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ABSTRACT 
 
This paper explores Pursuit-Evasion scenarios within game theory, focusing on 

environments with finite spaces, a limited number of pursuers, and evaders. It introduces a 

novel approach employing Petri nets to model Pursuit-Evasion in a bidirectional graph. 

Each area of the environment is represented by a set of places in the Petri net, capturing its 

specific behavior. Petri nets, known for their efficacy in modeling finite state spaces, are 

utilized to combine sub-nets representing individual areas. The detailed modeling provides 

a structured and formal representation of Pursuit-Evasion dynamics, offering a powerful 

tool to validate search strategies in graph-based pursuit-evasion models and contributing 

to the broader understanding of game theory and system modeling. 
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1. INTRODUCTION 
 

In game theory, the pursuit-evasion problem is conceptualized as a game with three key 
components: players (cleaners and intruders), actions (movements of antagonists in the 

environment), and a cost function encompassing factors such as the time taken for agents to 

neutralize intruders and the required number of agents [1–13]. The game involves players with 
distinct means of perception, granting advantages to intruders in certain scenarios, such as 

enhanced knowledge of the environment, precise awareness of cleaning agents' positions, and 

information on their travel strategies. 
 

The objective for participants is to devise policies optimizing their cost functions. Robot agents 

aim to minimize the execution time and the number of agents engaged, while intruders strive to 

remain undiscovered and out of sight from cleaning agents for as long as possible. This study 
utilizes a classification diagram [2], characterizing the environment as a Discrete Finite Graph 

with Heterogeneous or Homogeneous searchers, Constrained motion with Transit Costs, Perfect 

Detection with Line-of-Sight sensor models, Multiple targets, and Stationary Target motion with 
Random Placement. The Pursuit-Evasion problem in a graph, initially formulated by [14], is 

classified into known environments [6] and unknown environments [3, 10, 4], requiring distinct 

algorithms and techniques due to visibility graph dynamics in unknown environments. 
 

This paper is organized as follows. The environment model is presented in Section 2, Section 3 

describes the offline search techniques. Section 4 presents model analysis using Petri net, 

conclusion is done. 
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2. ENVIRONMENT MODELLING 
 

2.1. Visibility Graph 
 

The chosen simulation environments consist of public spaces, comprising corridors, rooms, or 
offices, as depicted in Figure 1. The visual representation illustrates accessible areas in white, 

while non-accessible spaces or obstacles are highlighted in dark shading. Subsequently, the 

environment is modeled using a graph. 
 

In our simulation application, environments are stored as images, and a straightforward image 

processing approach [15] is employed to extract outlines. Utilizing the vertex definition from 

[15], which considers a vertex as the intersection of two walls forming an angle greater than a 
certain threshold, we generate a set of nodes for the graph, as illustrated in Figure 1(a). By 

establishing pairs of nodes and employing a visibility definition inspired by [15] (where an edge 

signifies the line of sight between two vertices), the resulting visibility graph is presented in 
Figure 1(b). This graph serves as the topological model for the test environments, and it plays a 

pivotal role in this work, serving as the foundation for all search strategies developed. 

 

 
 

(A) Environment with Vertices   (B) Environment with visibility graph 

 
Figure 1.  Generating visibility graph using building image 

 

2.2. Area Graph 
 

This stage involves extracting key information from the visibility graph, including the degree of 

each vertex (indicating the number of adjacent vertices), identifying complete subgraphs referred 
to as cliques or zones, establishing the connected area graph, and pinpointing critical areas. The 

algorithm employed for this purpose is thoroughly outlined in [15]. 
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(A) Visibility graph converted into set of areas  (B) Obtained area graph 

 

Figure 2.  Generating area graph using visibility graph 

 
In Figure 2, we obtain a new graph, called Area Graph, whose vertices are the cliques and the 

edges represent the connection between areas. It is translated by vertices belonging to two 

adjacent cliques. For example, the edge joining  to  is represented by the vertices 

common to  and : . 
 

