
Detecting SYN Flood Attack Using CSA-nets

Mohammed Alahmadi

1 Department of Software Engineering, College of Computer Science and Engineering
University of Jeddah, Jeddah 21493, Saudi Arabia

2 School of Computing, Newcastle University Science Square, Newcastle upon Tyne,
NE4 5TG, United Kingdom

Abstract. Distributed Denial of Service (DDOS) attacks pose a persistent threat to network security by interrupting
server functions. One common DDOS attack is the SYN-flood attack, which targets the three-way handshake process
of TCP protocol. This technique overwhelms a system by sending a vast number of SYN messages, thereby exhausting
its computational and communicative resources. A visual simulation for this scenario offers deeper insights into the
intricacies of the TCP-SYN-flood attack. This paper presents a novel approach that combines TCP protocol anomaly
detection with visual analysis through Communication Structured Acyclic nets (CSA-nets). The strategy provides a clear
visualisation of attack behaviours, granting a deeper understanding of DDOS patterns and their underlying causes. A
new concept of TCCSA-nets is introduced. TCCSA-nets allow elaborating on the system’s performance and emphasizing
the system’s operations in real-time. This approach allows for the classification of messages as abnormal if their dura-
tion exceeds a predetermined time limit. Messages within this time frame are considered normal communication. The
effectiveness of this approach was tested on public datasets, demonstrating its capability in detecting SYN-flood attacks.

Keywords: Formal model, modelling, visualising, analysing, cybersecurity, protocols, threshold detection.

1 Introduction
Communication Structured Acyclic Nets (CSA-nets) [1, 2, 3, 4, 5] is a formal and mathematical
model designed to analyse and visualise complex evolving systems (CES). It aids in planning,
bug testing, and monitoring system efficiency. CSA-nets depict CES as distinct, acyclic nets con-
nected by buffer places. These buffer places facilitate connections between subsystem components
through both synchronous and asynchronous communications. CSA-nets embed numerous prop-
erties in their formalisation, such as causality, concurrency, and synchronisation, which can be
invaluable in analysing protocols. Furthermore, they can model and analyse network communi-
cation protocols, aiding in the detection and understanding of abnormal network behaviours. The
application of CSA-nets for modelling network protocols and detecting abnormalities during con-
nections remains underutilised. However, this mathematical model could assist researchers and
practitioners in discerning the root causes of such anomalies, integrating the study and modelling
of these behaviours with detection methodologies.
Distributed Denial of Service (DDOS) attacks disrupt regular internet traffic by overwhelming

servers with vast amounts of data, leading to resource depletion [6]. The diverse nature of mali-
cious packets in these attacks complicates their analysis [7]. Although DDOS attacks frequently
target the network layer, they can also exploit other layers using methods such as ICMP, SYN and
UDP flooding [8]. Attackers can manipulate the network layer by altering the IP packet header,
flooding servers with irregular packets. Tracing the origin of these attacks is challenging due to
the widespread use of IP spoofing. As a result, attackers leverage attributes like packet size, rate,
bit rate, and arrival time to drain server resources [9]. The Transmission Control Protocol (TCP)
an essential internet protocol initiates connections through a three-way handshake involving SYN

and ACK messages [10].
TCP is widely used across the internet for various services, leveraging flags such as SYN, ACK,

and RST to manage connection status and data transport. SYN-flooding attacks can be direct or
involve IP address spoofing, with the most potent form being a distributed attack utilizing multiple

David C. Wyld et al. (Eds): SEAPP, Fuzzy, SIGEM, CSEA, MLTEC -2023
pp. 01-15, 2023. DOI: 10.5121/csit.2023.132301CS & IT CSCP 2023 -

https://airccse.org/cscp.html
https://doi.org/10.5121/csit.2023.132301
https://airccse.org/cscp.html
https://airccse.org/csit/V13N23.html
https://doi.org/10.5121/csit.2023.132301
https://airccse.org/csit/V13N23.html

zombie computers to inundate the target. Attackers can exploit this by continuously sending SYN

packets with fake IP addresses, leading to network saturation and server unresponsiveness [11]. A
TCP-SYN-flood attack, a subtype of DDOS attack, capitalizes on the TCP handshake process to
overwhelm the targeted server, rendering it inoperable. In this assault, TCP connection requests
flood in faster than the server can process, inducing network congestion. Such an attack not only
disrupts server services but also disrupts and compromises the security of the client-server commu-
nication channel. It is hard to detect and can arise without prior security alerts. Moreover, it is seen
as permissible since it does not directly exploit network vulnerabilities or misuse resources [12].
This paper introduces a novel method for analysing and visualising cybersecurity behaviours

using CSA-nets. It models clients and servers as acyclic nets, emphasising their communication
via the three-way handshake. A new algorithm is introduced to discern communication between
these nets. Essentially, the algorithm tracks packets that complete the communication sequence
successfully, identifying any abnormal packets that fail in the process. By using the capabilities of
CSA-nets, this approach offers deep insights into anomalous TCP activity, facilitating the detection
of malicious activities and elucidating their root causes in the interactions between clients and
servers.

