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Abstract. Layer-wise relevance propagation (LRP) is a widely used and powerful technique to reveal
insights into various artificial neural network (ANN) architectures. LRP is often used in the context of
image classification. The aim is to understand, which parts of the input sample have highest relevance
and hence most influence on the model prediction. Relevance can be traced back through the network to
attribute a certain score to each input pixel. Relevance scores are then combined and displayed as heat
maps and give humans an intuitive visual understanding of classification models. Opening the black box
to understand the classification engine in great detail is essential for domain experts to gain trust in ANN
models. However, there are pitfalls in terms of model-inherent artifacts included in the obtained relevance
maps, that can easily be missed. But for a valid interpretation, these artifacts must not be ignored. Here,
we apply and revise LRP on various ANN architectures trained as classifiers on geospatial and synthetic
data. Depending on the network architecture, we show techniques to control model focus and give guidance
to improve the quality of obtained relevance maps to separate facts from artifacts.

Keywords: Artificial Neural Networks, Image Classification, Layer-wise Relevance Propagation, Geospa-
tial Data, Explainable AI.

1 Introduction

Image classification refers to assigning one or more class labels to a two-dimensional im-
age. Here, we focus on binary classification problems and have only two distinct classes.
Instead of having a discrete class label, one often assigns some continuous target value
to each sample. The class label is then derived from the target value by defining cer-
tain thresholds. Like this, the initial classification problem becomes a regression problem.
The task is then to predict some continuous target value from all input pixels. Generally,
the relationship between inputs and targets is highly nonlinear. Artificial neural networks
(ANNs) are state-of-the-art for this task. In this work, we will revise the use of various ANN
architectures for image classification. In particular, we work with multilayer perceptrons
(MLPs), convolutional neural networks (CNNs) and Echo State Networks (ESNs). MLP
models have frequently been used for image classification [1–3]. CNN architectures aim to
detect objects and structures in the underlying samples and are powerful tools for image
classification [4, 5], object detection [6] or semantic segmentation [7]. With their inher-
ent shared weights philosophy, CNNs need less trainable parameters, compared to MLPs.
ESNs differ from MLPs and CNNs, as they are a special type of recurrent neural networks
(RNNs), originally designed for time series forecasting [8, 9]. To use two-dimensional im-
ages as inputs, samples may be sliced column- or row-wise, respectively. Like this, either
the x− or the y−dimension is turned into a time dimension, as done in [10].

As input data, we use real world geospatial data. In particular, we choose a well-
understood Earth System Variability, the El Niño Southern Oscillation (ENSO). The cur-
rent ENSO phase can be detected from spatially averaged sea surface temperature (SST)
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anomalies in the so-called Niño 3.4 region in the Tropical Pacific. But ENSO is a com-
plex phenomenon and is related to climate anomalies over large distances, also referred
to as teleconnections. ENSO leaves its footprint outside the Tropical Pacific, e.g. at the
African West coast near Angola [11]. Here, we use ANN models as ENSO detectors on
two-dimensional samples of SST anomalies. The two classes are either ”El Niño” or ”La
Niña”, which can be associated with unusual warm or cold sea surface temperature in the
Niño region, respectively.

While all models perfectly perform on this simple classification task, our aim is not to
find a superior classifier. Here, we are interested in getting a deeper understanding of how
the models come to their conclusions and explain the reasoning of the models’ classifica-
tion engine by using ENSO as a toy problem. A variety of techniques from the domain of
explainable artificial intelligence (xAI) exists to open the black box of ANNs. In backward
optimization [12], the inputs for a trained model are modified to maximize the network’s
confidence in the obtained output. The goal is to generate some optimal input. A saliency
map [13] aims to highlight areas in a given input sample that show strongest support to-
wards a given class. Other techniques compute the gradient of a prediction with respect to
the input pixels in a sensitivity analysis [14], to reveal insights in how sensitive the model
output depends on slight modifications of input values. Our purpose is more general. We
want to find each input pixel’s contribution to the model output. This can be achieved
by layer-wise relevance propagation (LRP). The concept of LRP has been introduced by
Bach et al. [15]. The model prediction is taken as final relevance and is then traced back
through all layers until reaching the input space to assign individual relevance scores to
each input pixel. LRP has been extended from a practical point of view by Montavon et al.
[16]. In their work, they provide a set of concrete propagation rules for tracing relevance
back through the layers.

