
David C. Wyld et al. (Eds): ICCSEA, NLAI, SCAI, CSIA, IBCOM, SEMIT, NECO, SPPR, MLDS -2023

pp. 109-117, 2023. CS & IT - CSCP 2023 DOI: 10.5121/csit.2023.132409

AN INTELLIGENT APPROACH TO CODE-
DRIVEN TEST EXECUTION

Rohit Khankhoje

Independent Researcher, Avon, Indiana, USA

ABSTRACT

In the constantly evolving world of software development, it is crucial to have effective

testing methodologies in order to ensure the strength and reliability of applications. This

scholarly article presents a new and intelligent approach to test execution that is driven by

code and utilizes machine learning to greatly improve adaptability and accuracy in testing

processes. Traditional testing methods often struggle to handle changes in code, resulting

in less than optimal test execution. Our proposed method utilizes machine learning

techniques to predict the impact of code modifications on test results, allowing for a more
precise test execution strategy. We have demonstrated significant improvements in test

execution efficiency, reducing unnecessary tests and speeding up feedback cycles. The

following discussion examines these findings, addresses potential limitations, and suggests

future areas for improvement and expansion. Notably, our methodology explains how Git

commits aid in updating features, and how the machine learning model predicts the

updated feature names. This predicted feature name is then integrated into Behavior-

Driven Development (BDD) test selection and execution using standard BDD frameworks.

By seamlessly incorporating machine learning into the testing process, developers can

achieve greater precision and effectiveness, making significant progress in overcoming

challenges posed by changes in code in modern development environments.

KEYWORDS

Test Automaton, Machine learning, Software testing, Automation Framework,Intelligent

Test Strategy

1. BACKGROUND

The conventional model of executing tests driven by code struggles to keep up with the iterative
nature of modern software development. As developers frequently modify code to implement
new features or address issues, the need for an intelligent paradigm for testing becomes evident.
Traditional testing often involves executing an exhaustive set of tests, which leads to redundancy
and prolonged cycles for receiving feedback[1]. This research aims to revolutionize this process

by integrating machine learning, allowing for a more intelligent and targeted selection of tests
based on code changes.

1.1. Git Repository

The Git repository is a system for controlling versions that oversees and monitors alterations in
source code throughout the process of software development. It promotes cooperation among
developers by retaining a record of code modifications, thus facilitating teamwork and ensuring
the integrity of projects. Developers can acquire a local copy of the repository through cloning,

enabling them to make alterations and subsequently push these modifications back to the central
repository. Git guarantees efficient collaboration, code integrity, and the ability to revert to
previous states if necessary. It has emerged as an essential tool in contemporary software

https://airccse.org/csit/V13N24.html
https://airccse.org/csit/V13N24.html
https://doi.org/10.5121/csit.2023.132409

110 Computer Science & Information Technology (CS & IT)

development, delivering a distributed and robust platform for managing code and controlling
versions.

1.2. Machine learning model

A machine learning model is an algorithmic or statistical model that has been designed for the

purpose of detecting patterns and making predictions or decisions based on data. It acquires
knowledge through the process of identifying underlying patterns within training data and then
utilizes this knowledge to generate predictions on new, previously unseen data. The complexity
of these models can range from simple linear regressions to intricate neural networks, depending
on the specific task at hand[2]. They are trained using algorithms that optimize their parameters
in order to enhance their performance. Machine learning models find application in a multitude of
fields, such as image recognition, natural language processing, and predictive analytics, thereby

contributing to the development of automation and intelligent decision-making systems.

1.3. BDD Test Script

Behavior-Driven Development (BDD) scripts are composed in a language that is comprehensible
by both technical and non-technical stakeholders. BDD places a strong emphasis on collaboration
among developers, quality assurance (QA) teams, and business stakeholders in order to ensure
that software development is aligned with business goals. The scripts are commonly written in a
natural language format, such as Gherkin, which employs Given-When-Then statements to depict

behaviors and anticipated outcomes. These scripts function as executable specifications, guiding
the development process and establishing the foundation for automated tests. BDD scripts
facilitate effective communication, diminish misunderstandings, and promote transparency
throughout the software development lifecycle. Prominent BDD tools encompass Cucumber,
SpecFlow, and Behave.