2 Related work
A Distributed Denial of Service (DDOS) attack is a widespread network assault aimed at over-
whelming computational resources and bandwidth, hindering the ability of legitimate users to
access services. This attack typically involves substantial packet flooding, making it a more exten-
sive version of a denial of service (DoS) attack. Over the years, numerous techniques for detecting
and mitigating DDOS attacks have been developed, such as those targeting TCP flood attacks.
However, these methods often prove insufficient, as they are based on the number of requests
from a single source to the target server, failing to identify attacks from a singular link. Moreover,
attackers can effortlessly change their IP addresses, thus bypassing blacklisting.
However, different techniques and approaches are used to detect and prevent such kinds of at-

tacks, including machine learning (ML) and formal methods. In this context, we shed light on
both fields in detecting abnormalities in TCP. Regarding ML, researchers [13] proposed a ma-
chine learning approach to identify DDOS attacks. This approach involves two main steps: feature
extraction and model detection. The feature extraction process serves to remove superfluous fea-
tures, isolating the most critical features of DDOS attack traffic. These features are then used as
inputs in the model detection phase, which uses the random forest algorithm to train the attack
detection model. Their experimental results suggest that the ML-based DDOS attack detection
method yields a high detection rate for common DDOS attacks. In [14] argued that DDOS attacks
from local networks pose greater threats than external ones due to detection complexities. Using
a spacecraft simulator’s real-time telemetry software, they analyzed both benign and malicious
packets. Their detection method was designed for TCP and HTTP Flood DDOS attacks. They
observed that the PSH&ACK flags, initially set low during regular data transfers, surged during
attacks. Consequently, they introduced two algorithms. The primary one detects TCP floods by
counting the PSH&ACK flags. Then, if this count surpasses a predefined limit in a specific dura-
tion, it indicates an attack. A recent study [15] investigated machine learning (ML) algorithms for
real-time DDOS attack detection, addressing prevalent attack types like UDP flood, ICMP ping
flood and TCP-SYN-flood. A classification model was crafted based on ML, trained to distinguish
benign from malicious network traffic. Decision Tree (DT), Random Forest (RF), and K-Nearest
Neighbors (KNN) algorithms were found to be effective in detecting attack traffic. However, the
KNN approach was resource-demanding due to its distance calculation mechanism, leading to po-
tential detection lags. In contrast, DT emerged as a more streamlined option, making it the favored
classification model. A study [16] centered on detecting DoS attacks within the transmission con-
trol protocol (TCP) three-way handshake. The researchers introduced a detection and prevention

2 Computer Science & Information Technology (CS & IT)

mechanism for the TCP-SYN-flood attack through the use of an adaptive threshold. This thresh-
old was calculated via the ‘Adaptive threshold algorithm’. The outcomes highlight the proficiency
of the proposed approach in identifying and preventing TCP-SYN-flood attacks by leveraging an
adaptive thresholding technique. Moreover, a study [17] investigated ML and data mining algo-
rithms for detecting DDOS attacks, particularly TCP-SYN-flood attacks, using the CAIDA dataset.
The decision stump and the One-R (OR) algorithm were highlighted for their accuracy, with per-
formance metrics supporting their effectiveness.

On the other side, in the field of modeling, several studies have been undertaken. One such
study [18] introduced a Petri net-based model to differentiate between DDOS attacks and le-
gitimate communications, both on the server and client sides. When deployed on the server side,
this model endeavors to reduce time complexity. It aims to identify and discard malicious packets,
while allowing valid communications. Packets are categorised using a confidence index, specifi-
cally designed to prioritise against untrusted network attacks. Legitimate communications receive
high index values and are positioned in a high-priority queue, whereas malicious communica-
tions are allocated to a lower-priority queue. This strategy enhances the detection and filtering of
malicious attacks, leading to improved server efficiency. In addition, Structured Occurrence Nets
(SONs) are another mathematical and graphical modelling tool used to detect these types of be-
haviours. SONs were used to identify DNS tunneling attacks, a technique leveraged by adversaries
to extract data from multiple accounts [19]. In this model, each packet is represented as an individ-
ual occurrence net. If a token securely transits from the start to the finish of the SON, the packet
is recognized as legitimate. Conversely, if it does not, it is deemed indicative of a DNS attack.

However, despite the progress in machine learning, there is still a need for deeper insights into
abnormal behaviors and the role of modeling techniques in detection. Modeling can assist inves-
tigators and decision-makers in understanding the causes and effects by visualizing such com-
munication and providing insights into abnormal behaviors. Thus, combining the strengths of
both methodologies can provide a more comprehensive and nuanced understanding of abnormal
behaviours and enhance detection capabilities. By leveraging the predictive power of machine
learning and the structural insights from modeling, researchers can achieve a collaborative effect,
leading to more robust and reliable solutions.

3 Preliminaries

3.1 Communication Structured Acyclic Nets (CSA-NET)S

Communication Structured Acyclic Nets (CSA-NET)S [2, 20] are sets of occurrence nets linked
with each other through unique elements. These unique elements are referred to as buffer places,
which are capable of modeling both asynchronous and synchronous communication[1]. (CSA-
NET)S are designed to capture information about either: (i) the interaction between actual/expected
behaviors; or (ii) the collected evidence to be analyzed. (CSA-NET)S also have the advantage of
representing different depictions of the actions of dynamic, evolving systems [1]. The benefit of
(CSA-NET)S lies in their structure, which reduces complexity compared to analogous representa-
tions and provides a direct means of modeling emerging structures. Events serve as the means to
link these ANs with each other through these buffer places. Graphically, Figure 1 represents an
occurrence net that comprises three main components: Places (P), represented by circles; Events
(E), depicted as rectangles; and Flow Relations (F), illustrated by direct arcs. For any specified
node x, the collection of input nodes is represented by •x, and x• denotes the output nodes. That
is, the initial places in an AN has no inputs nodes, whereas the final places do not have outputs
nodes.