Toms et al. [1] recently applied LRP to MLP models trained as ENSO detector. They
show mean relevance maps obtained from all El Niño samples. Significant relevance is
only found in the Niño region, as one might expect on the first sight. There are no other
spots of high relevance outside this area. In our earlier work [10], we proposed to use ESN
models on the same task and also performed LRP on ENSO. We found mean relevance
maps for El Niño samples with a far more subtle structure, also highlighting Niño region
but highest relevance is found on the passage between South Africa and Antarctica.

Moreover, the leak rate in the reservoir transition of an ESN determines the reservoir
memory and hence is a crucial parameter [10]. Here, we give a heuristic for setting the
leak rate in relation to the number of time steps.

In addition to MLP and ESN models, we also apply LRP to CNN models in this work.
For MLPs and CNNs used for image classification, regularization of weights is found to be
essential. We can force MLP and CNN models to focus only on a very narrow spot in the
Tropical Pacific to discriminate El Niño from La Niña, by driving small weights to zero to
favor sparse weight matrices in the training process [17].

To get a deeper understanding, we step back and first apply MLP, CNN and ESN
models to synthetic samples, where we exactly know the relationship between inputs and
outputs by design. Only with a sound understanding of pitfalls related to LRP, we can
use this powerful technique on unknown problems to help domain experts to explain their
models, gain trust in models’ predictions and avoid misinterpretations. Like this, LRP
bears good prospects to help finding new relationships and understanding unknown tele-
connections [18–20].
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Our main contributions are as follows:

– We revise LRP on various ANN architectures used for image classification.

– We show how to control the model focus of MLP and CNN networks by weight regu-
larization.

– For ESNs, we find the leak rate to be the crucial parameter and give a heuristic to
choose it appropriately.

– Some of the additional spots of high relevance found in mean relevance maps from
ESN models are identified as artifacts. Furthermore, we propose a technique to erase
these artifacts.

The rest of this work is structured as follows: In Section 2 we briefly introduce synthetic
and real world data used for our experiments. Section 3 outlines the concept of LRP
customized to MLP, CNN and ESN models. The application of LRP to synthetic and
real world ENSO patterns is presented in Section 4. A detailed discussion and conclusion
is found in Section 5, followed by technical details, remarks on availability of data and
annotated code in the Appendix.

2 Data

In this section, we introduce SST anomaly fields related to ENSO used as real world
data. After that, we describe the design of our synthetic samples. In this work, we use
two-dimensional monthly mean SST anomaly fields for the years 1880 through 2021 as
real world inputs. Raw SST data is provided by the NOAA Physical Sciences Laboratory
[21]. Input samples consist of 89 × 180 grid points on a 2° by 2° latitude-longitude grid.
Several indices are used to monitor ENSO activity based on SST anomalies in the Tropical
Pacific [22]. Morrow et al. [23] define in their work an index from the Niño 3.4 region
(5°N–5°S, 120–170°W), which we use as target in this work. El Niño and La Niña events

Fig. 1. Upper part: Composite average SST anomaly patterns for El Niño (left-hand side) and La Niña
(right-hand side) events. A black rectangle highlights Niño 3.4 region. Lower part: Exemplary samples for
classes 1 (left-hand side) and 2 (right-hand side) of synthetic data.
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are characterized by positive and negative SST anomalies in the Niño 3.4 region, referred to
index values ≥ 0.5 and ≤ −0.5, respectively. Neutral states in between, are not considered
for classification, here. The total number of 1,041 samples is split, using the first 80%
as training data (832 samples) and the remaining 20% for validation (209 samples). The
upper part of Figure 1 shows composite average SST anomaly fields for El Niño and La
Niña.