2. INTRODUCTION

In the ever-changing realm of software development, the effectiveness of testing methodologies
plays a crucial role in ensuring the dependability and functionality of applications. Traditional
approaches to testing often encounter difficulties in adapting to the rapid pace at which code
changes occur, resulting in inefficiencies and suboptimal testing outcomes. (Pan et al., 2021) This
study tackles this pressing issue by introducing an intelligent method for executing tests driven

by code, utilizing machine learning to enhance adaptability and precision in the testing process.
Challenges Associated with Conventional Approaches to Test Execution:

2.1. Execution of a Thorough Test Suite

Conventional testing approaches typically entail the execution of a comprehensive suite of tests for
every alteration made to the code, irrespective of the specific areas affected. This exhaustive

execution can result in protracted testing cycles, thereby delaying feedback to developers and
impeding the agility of the development process.

2.2. Redundant Test Runs

In the absence of a mechanism to selectively execute tests based on code changes, developers
may inadvertently run redundant tests that do not contribute to the validation of modified code.
This redundancy consumes valuable resources and prolongs the duration of testing.

Computer Science & Information Technology (CS & IT) 111

2.3. Increased Overhead in Testing

As the codebase expands, so does the size of the test suite. Executing the entire suite for each
code change incurs increased testing overhead, thereby consuming additional time and

computational resources. This becomes particularly burdensome in large-scale projects with
extensive test coverage[8].

2.4. Delayed Feedback

The time-intensive nature of executing a comprehensive test suite can lead to delayed feedback
on the impact of code changes. Quick and actionable feedback is critical for developers to
promptly identify and address issues, especially in agile and continuous integration environments.

2.5. Resource Intensiveness

Running all tests indiscriminately can strain the testing infrastructure and resources, resulting in
longer build and test execution times. This resource intensiveness can hinder the scalability and
efficiency of the testing process.

2.6. Inefficiency in Continuous Integration

In continuous integration workflows, where frequent code changes trigger automated builds and
tests, executing the entire test suite for each commit can lead to inefficiency. Rapid feedback is a

fundamental aspect of continuous integration, and inefficiencies in test execution can
compromise this principle.

2.7. Difficulty in Identifying Impactful Tests

Conventional test execution strategies often lack the ability to precisely identify and execute only
those tests that are affected by specific code changes. This lack of precision makes it challenging
for developers to concentrate testing efforts on the relevant portions of the codebase.

2.8. Limited Scalability

As the codebase expands, concerns arise regarding the scalability of conventional test execution
strategies. The sheer volume of tests and the time required for execution may reach a point where
maintaining an acceptable testing cadence becomes challenging[2].

Addressing these challenges necessitates the adoption of more intelligent and selective test
execution strategies that align with the dynamic nature of modern software development.
Introducing mechanisms to execute tests based on code changes is crucial for optimizing testing
efforts and facilitating a more agile and responsive development process[3].

The issue of carrying out tests in accordance with alterations in code is situated at the point where

the flexible nature of software development meets the necessity for rigorous testing procedures.
As software developers progressively alter and upgrade code to introduce novel functionalities,
rectify errors, or optimize performance, it becomes essential to guarantee that the existing
collection of tests accurately reflects the present condition of the codebase[3]. The difficulty lies
in efficiently identifying and executing solely those tests that are relevant to the recent code
modifications. This research is significant in its potential to reshape the landscape of executing
tests driven by code. By incorporating intelligence through machine learning, it promises to

112 Computer Science & Information Technology (CS & IT)

enhance the precision, efficiency, and adaptability of testing processes, addressing a crucial gap
in current methodologies.

The primary aim of this study is to develop and implement an intelligent method for executing
tests driven by code, one that effectively tackles the challenges posed by dynamic code changes.
Specific goals include:

A. Introducing a Machine Learning Model: Propose a machine learning model capable of
intelligently analyzing code modifications and predicting their impacted features and need
specific tests that feature only.

B. Optimizing Test Execution: Implementing the model to selectively execute tests based on the
identified impact of code changes, thereby reducing redundancy and expediting feedback
cycles.

3. LITERATURE REVIEW

The evolution of software development methodologies has highlighted the crucial role that
testing processes play in ensuring the quality and reliability of applications. While traditional
methods of test execution that are driven by code are fundamental, they are currently facing
challenges due to the rapid evolution of codebases in modern agile and iterative development

environments[4]. This review of existing literature examines the current state of code-driven test
execution and identifies gaps in traditional methodologies, laying the foundation for an intelligent
approach that utilizes machine learning.