Computer Science & Information Technology (CS & IT) 3

ocnet1

ocnet2

p1 p2 p3

a b

p4 p5 p6

c d

q1 q2

Fig. 1: Communication Structured Occurrence nets (CSO-NET).

3.2 Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) is a protocol used to allow exchanging data between
devices by transferring packets over the Internet and ensuring the reliable delivery of these pack-
ets. TCP is widely used in network communications that require data delivery where delivery
errors are completely rejected. TCP creates a connection between the sender and the receiver be-
fore transmitting data and ensures remains active during the communication. This makes TCP
connection-oriented protocol. For this task, TCP employs a strict strategy referred to as a three-
way handshake. TCP also employs error detection strategies to ensure that the data has been re-
ceived correctly. This includes setting the connection timeout duration, activating the checksum
field, and receiving and sending acknowledgements. Moreover, it is a full duplex connection that is
established using a well-known mechanism referred to as a three-way handshake. Generally, this
mechanism allows both the sender and receiver to synchronize (SYN) and acknowledge (ACK)
each other. As its name implies, it consists of three consecutive steps as follows. First, the client
sends a SYN message to the receiver (server) requesting to connect. Second, the receiver responds
with both SYN and ACK. The SYN in this case means that the server is ready to connect and the
ACK confirms receiving the sender’s previous SYN message. Finally, the client sends ACK to the
server confirming receiving its previous message and the connection is now established.

SYN Flood Attack TCP faces several cyberattack as SYN flood. In particular, SYN flood at-
tacks the three-way handshake mechanism during the establishment of a TCP connection. Techni-
cally, SYN flood is a type of DDoS that exploits the three-way handshake to consume the server’s
resources. It involves sending repeated SYN request packets to the server ports using fake IPs.
These requests appear to be legitimate and the server is deceived and try to respond to these re-
quest (SYN- ACK) which, in turn, wastes its resources. The challenge lies in the difficulty of the
TCP protocol in detecting such situations. This is because attackers typically follow the normal
process of sending SYN requests to the server, which causes the server to wait and resulting in
what is known as a ’half-open connection. This occurs when the third step of the three-Way hand-
shake incuding sending final ACK to the server fails or if the host closes the connection without
acknowledging the other.

SYN flood attack can be carried out in three ways, Direct SYN Flood Attack, SYN Spoofed
Attack and DDoS SYN attack. In direct SYN, attackers sends a massive amount of SYN messages
from the same source IP address, while in Spoofed SYN, it involves sending a massive amount
of SYN messages from different Spoofed IP addresses. This is used to avoid being discovered.
Moreover, in DDoS SYN attack which is the most dangerous attack, the victim server receives
SYN packets simultaneously from several infected computers under the control of the attacker.
This combination of hijacked machines is called a botnet.

4 Computer Science & Information Technology (CS & IT)

4 Coloured communication structured acyclic nets (ccsa-nets)

A coloured communication structured acyclic net consists of several disjoint acyclic nets that can
communicate through special buffer places. These buffer places allow instantaneous transfer of
tokens and can involve a cycle only when synchronous communication is being implemented. For
brevity, some technical definitions are omitted or described informally.

Definition 1 (Coloured Acyclic net). A coloured acyclic net is a tuple acnet=(P,T,F,col,ex,gd),
where P and T are disjoint finite sets of places and transitions respectively, and F ⊆ (P×T)∪
(T ×P) is the flow relation such that:

– P is nonempty and F is acyclic.
– For every t ∈ T , there are p,q ∈ P such that pFt and tFq.
– col is a mapping assigning nonempty finite set of colours to every place.
– ex is an arc expression function that assigns an arc expression to each arc x = (p, t) or x =
(t, p) so that Type[ex(x)] = col(p).

– gd is a mapping assigning a boolean guard to each transition. (In this case guards are very
simple and ensure that all the input tokens used in transition firing are of the same colour and
all the tokens produced have the same colour too.)

Definition 2 (Coloured Communication Structured Acyclic net). A coloured communication
structured acyclic net (or CCSA-net) is a tuple

ccsan = (cacnet1, . . . ,cacnetn,Q,W,col′,ex′) (n ≥ 1)

such that:

– cacnet1, . . . ,cacnetn are colured acyclic nets.
– csan = (acnet1, . . . ,acnetn,Q,W) is a well-formed CSA-net (as defined in [5]), where each

acneti is an acyclic net obtained from cacneti after deleting the last three components.
– col′ is a mapping assigning nonempty finite set of colours to every buffer place in Q.
– ex′ is an arc expression function that assigns an arc expression to each arc x = (q, t) or x =
(t,q), where q ∈ Q, so that Type[ex(x)] = col(q).