As synthetic data, we create quadratic samples of dimension 100 × 100 pixels and
define two distinct classes, class 1 and class 2, respectively. On the right-hand side of each
sample, we have a vertically centered square of value +1, identical for both classes. The
left-hand side also contains a vertically centered square of values +1 and -1 for classes
1 and 2, respectively, as equivalent for SST anomalies in the Niño region in real world
samples. Classes can be uniquely discriminated by the square on the left-hand side, while
the other only serves as an additional but irrelevant feature. We add random noise to all
samples, drawn from a uniform distribution in the interval [−0.5, 0.5]. In addition to that,
we include some vertical regions of invalid grid points with a small gateway to all samples,
similar to land masses in real world samples, where SST anomalies are not defined. Target
values are +1 and -1 for classes 1 and 2, respectively. Training data consists of 400 samples,
200 for each class, while validation data consists of 100 samples, 50 for each class. The
lower part of Figure 1 shows single samples for both classes as example.

3 Methods and Models

In this section, we briefly recap the ANN architectures and sketch the concept of LRP
customized to MLP, CNN and ESN models. MLPs are feedforward networks and consist
of a specified number of layers. The input layer is connected to the input samples. This
requires the number of input units to equal the number of input pixels. Two-dimensional
samples are therefore transformed into a one-dimensional vector. CNNs are also feedfor-
ward networks. The convolution is done by specified kernels scanning the input image and
producing so-called feature maps. After a desired number of convolutions and optionally
pooling operations, we obtain the final feature maps. Here, we flatten these final feature
maps and stack fully connected dense layers on top of the underlying CNN part. The basic
form of an ESN model consists of an input and an output layer and a reservoir of sparsely
connected units in between. Once randomly initialized, the input and reservoir weights
and biases are kept fixed. We then feed a certain number of input features for a specified
number of time steps into the model and record the final reservoir states. Only the output
weights and bias are trained by regressing final reservoir states onto targets. There is no
backpropagation of errors in the training process, as for MLPs or CNNs. Equation 1 states
the initial reservoir states x(t = 1) for our ESN model. We have a leaky reservoir with leak
rate α ∈ [0, 1], as discussed in [24]. For larger leak rates, the reservoir states react faster
to new inputs. u(t) denote current time step’s inputs, Win and bin are input weights and
biases, respectively.

x(t = 1) = αact[Winu(t = 1) + bin] (1)

Reservoir state transition for subsequent time steps is outlined in Equation 2. A fraction
(1−α) of the previous reservoir states x(t− 1) is kept and combined with the term inside
the activation act(.), here tanh. Wresx(t − 1) + bres denotes the recurrence inside the
reservoir, with reservoir weights and biases Wres and bres, respectively.

x(t) = (1− α)x(t− 1) + αact[Winu(t) + bin +Wresx(t− 1) + bres] (2)

4 Fact or Artifact? Revise LRP on various ANN Architectures
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Toms et al. [1] describe in their work, how LRP can be applied to MLP and CNN
models, as both are feedforward networks. The model output Y is taken as final relevance
and is then traced back through all layers until reaching the input space to assign relevance

scores R
(1)
n to each of the n input pixels, as stated in Equation 3.

Y =
∑
n

R(1)
n (3)

Starting with model output Y , relevance is distributed back from the output layer
through lower layers until we reach the input layer. To preserve total relevance in each
layer, we have a second constraint, as stated in Equation 4.

Y = ... =
∑
j

R
(l+1)
j =

∑
i

R
(l)
i = ... =

∑
n

R(1)
n (4)

Samples of class 1 have positive target values by design. For this reason, we consider
only positive contributions of pre-activations as propagation rule. Assume we have j units

in layer (l+1) with known relevance scores R
(l+1)
j , the relevance R

(l)
i=i0

for unit i0 of layer

(l) is obtained by Equation 5, using z+ij = max(aiwi:j , 0). Here, ai denotes activation of
units i of layer (l) and wi:j denotes the weight connecting unit i from layer (l) with unit j
from layer (l + 1). For class 2 samples, we have negative targets. We start with absolute
prediction values as final relevance, since relevance is defined to be positive, and only
consider negative contributions of pre-activations.

R
(l)
i=i0

=
∑
j

z+i0j∑
i z

+
ij

R
(l+1)
j (5)

This LRP concept needs to be modified for our ESN models, as described in great
deatail in [10], since we have a recurrence in time. Reservoir transition needs to be unfolded.
Each time step is equivalent to one layer. A fraction of the total relevance is attributed to
each time step’s inputs. Remaining relevance is passed on until we reach the initial input.
Finally, all relevance scores attributed to all time step’s inputs can be composed to obtain
a relevance map with same dimensions as the input sample.