Table-1 Most recent studies

However, a comprehensive synthesis of these studies reveals a gap in the literature regarding the
development and implementation of machine learning models specifically designed for code-
driven test execution. This research aims to fill this gap by proposing a novel machine learning
approach that can intelligently analyze code changes and optimize the selection of tests for
execution[5]. In conclusion, the literature review establishes the context by examining the

limitations of traditional code-driven test execution methods and the potential benefits offered by
machine learning. Building upon the existing body of knowledge, this paper introduces an
intelligent approach that addresses the identified gaps, with the potential to revolutionize the
landscape of code-driven test execution in contemporary software development.

Computer Science & Information Technology (CS & IT) 113

4. METHODOLOGY

In the realm of software development, it is of utmost importance to furnish thorough and
comprehensive information within code commit messages. The following table-2 represents the
specific data that developers must input when committing code. This information will then be
utilized to determine which feature tests should be executed in order to test the application. The
machine learning model will utilize the same git log provided to make predictions.

Once the model acquires training data for the purpose of prediction, it utilizes the classification
technique to predict the name of the feature in which the code has been altered and identify the

feature that requires testing. Fig-1 explaining the overall flow of the proposed method.

Fig-1 Solution Design

Table-2 Developer commit required details

Firstly, the File or paths of the files that have been modified or added in the commit must be
explicitly mentioned. This information serves to provide clarity with regards to the exact code
components that have been affected by the commit. For the commit message itself, it is

imperative to clearly specify the scope or nature of the change. This entails indicating whether it
is a bug fix, addition of a new feature, performance enhancement, or any other relevant
categorization. This information aids in comprehending the purpose behind the commit.

Furthermore, it is essential to include the name or identifier of the feature associated with the
code changes. This inclusion provides context regarding the user story or feature that is being
addressed in the commit. If the development process employs feature or user story IDs, it is
recommended to include this identifier in the commit message. This establishes a direct link
between the code change and the associated feature or user story. Fig-2 the present study aims to

demonstrate the correlation between the anticipated nomenclature of a characteristic and the
corresponding nomenclature of a test script in order to execute a particular examination.

Fig-2 Feature testcase association with application feature

114 Computer Science & Information Technology (CS & IT)

By incorporating this information into commit messages, the Git log transforms into a valuable
source of data. This data is utilized by machine learning models for predictive analysis. a
machine learning model can be trained to identify patterns in commit messages and extract
pertinent information such as feature names or associated IDs. This ultimately contributes to the

automation of predicting feature names based on code changes. Consequently, this enhances the
efficiency and accuracy in managing and comprehending the evolution of code over time.

Integrating machine learning prognostications of characteristic appellations with automated
examination frameworks, such as Cucumber BDD (Behavior-Driven Development), can
substantially augment the efficacy of the examination process.

Here is an elucidation of how one can employ machine learning-predicted characteristic
appellations to elect and implement automated examinations within a Cucumber BDD
framework:

Tagging Cucumber Scenarios with Feature Names

After obtaining the anticipated attribute derived from a machine learning model, it is imperative
to utilize the same attribute nomenclature in order to execute a Cucumber Behavior-Driven
Development (BDD) framework test run. In the realm of BDD, test scenarios are commonly
denoted by particular features. It is essential to establish a correlation between each scenario or
feature file and a label that aligns with the prognostic characteristic appellation.

For instance, if a Cucumber scenario is related to a feature denominated "User Authentication,"
label it with @User Authentication.

Automation Test Selection Based on Predicted Feature Name:

In order to execute BDD tests dynamically, it is necessary to establish the feature name within the
runner class in the BDD framework, After the machine learning model prognosticates the feature
name for a specific code alteration, utilize this prognosticate feature name to dynamically select
the pertinent automation examinations.

Run Only Selected Scenarios:

Configure your test runner to execute solely the scenarios labeled with the prognosticate feature

name. This assures that solely pertinent examinations associated with the prognosticate feature
are implemented. Conduct the automated examinations using the configured Cucumber runner.
This approach facilitates selective execution of examinations based on the prognostic feature
name, permitting a targeted and efficient testing process.

Computer Science & Information Technology (CS & IT) 115

By integrating machine learning prognostications with Cucumber BDD and labeling scenarios
with feature names, one establishes a dynamic and adaptive testing framework. This approach
optimizes the test suite by selectively executing solely the pertinent examinations associated with
the prognostic feature, diminishing test execution time and resource utilization while upholding

comprehensive test coverage for the identified feature.

5. DISCUSSION

Despite the promising findings, it is imperative to recognize the constraints associated with this
approach. The accuracy of feature predictions heavily relies on the quality and diversity of

historical data utilized to train the machine learning model. In situations where there is limited
historical data or when codebases evolve rapidly, the predictive accuracy of the model may be
compromised. To overcome this limitation, continuous refinement of the model and exploration
of more advanced machine learning techniques are necessary[6].