The execution semantics of CCSA-nets follows the standard coloured net rules as well as the
execution rules of CSA-nets [5] and is omitted in this paper. Markings of a CCSA-net assign sets
of suitable coloured tokens to the places of csan as well as the buffer places. The execution rule is
basically the same as for CSA-nets assuming that all the input tokens used in transition firing are of
the same colour and all the tokens produced have the same colour too. Intuitively, this means that
the executions corresponding to different colours do not interfere with each other (see Figures 4-
10), and so coloured tokens ensure non-overlapping of interacting tokens (e.g., packets), allowing
differentiation based on unique features to prevent interference [5]. In the CCSA-net case, a well-
formed step sequence means that no place or buffer place is filled by the same coloured token more
than once in any given step sequence. This mechanism allows for synchronising transitions from
different acyclic nets (e.g., clients and server), which then aids in modelling the behaviours of the
three-way handshake process. ccsan is ‘well-formed’ and so its executions (scenarios) allow to
represent well-defined causal relationships and properties. These properties can assist in detecting
and recording the entire causal history and so help in detecting abnormal behaviours that might
occur during the three-way handshake process.

Computer Science & Information Technology (CS & IT) 5

Table 1: Detailed description of client and server acyclic nets

Content meaning
c1 Client is ready to initiate a connection SYN

snd-SYN Client sends request to server to establish connection
c2 Client waits for response from Server
rcv-SYN-ACK Client receives response from Server ACK

c3 Client is ready to send SYN/ACK to Server
snd-ACK Client sends SYN/ACK to Server
c4 Client is ready to establish connection and push data to Server
s1 Server is ready to initiate connection with Client
rcv-SYN Server receives request from Client to establish connection
s2 Server is ready to send ACK to Client
snd-SYN-ACK Server sends ACK to Client
s3 Server waits for response from Client
rcv-ACK Server receives SYN/ACK from Client
s4 Server is ready to establish connection and push data to Client
x represent the expression on the arc, which can be a function or operator.

5 Analysing three-way handshake by CCSA-net

The CCSA-net visualisation framework is designed to aid in the analysis of cybercrime investiga-
tions. It uses acyclic nets to represent different subsystems as individual acyclic nets and connects
them through buffer places to model both asynchronous and synchronous communication between
subsystems. In this section, we will analyse the three-way handshake using CCSA-net representa-
tion.

5.1 Structure of TCP model

Structurally, the three-way handshake process can be represented by two different acyclic nets
linked by buffer places. Figure 2 demonstrates the three-way handshake process between clients
and the server using a CCSA-net, which contains separate acyclic nets representing clients (the
upper one) and the server (the lower one). The places/states are represented by circles, showing
the current status of the process (e.g., SYN, SYN-ACK or ACK), while transitions — represented
by squares — are responsible for transferring tokens from one place/states to another. Moreover,
buffer places q1, q2 and q3 — represented by bold circles — are responsible for transferring tokens
between different acyclic nets synchronously or asynchronously. Expressions can be displayed on
arcs (e.g., x and y in Figure 1), and these expressions can be functions or operators written in ML (a
programming language). This adds additional constraints on the arcs, e.g., determining the amount
of traffic the server can process at a time or the time limit the server waits for an acknowledgment
as we used in classifier model in Figure 11. Table 1 provides a detailed description of the Client and
Server nodes. Initially, tokens representing different clients can be placed in c1 and be moved by
firing transitions (from place to another place by firing a transition). Each token has different colour
to distinguish between different clients during communication. Table 2 gives detailed description
of the features of each token. We can analyse the handshake process based on the model’s structural
properties to ensure its soundness. The CCSA-net structural properties such as causality can aid
our understanding of how packets are transmitted between Client and Server through three-way
handshake communication. This can provide administrators and investigators with insights into the
causes of DDOS attacks and help them understand how to prevent future attacks. This mechanism

6 Computer Science & Information Technology (CS & IT)

Type your text

allows recording the causality between executed transitions which helps in detecting and tracing
the process of such communication. The investigators can benefit from extracting the causality of
fired transitions to visually understand abnormal behaviours during the connection before delving
into the cause and effect of such behaviour. That is, the three-way handshake can be effectively
represented (structurally) using a properly structured CCSA-net.

Client

Server

A,B

c1
c2 c3 c4

x

y

snd-SYN rcv-SYN-ACK snd-ACK

A,B

s1
s2 s3 s4rcv-SYN snd-SYN-ACK rcv-ACK

q1 q2 q3

Fig. 2: CCSA-net model for communication between clients and server showing two clients (tokens) ready to establish
connection with server.

5.2 Behaviour of TCP model

To analyse the three-way handshake behaviourally, we will leverage the built-in features and for-
mal properties inherent in the semantics of CCSA-nets [5]. These can be used to analyse com-
munication behaviour and detect abnormal situations that might arise during a connection. Such
properties can be discovered by the reachability analysis, which verifies the traceability of tokens
from the initial marking, and well-formedness, guaranteeing a clear representation of causality.
Both these mechanisms allow us to model and trace the standard behaviours of the TCP protocol
and to pinpoint abnormal behaviours, such as SYN-flood attacks. Note that well-formedness is a
fundamental consistency criterion for CSA-nets and also CCSA-nets, and it essentially guarantees
a clear representation of causality in the behaviours of the net. The CSA-net in Figure 2 is well-
formed and so it ensures a clear representation for each token during the connection, assisting in
detecting specific abnormal behaviours in communication between clients and servers.