Figure 3 shows a real building with its decomposition into visibility graph, and the area graph is 

generated. 

 

 
 

(A) Environment E (B) Visibility graph 

 

 
 

(C) Area graph 

 
Figure 3.  Real building 
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2.3. Degree of an Area 
 

The degree of a zone, akin to that of a vertex, corresponds to the number of connected adjacent 

zones. 
 

- A zone with a degree of 1 is termed a leaf, representing a terminal zone. 

- A zone with a degree of 2 is part of a path and is specifically known as a corridor, serving 
as a passage zone. 

- A zone with a degree exceeding 2 is categorized as a critical zone, indicating its connection 

to more than two zones or paths. 

 

3. PETRI NET MODELLING 
 
Each zone can exist in one of two states: either the contaminated state or the decontaminated 

state. When a zone is in the decontaminated state, it requires protection either from an agent 
stationed directly on the zone or from agents positioned on the converging paths. It is crucial to 

note that an unguarded, decontaminated area is susceptible to recontamination, highlighting the 

importance of continuous monitoring and protection measures. 
 

Area  has Boolean attributes:  /  /  And  

The algorithm modelling the evolution in the change of state of a zone is presented in Algorithm 

1. 
 

 
 

To transform the overall behavior of the system into a Petri net, it is necessary to break down 

each part of the algorithm into independent sub-nets. The comprehensive Petri net is then 
constructed by amalgamating all these individual sub-nets. This modular approach allows for a 

more structured representation of the system's dynamics, where each sub-net encapsulates a 

specific aspect of the algorithm, contributing to the holistic Petri net model. 

 

3.1. Area Petri Net 
 
The environment is translated into a Petri net, where places represent distinct areas, transitions 

correspond to arcs, and signify the movements of guardians between adjacent areas (refer to 
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Figure 4). In this representation, a token located in place Ai signifies the presence of an agent in 

that specific area ( ). 

 
 

(A) Environnement with area graph  (B) Equivalent Petri net 

 
Figure 4.  Environment with area graph and equivalent petri net 

 

Every place within the Petri net, representing a zone in the graph, is, in fact, a macro place. The 
dynamic evolution of the markings in this macro place is governed by three distinct sub-networks 

of Petri: the first sub-net models the visitation and guarding of the zone by an agent, the second 

sub-net represents the zone's contaminated-decontaminated states, and the final sub-net of Petri 
models the propagation of contamination through adjacent areas. This modular approach 

facilitates a comprehensive representation of the various aspects influencing the behavior of each 

zone in the overall system. 

 

3.2. Sub-Net for the Behavior Guarded? 
 

The two places  and  of the Petri subsystems in Figure 5 correspond to 
the two possible states in which a zone can be found. The zone is initially unguarded (presence of 

a token in the place ). And the arrival of an agent on the zone (presence of a token in 

the place ) triggers the crossing of the transition  causing a change of the state of the 

zone. It becomes a guarded area (presence of a token in the place ), And it will 

remain so as long as there is an agent present in the area. 
 

 
 

Figure 5.  Behavior guarded? 
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3.3. Sub-Net for the Behavior Contam? 
 

Both places  and  correspond to one of two states: contaminated or 

decontaminated, representing the possible conditions of an area. Initially, the area is in a 
contaminated state, transitioning to a decontaminated state upon the visitation by an agent. This 

decontaminated state persists as long as the adjacent areas are maintained or transitioned to a 

decontaminated state, ensuring a sustained absence of contamination. 

 

 
 

Figure 6.  Behavior contam? 