4 Results

In this section, we present results from LRP experiments with MLP, CNN and ESN models
on synthetic and real world data. By design, we know that our synthetic samples can
uniquely be discriminated by looking at the left square. Figure 2 shows mean relevance
maps for class 1 obtained from MLP (upper part) and CNN models (lower part) with and
without regularization of hidden layer’s weights. Without regularization, we find blurry
mean relevance maps for both models with highest relevance on both squares. By adding
regularization terms, we successfully force both models to focus on the left square. For the
CNN we find artifacts in form of quadratic patches in mean relevance maps.

For ESN models, only the output weights are trained by regressing final reservoir states
onto targets. This limits the use of weight regularization. However, for ESN models the
leak rate α determines reservoir dynamics and memory. Figure 3 shows mean relevance
maps for ESN models, feeding class 1 samples column-wise into the model, starting with
the leftmost column. For α = 0.005, we find an equal amount of summed relevance over
both squares. But highest relevance is found on the gateway in the barrier of invalid grid
points. With increasing leak rate (α = 0.05) the reservoir’s memory starts to fade, summed
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Fig. 2. Mean relevance maps for MLP (upper part) and CNN (lower part) on class 1 for different weight
regularization. A, B, C: MLP without regularization, L1=0.001 and L1=0.01, respectively. D, E, F: CNN
without regularization, L1=0.001 and L1=0.01, respectively.

relevance on the left square is decreased. Still, the model succeeds to classify all samples
correctly. At some point (α = 0.2) the reservoir loses its memory of the left half. All
relevance is bundled rightmost and classification accuracy for validation samples drops to
random guessing. In this case, α = 0.005 is a suitable choice for the leak rate, since it
guarantees all time steps’ inputs to be equally considered.

With that choice of the leak rate, we compare various techniques to use two-dimensional
input samples for ESN models. Figure 4 shows mean relevance maps for ESN models, feed-
ing class 1 samples column- or row-wise into the model. We find horizontal and vertical
stripes, respectively. We don’t find increased relevance on the gateway when feeding sam-
ples row-wise into the model. As third approach, we propose to split input samples into
equal-sized pieces, considering only valid grid points. The resulting mean relevance map
for class 1 samples is also shown in Figure 4. We find a perfectly equal amount of summed
relevance over both squares. Besides that, there are no artifacts in form of stripes and we
don’t find any increased relevance on the gateway.

Switching to real world samples, the upper part of Figure 5 shows mean relevance maps

Fig. 3. Mean relevance maps for ESN on class 1, feeding samples column-wise into the model. Fading
memory experiment with various leak rates. A: α = 0.005, B: α = 0.05, C: α = 0.2.

6 Fact or Artifact? Revise LRP on various ANN Architectures
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Fig. 4. Mean relevance maps for class 1 samples from ESN models using different techniques to feed
two-dimensional inputs into the models. A: column-wise, B: row-wise, C: piecewise.

for El Niño, obtained from the MLP and CNN model with regularization (L1=0.01). We
find strong and only focus inside Niño region. The lower part of Figure 5 shows MLP results
without regularization. We find two complementary modes on the exact same parameter
setting.

Fig. 5. Mean relevance maps for El Niño using MLP and CNN models with different weight regularization.
A: MLP, L1=0.01, B: CNN, L1=0.01, C and D: MLP 1st and 2nd mode, respectively, no regularization.

Fig. 6. Mean relevance maps for El Niño from ESN models using different techniques to feed inputs into
the model. A: column-wise, B: piecewise.
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Figure 6 compares mean relevance maps for El Niño, obtained from ESN models,
feeding samples column-wise and as equal-sized pieces, respectively. In both cases, we
find high relevance inside the Tropical Pacific. However, feeding samples column-wise,
highest relevance is found on the passage between South Africa and Antarctica and we
find horizontal stripes.

Table 1. Evaluation metrics for selected models trained on synthetic samples: mse on training and valida-
tion data, the ratio of summed mean relevance over both squares in relation to total relevance, the relative
amount of summed mean relevance over the left square in relation to both squares, and the number of
trainable parameters.