5.3 Reachability

Reachability analysis is a verification technique used to determine, e.g., whether a specific place
can be reached by following a sequence of steps from the initial marking. This property is essen-
tial for examining the behavioural characteristics of a system. Essentially, reachability concerns
the system’s capability to transition from its initial marking to any designated state. Figure 3
presents the reachability graph for the CCSA-net model illustrating a three-way handshake be-
tween Client and Server. The graph also shows Client executes all potential actions progressing

Table 2: Detailed description of colour sets of token

colour set description
IP-source contains the IP address of the source machine
IP-destination contains the IP address of the destination machine
source-port contains the source port number of the source machine
destination-port contains the destination port number of the destination machine

Computer Science & Information Technology (CS & IT) 7

C1, S1

q1, c2, s1 c2, s2

c2, s2

q2, s3, c2

c3, s3

q3, c4, s3

c4, s4

c3, s3

c4, s4

send-SYN

receive-SYN

send SYN-ACK

receive SYN-ACK

send-ACK

receive-ACK

send-SYN
receive-SYN

send-SYN-ACK
receive-SYN-ACK

send-ACK
receive-ACK

Fig. 3: Reachability graph for CSA-net model represents three-way handshake.

through various steps, asynchronous communication on the left and synchronous communication
on the right. Specifically, it demonstrates that all places are accessible from the initial marking.
Thus, the reachability analysis confirms that the proposed model guarantees that all places are ac-
cessible from the initial marking. Moreover, the reachability analysis helps to understand system
behaviour and trace potential steps, especially within the context of larger systems.

6 TCP three-way handshake and CCSA-nets
In the previous section, we analysed three-way handshake based on the structure and behavioural
properties of CSA-nets, discussing certain properties of this model. This section will demonstrate
and utilize the behaviours (steps) of three-way handshake by using CCSA-net to detect abnormal
behaviours (SYN-flood).

6.1 Normal behaviour

The TCP protocol employs a three-way handshake to establish a reliable connection between
two devices. This procedure is captured in three principal steps using the CCSA-net. As depicted
in Figure 2, tokens A and B reside at c1. For example, token A will be consumed during the
snd-SYN event, the client sends a SYN token, transmitting token A to c2 and q1, as illustrated in
Figure 4. Upon receiving this, the serve’s rcv-SYN action is activated, transferring token A from
s1 to s2 (as shown in Figure 5). This progression signifies the client’s anticipation of the server’s
response to make the initial SYN communication. In the second handshake phase, with token A
positioned at s2, the SYN-ACK action is triggered, sending token A to s3 and q2 (as shown in
Figure 6). Subsequently, the client acknowledges the server’s SYN-ACK action through the rcv-
SYN-ACK event, moving token A to c3, as captured in Figure 7. In the final handshake step, the
client responds via the snd-ACK action, shifting token A from c3 to c4 and q3 (as represented in
Figure 8). The server’s subsequent rcv-ACK action in Figure 9 finalises the handshake, ensuring an
established connection between both entities.Note that both tokens A and B can be moved at the
same time without interfering with each other. This is because CCSA-net can consume more than

8 Computer Science & Information Technology (CS & IT)

Client

Server

x

y

B
c1

A
c2 c3 c4snd-SYN rcv-SYN-ACK snd-ACK

B
s1 s2 s3 s4rcv-SYN snd-SYN-ACK rcv-ACK

A q1 q2 q3

Fig. 4: Server received client’s request prepares to respond to this request.

Client

Server

x

y

B
c1

A
c2 c3 c4snd-SYN rcv-SYN-ACK snd-ACK

B
s1

A
s2 s3 s4rcv-SYN snd-SYN-ACK rcv-ACK

q1 q2 q3

Fig. 5: Second handshake SYN-ACK using snd-SYN-ACK and rcv-SYN-ACK.

one token simultaneously. That is, we rely on the features inherent in the semantics of CCSA-net
to model and analyze such communication between servers and clients.

Client

Server

x

y

B
c1

A
c2 c3 c4snd-SYN rcv-SYN-ACK snd-ACK

B
s1 s2

A
s3 s4rcv-SYN snd-SYN-ACK rcv-ACK

q1 A q2 q3

Fig. 6: Client received server’s request and preparing to response for server’s request.

6.2 Abnormal behaviour

In the abnormal behaviour of the SYN-flood attack, attackers manipulate the standard behaviour
to inundate a server, thereby making detection increasingly challenging. As depicted in Figure 10,
the server fails to receive the third handshake response (ACK) from the client. Even though the
snd-ACK acction is enabled, token A remains frozen at c3 and s3. This strategy overwhelms the
server with a surge of SYN requests, leading to numerous half-open connections and consequently
making the server unresponsive.

7 Timed CCSA-nets
This section introduces the method for integrating timing information into CCSA-nets. This in-
tegration allows TCCSA-nets to elaborate on the system’s performance, capturing the system’s

Computer Science & Information Technology (CS & IT) 9

Client

Server

B
c1 c2

A
c3 c4snd-SYN rcv-SYN-ACK snd-ACK

x

y
B
s1 s2

A
s3 s4rcv-SYN snd-SYN-ACK rcv-ACK

q1 q2 q3

Fig. 7: Connection for third-handshake using snd-ACK and rcv-ACK events.

operations in real-time. Moreover, with this timing feature, CCSA-nets become suitable for mod-
eling systems where correctness depends on event timing. In contrast to CCSA-nets, this timed
variant offers deeper insights into behaviours, such as the average system runtime and adherence
to deadlines for real-time processes. The primary distinction between timed and untimed CCSA-
nets lies in their token structure as tokens now include additional values denoting time (TCCSA-net
model incorporates a global time that captures the model’s execution duration). This inclusion of
time can aid in the evolution of the TCCSA-net model being studied. The token time quantifies
the execution duration attributed to the token itself. Figure 11 provides an illustrative example of
a TCCSA-net. The timestamp for each token in the initial markings is set to zero. Token time is
denoted using the @ symbol. For instance, @0 indicates that the token time is zero, signifying that
the token remains in its initial marking. The transition send− SYN is active and ready to fire. Once
the event send− SYN is activated, the token time commences and begins to increment. The formal
notation for TCCSA-nets is provided in Definition 3.