 

3.4. Sub-Net for the Behavior Decontamall? 
 

The two places, contamA4? and !contamA4?, correspond to the contaminated and decontaminated 
states, respectively. This sub-net is designed to model the contamination of adjacent areas (refer 

to Figure 7). An area can only become contaminated if any of its neighboring areas is 

contaminated, as indicated by inhibiting arcs emanating from each contamAi place. If the entire 
zone is successfully decontaminated (decontamAllA4?), it remains in the decontaminated state 

(!contamA4?). An inhibitory arc extends from the decontamAllA4? place to the conA4? transition, 

ensuring the decontaminated state persists as long as all neighboring areas remain 

decontaminated. However, if any adjacent area becomes contaminated, the place 
!decontamAllA4? will hold a token, signifying the potential for A4 to be contaminated again. This 

is facilitated by transitions (T40 to T43), each connected to a neighboring zone Ai, featuring arcs 

from decontamAllA4? and contamAi? to !decontamAllA4? and contamAi?. 
 

 
 

Figure 7.  Behavior Decontamall? 
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3.5. Behavior’s Combination 
 

Integrating the three aforementioned sub-nets, which model the state of each area in the 

environment (as depicted in Figure 5(a)), yields the comprehensive Petri net representing the 
Pursuit-Evasion model. The resulting global net, illustrated in Figure 8, encapsulates the 

collective evolutionary behavior of various zones within the environment. This global Petri net 

serves as a holistic representation of the Pursuit-Evasion dynamics, capturing the interplay of 
agents, contamination states, and the propagation of actions across different zones. 

 

4. MODEL ANALYSIS  
 

4.1. Modelling tool PIPE 
 

For the analysis of the proposed model, the PIPE tool was employed. PIPE is an open-source 

modeling and analysis tool utilizing Petri nets, specifically designed for creating and analyzing 
both immediate and stochastic Petri nets, including Generalized Stochastic Petri Nets (GSPNs) 

[18]. Implemented entirely in Java, PIPE ensures platform independence and provides a sleek and 

user-friendly graphical interface. This graphical tool facilitates the creation, backup, loading, and 
analysis of Petri nets. Originally developed at Imperial College London through various student 

projects, an enhanced version with significant improvements across different aspects has been 

further implemented at the University of the Balearic Islands. 
 

4.2. Incidence Matrix  
 

The connecting arcs from Transitions to Places  can be represented in a matrix with 

. 

 

Then the index of the lines is the place and the index of the columns is the transition. The values 
of the matrix are: 

 

 
(1) 

 
For the previous example (Figure 5(a)), the forward incidence matrix is a matrix of 42 rows and 

50 columns. 

 

4.3. Incidence Matrix  
 

The connection arcs from Places to Transitions  can be represented in a matrix with 

. Then the index of the rows is the place and the index of the columns is the 

transition. 

 

The values of the matrix are 
 

 
(2) 

 
In the previous example (Figure 5(a)), the back-incidence matrix is a matrix of 42 rows and 50 

columns. 
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Inhibition matrix 
 

Inhibition arcs from Places to Transitions  can be represented as a matrix with 

. 
 

Then the index of the rows is the place and the index of the columns is the transition. The values 

of the matrix are : 

 

 
(3) 

 

In the previous example (Figure 5(a)), the inhibition matrix is a matrix of 42 rows and 50 
columns. 

 

4.4. Initial Marking 
 

The initial marking used in PIPE platform is done as a vector from Equation 4. This initial 

marking can be found in an intuitive way: 
 

- Initially the robot(s) is(are) in one of the area places (here place ). 

- All zones are initially: 

o not guarded ( ) 

o contaminated ( ) 

o not fully decontaminated (! ) 
 

According to the model created in PIPE, the P-invariant subnets are: 

 

 

(4) 

 

With  is the number of needed guardians, and  is the index of the Area . 

 

4.5. Discussion 
 

The establishment of the initial marking in the PIPE platform follows a vectorized representation 

as per Equation 4. This initial marking can be intuitively derived through the combination of area 
sub-nets, where an area is characterized as either contaminated or uncontaminated, guarded or 

unguarded, fully decontaminated or not. In essence, this implies that: 

 

 (5) 

 (6) 

 (7) 

 
So that the pairs of places representing the previous states are P-invariant with a sum of tokens 

equal to 1, which verifies equation (4). 