MLP no reg. MLP L1=0.01 CNN L1=0.01 ESN piecewise

msetrain 0.01 0.001 0.005 0.001

mseval 0.053 0.002 0.008 0.180∑
both sq

rel /
∑

total

rel 7% 92% 40% 7%∑
left sq

rel /
∑

both sq

rel 48% 100% 98% 50%

trainable parameters 19,205 19,205 2,223 301

5 Discussion and Conclusion

In this section, we will discuss all results from the previous section in detail and give
an outlook on future research. We have shown, that our MLP and CNN models can be
successfully forced to focus mainly on the left square of our synthetic samples, which is
sufficient to fulfill the classification task. For our CNN model we find artifacts in form
of quadratic patches in mean relevance maps, due to shared kernel weights. When it’s
L1 weight regularization found to be the key to force MLP and CNN models to focus,
we find the leak rate to be crucial for ESN models to determine reservoir memory. Leak
rate needs to be chosen appropriately, to equally take all time steps’ inputs into account,
since we don’t know in advance, which time steps contain most relevant information.
Using two-dimensional inputs column- or row-wise, we find horizontal and vertical stripes,
respectively, which slightly differ for individual training runs. Input samples don’t show
any stripes. This, and the fact, that we find stripes to depend on how we feed sample
into the model, clearly unmasks these stripes to be artifacts, stemming from random
initialized input weights. Highest relevance for ESN models is found on the small gateway
only, when we feed samples column by column. This effect of squeezed relevance is caused
by the varying number of valid grid points for different columns. The number of valid grid
points per row also varies, but the effect is much smaller and can hardly be recognized.
As a solution, we propose a new technique of considering only valid grid points. These
grid points are transformed to a one-dimensional vector, permuted and split into equal-
sized pieces. Like this, stripes disappear and we no longer find elevated relevance on the
gateway. However, both squares are found to be equally relevant, since we cannot apply
weight regularization on ESN models.

From a practical point of view, the model choice in combination with parameter setting
is a tradeoff between explainability and performance. Table 1 shows evaluation metrics for
selected models trained on synthetic samples. While all models perfectly perform the
classification task with 100% accuracy, the mean squared error (mse) of model predictions
compared to true targets and the model focus varies. MLP with weight regularization
shows lowest mse and focuses completely on the left square. This leads to high performance
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in terms of efficiently discriminating classes but low explainability, since all features with
minor relevance are suppressed. The ESN model with feeding samples as equal-sized pieces
comes with a higher mse on validation samples compared to MLP and CNN models and
thus lower performance on the classification task. However, mean relevance maps from
ESN models highlight all features involved in the underlying input samples, that could
reveal valuable insights into existing teleconnections and thus offer higher explainability.

Trained on real world data, our MLP and CNN models with weight regularization act
as a very efficient classifier and only focus on a narrow spot in the Niño region. Without
regularization, the MLP model reveals more structure in mean relevance maps. Moreover,
we find two complementary modes, due to random initialization of weights and biases and
the stochastic nature of the learning algorithm. The first mode shows strong focus on the
Niño region, while the second mode completely ignores the very same region. With this
second mode, the MLP still successfully discriminates ENSO patterns by encountering
information from outside Tropical Pacific.

Using real world samples column-wise for training our ESN model, we again find hor-
izontal stripes in the obtained mean relevance map, that have already been identified as
artifacts in experiments on synthetic data. Highest relevance is found in the region between
South Africa and Antarctica. Since SST input data is only defined over the ocean, the num-
ber of valid grid points is smallest for these columns, forcing relevance to be compressed
onto the remaining valid grid points. Again, splitting input samples into equal-sized pieces
erases both artifacts in mean relevance maps obtained from ESN models. Like this, our
proposed method enhances the explainability for ESN models.

Overall, neither model is found to be superior for image classification with LRP. While
MLP and CNN models appear to be efficient in focusing on most relevant features, mean
relevance maps of ESNs reveal valuable information on existing teleconnections. It is also
worth to mention that ESN models come with a significantly lower number of trainable
parameters, allowing these models to be trained on less training data without overfitting.
With this advantage, ESNs have good prospects for further use on geospatial data and
could also be used in combination with LRP in the context of time series prediction,
when we replace two-dimensional inputs by a number of e.g. climate indices. This ap-
proach could then serve as alternative for long short-term memory (LSTM) models with
attention mechanisms.