Definition 3 (Timed Coloured Communication Structured Acyclic net). A timed coloured
communication structured acyclic net (or TCCSA-net) is a tuple

ccsan = (cacnet1, . . . ,cacnetn,Q,W,col′,ex′) (n ≥ 1)

such that:

– cacnet1, . . . ,cacnetn are coloured acyclic nets.
– csan = (acnet1, . . . ,acnetn,Q,W) is a well-formed CSA-net (as defined in [5]), where each

acneti is an acyclic net obtained from cacneti after deleting the last three components.
– col′ is a mapping assigning nonempty finite set of colours to every buffer place in Q. Each

colour set can be timed or untimed.
– ex′ is an arc expression function that assigns an arc expression to each arc x = (q, t) or x =
(t,q), where q ∈ Q, so that Type[ex(x)] = col(q).

Client

Server

B
c1 c2 c3

A
c4snd-SYN rcv-SYN-ACK snd-ACK

B
s1 s2

A
s3 s4rcv-SYN snd-SYN-ACK rcv-ACK

x

y

q1 q2 A q3

Fig. 8: Server received client’s request and preparing to start reliable connection with client.

10 Computer Science & Information Technology (CS & IT)

Client

Server

B
c1 c2 c3

A
c4snd-SYN rcv-SYN-ACK snd-ACK

B
s1 s2 s3

A
s4rcv-SYN snd-SYN-ACK rcv-ACK

q1 q2 q3

x

y

Fig. 9: Both client and server are ready to push data between each other.

Client

Server

B
c1 c2

A
c3 c4snd-SYN rcv-SYN-ACK snd-ACK

B
s1 s2

A
s3 s4rcv-SYN snd-SYN-ACK rcv-ACK

q1 q2 q3

x

y

Fig. 10: Abnormal behaviour as token A is frozen in c3.

That is, Definition 1 is extended by introducing a timed colour set for the token, enabling it
to carry a time value during execution. The colour set can be either timed or untimed. All places
associated with a timed colour set are termed ‘timed places’, and the arcs connected to these places
are named accordingly. These arcs can carry an expression function or operator, expressed in ML
(programming language). This introduces further constraints on the arcs. In ML, transitions might
also feature a time delay description, expressed as a type TIME. These concepts are derived from
the domain of coloured Petri nets. Thus, the colour set of the token t can be described as a vector
composed of six types, detailed as follows:

(IPsrc, IPdst ,Portsrc,Portdst ,Flag,Tt).

Time values are continuously updated during the model’s execution (i.e., transition firing). At
any given point, we can evaluate the status of a token by inspecting its values. Once the token’s
execution is finished, the value Tt represents the duration the token has spent within the model (e.g.,
completing a three-way handshake). Algorithm 1 summarises the concept of initialising timing for
CCSA-nets tokens. Intuitively, time increments with the firing of a token at each place, denoted
as @++, which represents the duration taken for the token to transition from its current place
to the next. Delays, however, can occur within the process. For example, a server might take 4
seconds to respond to a client request. Moreover, we allow events/transitions to incorporate delay
expressions, represented as expressions of the TIME type. Essentially, the cumulative time within
the model includes all timestamps resulting from the evaluation of the time delay inscription of
the transition. For instance, if the initial event (snd-syn) occurs at a timestamp of zero (the initial
marking at the beginning of the model’s execution), and the time specified for this event is set to 5
seconds (e.g., the duration needed to delay or consume the token in the snd-syn event), it indicates
that the token takes (0 + 5) seconds to transition to the subsequent place (rcv-syn). Consequently,
we compute the cumulative time throughout each token’s execution to capture its behaviour. Our
aim is to identify any anomalies by detecting tokens that exceed the threshold specified for each

Computer Science & Information Technology (CS & IT) 11

communication. In the TCCSA-net model, the delay() function signifies the additional, unknown
duration that events might consume.

Algorithm 1: TCCSA-nets
Input : CCSA-net
Output: TCCSA-net

1 Initialization
2 Initialize the model global time to zero
3 for each token i in the initial marking do
4 Initialize the token colour set and set T [i] to zero
5 end
6 Start the model execution and begin incrementing the global timing
7 do
8 for each token in the initial marking do
9 Once the token is fired in the first event

10 Start the token time T [i]
11 do
12 Increment T [i] by 1 time unit //T [i]++
13 while Token did not reach the final marking;
14 end
15 while CCSA-net is executing;