 

 (8) 

 (9) 
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 (10) 
 

Moreover, the Petri net modeling the zone graph (depicted in Figure 4(b)) operates 

autonomously, ensuring that its tokens will not be lost. However, tokens in this context represent 

guardians in the environment. Therefore, at any given time, the aggregate of tokens in this 
network equals 'n,' signifying the total number of agents present in the environment. 

 

 
(11) 

 

Boundedness 

 
A marked network is deemed bounded when all its places are bounded. Networks classified as 1-

bounded are referred to as safe networks. The network represented in Figure 5(a) is covered by 

positive T-invariants [15], indicating its potential for being both bounded and alive. Furthermore, 
the network is covered by positive P-invariants, reinforcing its status as a bounded network. 

 

The size of global Petri net 
 

In the example depicted in Figure 5(b), the network consists of 42 places and 52 transitions. By 

denoting   as the number of zones and   as the number of neighbors, it becomes feasible to infer 

details about the total number of places and transitions from the counts within each sub-net. In 
accordance with the findings in [15], the overall count of places and transitions is the summation 

of the places and transitions across the macros of each zone. Therefore, 

 

 
(12) 

 

Applying the case of the environment in Figure 10(a) where  and  then  and 

, which verifies the implementation on PIPE. 
 

Reachability Graph 

 

The reachability graph  is an oriented graph whose nodes are the markings of , 

and each arc links a mark to another, obtained by crossing a transition : then we have . 

The Petri net representing the behavior of the environment is always bounded, so it always has a 

finite reachability graph. In the case of Figure 5(a), the graph contains 469 states and 669 arcs. It 

is obvious that its graphic representation remains difficult. 
 

Nevertheless, for any method of decontamination, the markings of places  and , 

which are the most important to have an idea on decontamination behavior, can be represented in 

a two-column matrix; The initial marking of the places  is given by the left column vector, of 
which all the elements are null, except one and its value indicates the number of robots necessary 

for the decontamination. Theinitial marking of places  is placed in the right column 

vector and is equal to the unit vector. The final marking is reached, and the number of agents 

mobilized for the decontamination operation is validated, when the column vector relating to the 

 places. becomes equal to the null vector. 
 

Equation 13 shows the marking sequence for the Worst-Case technique applied on environment 

in Figure 5(a). We can see that the final marking must be as discussed before. 
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(13) 

With: 

 

-  

- 
 

Equation 14 illustrates the marking sequence for the Worst-Case technique applied to the 

environment depicted in Figure 3, while Equation 15 displays the marking for the improved 
technique. It is evident that the final marking aligns with the earlier discussion. 

 

 

(14) 

With: 

 

-  

- 
 

- 
 

-  
 

 
With: 

-  
-  

-  

-  
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- 
 

-  

-  
 

4.6. Modeling Example Using Petri Net  
 

Figure 14 shows and example of environment modelled with Petri net, the proposed model is for 
the environment presented in Figure 5(a). we can see that the model is complex even if the 

environment if simple, which is the main problem of this technique. 

 

 
 

Figure 8.  Petri net model for environment in figure 5(a) 

 

5. CONCLUSIONS 
 

This work elucidates the utilization of graphs for environment modeling and search 
methodologies in known environments. It introduces a Petri net model to validate research 

techniques applied to graphs. While the Worst-Case method proves highly efficient in known 

environments, it requires a constant mobilization of a substantial number of resource agents for 

environmental exploration. 
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The developed improved research approach dynamically optimizes the number of engaged 
agents. The validation through Petri nets affirms the effectiveness and robustness of these diverse 

research techniques. The implications of this work extend to the field of disaster management, 

with potential applications in dynamic environments, such as those involving the opening or 

closing of doors that alter the topological model. Future work can further validate navigation and 
decontamination techniques in 3-D environments closer to reality. Additionally, the study can be 

expanded by developing an interactive software platform for modeling and validating the various 

techniques presented in this work. These prospects open up promising avenues for advancing the 
practical applications and impact of the research. 