Appendix

In this work we only show reproducible results. All models have been implemented in
Python (version 3.9.9) using Tensorflow (version 2.4.1). To keep it as transparent as pos-
sible, we provide data and annotated Python code in Jupyter notebooks containing all
experiments and details on models and methods [25].
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Supplementary Material

LRP for ESNs

In Section 4 we give a heuristic on how to choose the leak rate α from a practical point of
view. Feeding a sample with T time steps into an ESN model, the aim is to equally take
all time steps’ inputs into account, if possible. Here, we add a mathematical validation
to support the empirical approach and explain side effects related to the choice of α.
As described in Section 3, the general concept of LRP needs to be customized for ESN
models. In particular, we work with leaky reservoirs. Reservoir state transition for the
first time step t = 1 and subsequent time steps t = 2..T is outlined in Equations 1 and
2, respectively. The leak rate α determines the reservoir dynamics. To compute reservoir
states x(t) for a given time step in the forward pass, a fraction (1 − α) of the previous
reservoir states x(t− 1) is kept. The current time step’s inputs u(t) are included in some
activation term act[Winu(t) + bin +Wresx(t − 1) + bres]. This term is multiplied with α.
The larger the leak rate, the faster the reservoir reacts to new inputs.

For obtaining mean relevance maps, we unfold reservoir dynamics in time. Each time
step is treated as an individual layer. We use the backward pass and start with model
prediction Y as final or total relevance. A portion of the total relevance is attributed to
every time step’s inputs. Only the remaining relevance is then traced back through the
layers or time steps. Multiplication with leak rate α in reservoir state transition leads to an
exponential decay, when tracing relevance backwards. R(t) denotes residual relevance for
time step t. Once we reach the initial time step t = 1, all residual relevance is attributed
to the initial inputs u(t = 1).

R(t) = exp(−α (T − t)) (6)

Equation 6 states the the exponential decay for a given leak rate α. The left part of
Figure 7 shows the result for different leak rates. We clearly see the fading memory effect
that has been described in Section 4. For leak rates α = 0.1 and 0.2, only the inputs for
time steps t ≥ 50 are considered.

Table 2 shows residual relevance R(t = 1) approximated as exponential decay according
to Equation 6 for various leak rates. Here, we assume to have T = 100 time steps. In
addition to that, Table 2 shows empirical residual relevance R̂(t = 1) obtained from an
ESN model trained on synthetic samples feeding samples column-wise into the model.

Fig. 7. Residual relevance approximated by an exponential decay over T = 100 time steps for various leak
rates α (left-hand side) and rate of change for residual relevance (right-hand side).
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Table 2. Residual relevance R(t = 1) from approximation compared to empirical residual relevance R̂(t =
1) for first time step for ESN model trained on synthetic samples with different leak rates α.

Leak rate α R(t = 1) R̂(t = 1)

0.001 90.5% 90.7%
0.005 60.7% 63.1%
0.01 36.8% 41.9%
0.05 0.7% 2.9%
0.1 0.0% 0.1%
0.2 0.0% 0.0%

Synthetic samples also consist of T = 100 time steps. For leak rates α = 0.001, 0.005 and
0.01, we find R̂(t = 1) = 91%, 63% and 42% of total relevance, respectively, as residual
relevance. This amount is attributed to initial inputs u(t = 1), which gives the initial
inputs an unreasonable high relevance compared to all other time steps’ inputs. For leak
rates α = 0.05, 0.1 and 0.2, we find the remaining relevance attributed to the initial inputs
to be close to zero. The exponential decay is found to be a good approximation.

Using ESN models, the aim is to equally consider all time steps’ inputs, since we don’t
know in advance, which time steps contain most relevant information. Therefore, we need
to look at the rate of change for residual relevance traced backwards through all time steps.
The rate of change can be approximated as first derivative R′(t) of residual relevance R(t)
and is stated in Equation 7.