8 Classification and frozen tokens

The extension of TCCSA-net proves advantageous for identifying unusual behaviours, such as
those exhibited in SYN-flood attacks. It uses the timing attribute of tokens to detect abnormal pat-
terns. Specifically, we rely on a predefined threshold to classify tokens. These tokens are identified
using the flow ID/colour set, which includes IP source, IP destination, Source port, Destination
port, Flags, and Timestamp. The algorithm assesses each token/packet independently, determining
whether it is indicative of abnormal behaviour or a standard communication. For instance, as illus-
trated in Figure 11, tokens can be classified as abnormal if their time values exceed the predefined
threshold set for the classifier place.
Formally, in TCCSA-nets, transitions can only be enabled if their input tokens are present in the

preceding places. We rely on their properties, combined with time, to detect any abnormal activ-
ities that might occur during communication. For example, the classifier will send the token to
rcv-ACK when the server acknowledges it. In other words, the rcv-ACK event on the server side
will only be enabled when all its inputs are in place to fire rcv-ACK and complete the three-way
handshake. If not, an alarm event is triggered if the token’s time exceeds the threshold, indicating
a potential SYN-flood attack. The threshold, denoted as τ , is assumed to be 30 seconds, which
represents the maximum duration the server will wait to receive an rcv-ack from the client, com-
pleting the three-way handshake. It is important to note that the server’s waiting duration can vary
based on the criteria set by the network administrator. The procedure for identifying abnormal be-
haviour is depicted in Algorithm 2. The algorithm starts by defining the maximum allowable time
τ . Every communication is portrayed as a token. The server’s wait time is computed using Eq. (1).
The status S(i) of token i at the ‘classifier’ place is expressed as:

S(i) = τ − (T (i)+C(i)) (1)

12 Computer Science & Information Technology (CS & IT)

Type your text

where τ is a predefined threshold representing the maximum allowable time the server waits to
rcv-ack from the client, C(i) denotes the time taken by the server to process the token, and T (i)
signifies the total time the token spends inside the model, which encompasses the cumulative time
for sending and receiving both SYN and SYN-ACK events. Specifically, this equation evaluates the
token’s time relative to the maximum allowable duration for the process (the three-way handshake,
in our case). In other words, it computes the difference between the threshold and the combined
time needed to complete all events inside the model (sending and receiving SYN and SYN-ACK),
as well as the time the server takes to process the token received from the client. Note that this
approach can be further extended and refined by examining various communication statuses and
packet properties, such as response averages, traffic bandwidths, or server capacity, which is a
topic for future work and could improve detection of such behaviors. In our case, tokens will be
classified as:

Token =

{
Normal i f S ≥ 0
Abnormal i f S < 0

Client
Server

delay()

(168.1.1,192.1.1,8080,80, SYN,@0)

(168.1.2,192.1.1,8080,80, SYN,@0)

(168.1.3,192.1.1,8080,80, SYN,@0)

(168.1.4,192.1.1,8080,80, SYN,@0)

A

B

C

D B,C,D

Clients
SYNsent

A

SYN-ACK received ACK-received

snd-SYN rcv-SYN-ACK snd-ACK

@4

@3 @3

@4

@2

τ −C(i)−T (i)

B,C,D

SIdle
SYN-rcv

A

classifier

A

SYN-ACK-snd

ACK-received

alarmed
rcv-SYN snd-SYNACK rcv−ACK

alarm

q1 q2 q3

Fig. 11: CSA-net model after applying classification for normal and abnormal behaviours.

That is, detecting a SYN-flood attack can be modeled as a classification problem that differentiates
between the network flow states of attack’ and normal’ [15]. In this context, we rely on our new
TCCSA-net extension to discern and differentiate normal from abnormal behaviors. Specifically,
servers operate within designated time frames to process client requests, using these durations
to distinguish normal requests from abnormal ones. Through markings, tokens operating within
the timeframe established by server administrators are considered normal. Consider Figure 11.
Assume that the cumulative time required for a token inside the model to finalize the first and
second handshake is the aggregate of all event times: @4 + @3 + @3 + @4 seconds, totaling
14 seconds. Furthermore, the server requires @2 seconds set on the rcv-ACK event to process the
token, with a predefined threshold set at 30 seconds. As per Eq.(1), the token status is computed
as S(i) = 30− (2+14). Since this is positive, the token is categorized as normal and proceeds to
the rcv-ACK event. It is crucial to understand that this approach is employed to demonstrate that

Computer Science & Information Technology (CS & IT) 13

Type your text

TCCSA-net can be a promising tool to analyze and visualize the three-way handshake in order to
detect abnormal activities that could occur during communication.

Algorithm 2: DDOS attack detection
Input : N tokens from m clients representing communications packets

τ //Time threshold
Output: Classification of token either normal or abnormal

1 Start
2 integer i := 1
3 do
4 if token i reached classifier condition then
5 Compute the token status S(i) as per Eq. (1)
6 if S(i)≤ 0 then
7 Token is classified as normal
8 end
9 else

10 Token is classified as abnormal
11 end
12 end
13 i := i+1
14 while i ≤ N;

9 Experiment and Results
The proposed algorithm was tested using Python on a Mac PC equipped with an Intel Core i7
CPU and 16 GB of memory. The code is publicly available at [21]. We utilized the CICIDS 2019
dataset [22] comprising over a million tokens, each representing a packet described by 27 con-
ditional features. These tokens were categorized into two groups: normal and abnormal. The al-
gorithm’s performance was assessed through a confusion matrix, which displayed an impressive
accuracy rate of 89%. The high True Positive (TP) and True Negative (TN) rates contrasted with
a low False Negative (FN) rate and zero False Positives (FP). However, an error rate of 11% was
noted, primarily due to missing values in the data. After preprocessing to address these missing
values, the error rate decreased by 1%, leaving a residual 10% error, which could be attributed
to other unaddressed TCP flags. Our approach uniquely integrates the analysis and visualisation
of client-server communication with the detection of anomalous packets. This allows network
administrators to gain insights into potential DDOS attacks, aiding in the formulation of future
prevention measures.