 

REFERENCES 
 
[1] A. A. Azamov, A. S. Kuchkarov, and A. G. Holboyev, “The pursuit-evasion game on the 1-skeleton 

graph of a regular polyhedron. ii.”Automation and Remote Control, vol. 80, no. 1, pp. 164–170, 

2019. 

[2] T. H. Chung, G. A. Hollinger, and V. Isler, “Search and pursuit-evasion in mobile robotics,” 

Autonomous robots, vol. 31, no. 4, p. 299, November 2011. 

[3] A. Djellal and R. Lakel, “Using graph search technique to solve the pursuit-evasion problem in 

unknown environment,” in International Conference on Industrial Engineering and Manufacturing 

ICIEM’10, 2010. 
[4] A. Djellal and R. Lakel, “Using graph theory to search an evader in unknown environments,” in 

Conférence Internationale sur le Traitement de l’Information Multimédia (CITIM’2012), 2012. 

[5] S. M. LaValle and J. E. Hinrichsen, “Visibility-based pursuit-evasion: the case of curved 

environments,” in IEEE Int. Conf. Robot. & Autom., 1999. 

[6] R. Lakel and A. Djellal, “Resolving the pursuit evasion problem in known environment using graph 

theory,” Int. J. Bio-Inspired Computation, vol. 2, no. 6, pp. 434–439, 2010. 

[7] L. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani, “A visibility-based pursuit-

evasion problem,” International Journal of Computational Geometry and Applications, 1985. 

[8] V. G. L. Mejia, F. L. Lewis, Y. Wan, E. N. Sanchez, and L. Fan, “Solutions for multiagent pursuit-

evasion games on communication graphs: Finite-time capture and asymptotic behaviors,” IEEE 

Transactions on Automatic Control, 2019. 
[9] A. V. Moll, D. W. Casbeer, E. Garcia, and D. Milutinovic, “Pursuitevasion of an evader by multiple 

pursuers,” in International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2018. 

[10] D. Pallier and H. Fiorino, “Coordinated exploration of unknown labyrinthine environments applied 

to the pursuit-evasion problem,” AAMAS’ 05, 2005. 

[11] S. M. LaValle, D. Lin, L. J. Guibas, J.-C. Latombe, and R. Motwani, “Finding an unpredicable 

target in a workspace with obstacles,” in IEEE Int. Conf. Robot. & Autom., 1997. 

[12] V. Sunkara, A. Chakravarthy, and D. Ghose, “Pursuit evasion games using collision cones,” in 

AIAA Guidance, Navigation, and Control Conference, 2018. 

[13] F. Yan, J. Jiang, K. Di, Y. Jiang, and Z. Hao, “Multiagent pursuit-evasion problem with the pursuers 

moving at uncertain speeds,” Journal of Intelligent & Robotic Systems, pp. 1–17, 2019. 

[14] T. D. Parsons, “Pursuit-evasion in a graph,” Theory and Applications of Graphs, pp. 426–441, 1976. 

[15] A. Djellal, “Modélisation et analyse des comportements d’une société d’agents mobiles `a l’aide des 
r´eseaux de petri,” Ph.D. dissertation, Badji Mokhtar University – Annaba, 2016. 

[16] MobotSoft, “Wall following robot ”mobotsoft”,” WordPress, Tech. Rep., 2016. 

[17] P. Bonet, C. M. Llado, and R. Puigjaner, “Pipe v2.5: a petri net tool for performance modeling,” in 

the 23rd Latin American Conference on Informatics (CLEI2007), 2007. 

[18] M. M. Ajmone, Modelling with Generalized Stochastic Petri Nets. John Wiley & Sons inc., 1994. 

 

 

 

 

 

© 2023 By AIRCC Publishing Corporation. This article is published under the Creative Commons 
Attribution (CC BY) license. 


	Abstract
	Keywords
	Pursuit-Evasion; Petri Net; Graph Theory
	Inhibition matrix
	Boundedness
	The size of global Petri net
	Reachability Graph