R′(t) =
∂R

∂t
= α exp(−α (T − t)) (7)

The right-hand side of Figure 7 shows the resulting rate of change for different leak
rates. We find the rate of change to be almost constant for small leak rates α = 0.001,
0.005 and 0.01, reflecting a similar amount of total relevance attributed to each time
step’s inputs u(t), as desired. This is violated for higher leak rates α = 0.05, 0.1 and 0.2,
respectively. For these leak rates the ESN model puts significantly higher weights on later
input steps.

Taking residual relevance and rate of change into account, we need to find a compro-
mise. We want all time steps to be about equally considered. This encourages us to choose
small leak rates. However, we need to avoid an unreasonable high amount of residual rele-
vance to be put on the initial time step’s inputs u(t = 1). One possible solution is to add a
dummy column of constant value one as first input time step for all input samples. Resid-
ual relevance is then absorbed by this dummy column, which doesn’t affect classification
in general and doesn’t distort mean relevance maps, since it is identical for all samples of
both classes. For showing the obtained mean relevance maps, the dummy column is then
omitted.

Data Preprocessing

While the main body of this work focuses on models, methods and results, we provide
details on data preprocessing in this section. Different ANN models require input samples
to be customized in dimensionality and we need to deal with missing data at grid points
located on land. For our MLP models, we only consider valid grid points of raw two-
dimensional input samples. These grid points are then transformed into a one-dimensional
vector as sketched in Figure 8. The number of input units then equals the number of valid
grid points.
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Our CNN models require two-dimensional input samples. Missing values are replaced
by zero. Input samples are then scanned by quadratic kernels. Kernel sizes and step sizes,
also referred to as strides, need to be specified. Figure 9 sketches on the left-hand side an
exemplary sample of dimensions 5× 6 grid points. Here, we assume to work with a kernel
of size 3× 3 and step size is also chosen to be 3 in both directions, x and y. This requires
adding a row of zeros to allow the sample to be completely scanned by our specified kernel
and step size. The modified input sample is shown on the right-hand side of Figure 9.
Adding a row of zeros doesn’t affect mean relevance maps. Zero relevance is attributed
to these additional grid points when we only consider positive pre-activations z+ in the
propagation rule, as stated in Equation 5.

For our ESN models, we need to add a dummy column of ones as first input step to
absorb residual relevance in any case as described above. The way we deal with missing
data varies for different techniques of feeding samples into ESN models. For feeding samples
column- or row-wise, missing values are set to zero, as for our CNN models. Samples
are then sliced column- or row-wise, as sketched in the upper and lower part of Figure

Fig. 8. Transformation of an exemplary two-dimensional input sample consisting of 5 rows and 6 columns
into a one-dimensional vector for our MLP models. Consider only valid grid points. Invalid grid points are
marked as X.
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Fig. 9. Modification of an exemplary two-dimensional input sample consisting of 5 rows and 6 columns by
replacing missing values and adding an additional row of zeros for our CNN models. Invalid grid points
and zeros are marked as X and O, respectively.

10, respectively. When feeding samples as equal-sized pieces, we only consider valid grid
points. These grid points are then transformed into a one-dimensional vector, randomly
permuted and split. The size or the number of grid points per piece needs to be specified.
The number of valid grid points needs to be dividable by the piece size. Therefore, we
optionally add zeros on the trailing edge to allow splitting into equal-sized pieces. Again,
this doesn’t affect mean relevance maps, since zero relevance is attributed to these grid
points. For showing resulting mean relevance maps, additional grid points are discarded.
Preprocessing is demonstrated in Figure 11 for an exemplary sample consisting of 5 rows
and 6 columns. Desired piece size is 5 in this example.

Fig. 10. Preprocessing of an exemplary two-dimensional input sample for feeding samples column-wise
(upper part) or row-wise (lower part) into our ESN models requires adding an additional column or row
of ones, respectively, as first time step u(1) and replacing missing values by zero in any case. Invalid grid
points, zeros and ones are marked as X, O and 1, respectively.
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Fig. 11. Preprocessing of an exemplary two-dimensional input sample for feeding samples as equal-sized
pieces of size 5 into our ESN models. Only valid grid points are transformed into a one-dimensional vector
and randomly permuted. Need to add two zeros at the trailing edge before splitting. First time step’s
inputs consist of ones. Invalid grid points, zeros and ones are marked as X, O and 1, respectively.
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