10 Conclusions
This paper presented a novel approach for modeling SYN-flood TCP DDOS attacks using TCCSA-
nets. The approach includes a detection algorithm that distinguishes between normal and attack
communications, with a specific focus on TCP-SYN-flood flag attacks. Our approach extends the
advantages of CSA-net’s concept through the use of the timing feature, which enables the algorithm
to determine whether a packet is normal or not. One of the noteworthy features of this approach
is its ability to provide and visualize detailed information on TCP DDOS attacks, which can be
utilized further to prevent the attack. The algorithm was tested on publicly available data, and
the results were impressive. Specifically, the algorithm achieved a 90% discrimination accuracy
between normal and attack communications. Moving forward, we aim to improve this approach

12 Computer Science & Information Technology (CS & IT)

by considering additional possible scenarios that cause TCP attacks. Moreover, we plan to en-
hance this model to operate in real-time situations for real-time detection. An add-in version of the
algorithm will also be developed to enable easy deployment and autonomous operation.

References

[1] Koutny, M., Randell, B.: Structured occurrence nets: A formalism for aiding system failure
prevention and analysis techniques. Fundamenta Informaticae 97(1-2), 41–91 (2009)

[2] Randell, B.: Occurrence nets then and now: the path to structured occurrence nets. In: In-
ternational Conference on Application and Theory of Petri Nets and Concurrency. pp. 1–16.
Springer (2011)

[3] Almutairi, N., Koutny, M.: Verification of communication structured acyclic nets using SAT.
CEUR Workshop Proceedings, vol. 2907, pp. 175–194. CEUR-WS.org (2021)

[4] Alshammari, T.: Towards Automatic Extraction of Events for SON Modelling. CEUR Work-
shop Proceedings 3170, 188–201 (2022)

[5] Alahmadi, M.: Parameterised CSA-nets (2023)
[6] Kumari, P., Jain, A.K.: A comprehensive study of DDOS attacks over iot network and their

countermeasures. Computers & Security p. 103096 (2023)
[7] Lent, D.M.B., Novaes, M.P., Carvalho, L.F., Lloret, J., Rodrigues, J.J., Proença, M.L.: A

gated recurrent unit deep learning model to detect and mitigate distributed denial of service
and portscan attacks. IEEE Access 10, 73229–73242 (2022)

[8] Jangjou, M., Sohrabi, M.K.: A comprehensive survey on security challenges in different
network layers in cloud computing. Archives of Computational Methods in Engineering pp.
1–22 (2022)

[9] Kautish, S., Reyana, A., Vidyarthi, A.: Sdmta: Attack detection and mitigation mechanism
for DDOS vulnerabilities in hybrid cloud environment. IEEE Transactions on Industrial In-
formatics (2022)

[10] Bauer, S., Jaeger, B., Reimann, M., Fromm, J., Carle, G.: Towards the classification of TCP
throughput changes. In: NOMS 2022-2022 IEEE/IFIP Network Operations and Management
Symposium. pp. 1–7. IEEE (2022)

[11] Alibrahim, T.S., Hendaoui, S.: DDOS attacks prevention in cloud computing through trans-
port control protocol TCP using round-trip-time rtt. IJCSNS 22(1), 276 (2022)

[12] Toyeer-E-Ferdoush, Rahman, H., Hasan, M.: A convenient way to mitigate DDOS TCP-
SYN-flood attack. Journal of Discrete Mathematical Sciences and Cryptography 25(7), 2069–
2077 (2022)

[13] Pei, J., Chen, Y., Ji, W.: A DDOS attack detection method based on machine learning. In:
Journal of Physics: Conference Series. vol. 1237, p. 032040. IOP Publishing (2019)

[14] Shaaban, A.R., Abdelwaness, E., Hussein, M.: TCP and http flood ddos attack analysis and
detection for space ground network. In: 2019 IEEE International Conference on Vehicular
Electronics and Safety (ICVES). pp. 1–6. IEEE (2019)

[15] Rajesh, S., Clement, M., SB, S., SH, A.S., Johnson, J.: Real-time DDOS attack detection
based on machine learning algorithms. Available at SSRN 3974241 (2021)

[16] Ramkumar, B., Subbulakshmi, T.: Tcp syn flood attack detection and prevention system using
adaptive thresholding method. In: ITM Web of Conferences. vol. 37, p. 01016. EDP Sciences
(2021)

[17] Sumathi, S., Rajesh, R.: Comparative study on TCP-SYN-flood DDOS attack detection: A
machine learning algorithm based approach. WSEAS Transactions on Systems and Control
16, 584–591 (2021)

Computer Science & Information Technology (CS & IT) 15

© 2023 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

	Detecting syn Flood Attack Using csa-nets
	Introduction
	Related work
	Preliminaries
	Communication Structured Acyclic Nets (csa-net)s
	Transmission Control Protocol (TCP)
	SYN Flood Attack

	Coloured communication structured acyclic nets (ccsa-nets)
	 Analysing three-way handshake by ccsa-net
	Structure of TCP model
	Behaviour of TCP model
	Reachability

	TCP three-way handshake and ccsa-nets
	Normal behaviour
	Abnormal behaviour

	Timed ccsa-nets
	Classification and frozen tokens
	Experiment and Results
	Conclusions

