Product Narrative: Digital Assistive Technology | AT2030

Programme.” Accessed: Oct. 01, 2023. [Online]. Available:https://www.at2030.org/product-

narrative:-digital-assistive-technology/

[3] C. Erazo Ramirez, Y. Sermet, and I. Demir, “HydroLang Markup Language: Community-driven

web components for hydrological analyses,” Journal of Hydroinformatics, vol. 25, no. 4, pp. 1171–

1187, Jul. 2023, doi:10.2166/hydro.2023.149.

[4] Kulhánek, T., Mládek, A., Brož, M., & Kofránek, J., “Bodylight. js web components-webové

komponenty pro webové simulátory.” in Medsoft. 2021; pp. 48-52.

https://www.creativeconnections.cz/medsoft/2021/Medsoft_2021_Kulhanek1.pdf

[5] J. Wusteman, “The potential of web components for libraries,” Library Hi Tech, vol. 37, no. 4, pp.

713–720, Jan. 2019, doi:10.1108/LHT-06-2019-0125.

[6] A. D. Brucker and M. Herzberg, “A Formally Verified Model of Web Components,” in Formal

Aspects of Component Software: 16th International Conference, FACS 2019, Amsterdam, The

Netherlands, October 23–25, 2019, Proceedings, Berlin, Heidelberg: Springer-Verlag, Oct. 2019, pp.

51–71. doi:10.1007/978-3-030-40914-2_3.

[7] “Using custom elements - Web APIs | MDN.” Accessed: Nov. 08, 2023. [Online].

Available:https://developer.mozilla.org/en-

US/docs/Web/API/Web_components/Using_custom_elements

[8] M. Saari, M. Nurminen, and P. Rantanen, “Survey of Component-Based Software Engineering

within IoT Development,” in 2022 45th Jubilee International Convention on Information,

Communication and Electronic Technology (MIPRO), May 2022, pp. 824–828.

doi:10.23919/MIPRO55190.2022.9803785.

[9] “Custom Elements - HTML Standard.” Sep. 24, 2023. Accessed: Sep. 24, 2023. [Online]. Available:

https://HTML.spec.whatwg.org/multipage/custom-elements.HTML

[10] Y. Sermet and I. Demir, “A Semantic Web Framework for Automated Smart Assistants: A Case

Study for Public Health,” Big Data and Cognitive Computing, vol. 5, no. 4, Art. no. 4, Dec. 2021,

doi:10.3390/bdcc5040057.

[11] “web-components-examples | A series of web components examples, related to the MDN web

components documentation,” MDN web components documentation. Accessed: Nov. 08, 2023.

[Online]. Available:https://mdn.github.io/web-components-examples/

[12] C. Diwaker et al., “A New Model for Predicting Component-Based Software Reliability Using Soft

Computing,” IEEE Access, vol. 7, pp. 147191–147203, 2019, doi:10.1109/ACCESS.2019.2946862.

[13] T. Bui, “Web components : concept and implementation.” Accessed: Nov. 08, 2023. [Online].

Available: http://www.theseus.fi/handle/10024/170793

[14] J. H. Mork, M. Luczkowski, B. Manum, and A. Rønnquist, “Toward Mass Customized Architecture.

Applying Principles of Mass Customization While Designing Site-Specific, Customer-Inclusive and

Bespoke Timber Structures,” in Digital Wood Design: Innovative Techniques of Representation in

Architectural Design, F. Bianconi and M. Filippucci, Eds., in Lecture Notes in Civil Engineering. ,

Cham: Springer International Publishing, 2019, pp. 221–249. doi: 10.1007/978-3-030-03676-8_7.

[15] H. Luo et al., “DEG 15, an update of the Database of Essential Genes that includes built-in analysis

tools,” Nucleic Acids Research, vol. 49, no. D1, pp. D677–D686, Jan. 2021, doi:

10.1093/nar/gkaa917.

Computer Science & Information Technology (CS & IT) 259

[16] A. Singraber, J. Behler, and C. Dellago, “Library-Based LAMMPS Implementation of High-

Dimensional Neural Network Potentials,” J. Chem. Theory Comput., vol. 15, no. 3, pp. 1827–1840,

Mar. 2019, doi: 10.1021/acs.jctc.8b00770.

[17] Chenumalla, Kalyan, et al. "Google assistant controlled home automation." International Research

Journal of Engineering and Technology (IRJET) 5.5 (2019): 2074-2077. https://ieee-vecsb.org/wp-

content/uploads/sites/45/Google-assistant-controlled-home-automation.pdf

[18] L. J. Murugesan and S. R. Seeranga Chettiar, “Design and Implementation of Intelligent Classroom

Framework Through Light-Weight Neural Networks Based on Multimodal Sensor Data Fusion

Approach.,” Revue d’Intelligence Artificielle, vol. 35, no. 4, 2021, Accessed: Nov. 07, 2023.

[Online]. Available: https://www.iieta.org/download/file/fid/60448

[19] O. Taiwo and A. E. Ezugwu, “Smart healthcare support for remote patient monitoring during covid-

19 quarantine,” Informatics in Medicine Unlocked, vol. 20, p. 100428, Jan. 2020, doi:

10.1016/j.imu.2020.100428.

[20] W. A. Jabbar et al., “Design and Fabrication of Smart Home With Internet of Things Enabled

Automation System,” IEEE Access, vol. 7, pp. 144059–144074, 2019, doi:

10.1109/ACCESS.2019.2942846.

[21] Z. Tang, B. Kang, C. Li, T. Chen, and Z. Zhang, “GEPIA2: an enhanced web server for large-scale

expression profiling and interactive analysis,” Nucleic Acids Research, vol. 47, no. W1, pp. W556–

W560, Jul. 2019, doi: 10.1093/nar/gkz430.

[22] G. Weng et al., “HawkDock: a web server to predict and analyze the protein–protein complex based

on computational docking and MM/GBSA,” Nucleic Acids Research, vol. 47, no. W1, pp. W322–

W330, Jul. 2019, doi: 10.1093/nar/gkz397.

AUTHORS

Hardik Shah, completed his MS in IT degree from Rochester Institute of Technology,

New York, U.S.A. and has 12+ years of professional experience with UX Design and

full-stack Web Development. Currently, he specializes in leading a Web UI

development team building semantic and accessible Design System.

© 2023 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

	Harnessing Customized Built-In Elements: Empowering Component-Based Software Engineering and Design Systems with HTML5
	Web Components