Another aspect to consider is the necessity for robust error handling mechanisms in the event of
inaccurate predictions. Further investigation should be conducted to devise strategies for handling
unforeseen scenarios and false positives/negatives. There are potential areas for improvement,
including:

5.1. Dynamic Test Suite Generation

The exploration of methods that dynamically generate test suites based on predicted features is
essential. This allows for a more precise control over the scope of testing.

5.2. Integration with CI/CD Pipelines

Enhancing the integration with continuous integration and continuous delivery (CI/CD) pipelines
is crucial. This will facilitate the seamless incorporation of the intelligent test execution approach

into the development workflow[7].

5.3. Real-time Feedback Mechanisms

The implementation of real-time feedback mechanisms is necessary to update the machine
learning model based on the outcomes of executed tests. This ensures continuous learning and
adaptation[2].

5.4. Collaborative Testing

The exploration of collaborative testing practices, where developers actively contribute to the
testing process by validating and refining predictions, is recommended.

The intelligent approach to code-driven test execution introduces a paradigm shift in testing
practices, leveraging machine learning to tailor testing efforts to the ever-changing software
landscape. While acknowledging limitations, the approach demonstrates substantial advantages
over traditional methods and establishes the foundation for future innovations in the field of
intelligent software testing.

6. CONCLUSION

In this research, we have introduced a groundbreaking and sophisticated strategy for executing
tests based on code, harnessing the power of machine learning to anticipate the consequences of

116 Computer Science & Information Technology (CS & IT)

alterations in code on particular functionalities. Our discoveries and contributions emphasize the
importance of this strategy in revolutionizing customary testing methodologies and enhancing the
efficiency of the testing procedure in dynamic software development settings.

In contrast to conventional methodologies that implement a fixed array of examinations for every
alteration in code, the intelligent approach offers numerous advantages. Targeted Testing, for
instance, focuses solely on the relevant examinations that pertain to the specific attributes
affected by the alterations in code. This guarantees that the exertion put forth in testing is
efficiently guided towards areas that have potential risks. Resource Optimization is another
advantage, as the approach avoids conducting unnecessary examinations, which in turn optimizes
the utilization of resources and leads to quicker building and execution of tests. Adaptability is
yet another advantage of this approach, as it adjusts itself to the ever-changing codebase. This

makes it particularly suitable for agile development environments where frequent changes in
code occur. Enhanced Developer Productivity is yet another benefit, as it facilitates faster
feedback on code changes, thus reducing waiting times for test results and enabling quicker
identification and resolution of issues. Additionally, it also reduces the overall testing overhead
by selectively executing tests, resulting in a more scalable and efficient testing process. To
conclude, our investigation introduces a fundamental alteration in the execution of tests guided
by code, thereby providing a more sophisticated and adaptable approach to testing. The results

demonstrate the practicality and advantages of leveraging machine learning in the testing
procedure, which in turn opens up possibilities for enhancements in the efficiency of testing, the
productivity of developers, and the overall quality of software. The proposed intelligent approach
not only tackles existing challenges but also establishes a foundation for future innovations in the
constantly evolving domain of software development and testing.

REFERENCES

[1] Al-Sabbagh, K., Staron, M., Hebig, R., & Gomes, F. (2021). A classification of code changes and test

types dependencies for improving machine learning based test selection. 10.1145/3475960.3475987

[2] Khankhoje, R. (2023). Quality Assurance in the Age of Machine Learning. Quality Assurance in the

Age of Machine Learning, 13(10). 10.29322/IJSRP.13.10.2023.p14226

[3] Lachmann, R., Sandro, S., & Nieke, M. (2016). System-Level Test Case Prioritization Using Machine

Learning. 10.1109/ICMLA.2016.0065
[4] Marijan, D. (2022). Comparative Study of Machine Learning Test Case Prioritization for Continuous

Integration Testing. 10.48550/arxiv.2204.10899

[5] Martins, R., Rui Abreu, & Lopes, M. (2021). Supervised Learning for Test Suit Selection in

Continuous Integration. 10.1109/ICSTW52544.2021.00048

[6] Mochamad, M. M., & Tetsuro, T. (2020). Code Coverage Similarity Measurement Using Machine

Learning for Test Cases Minimization. 10.1109/GCCE50665.2020.9291990

[7] Negar, N. (2017). Machine Learning to Uncover Correlations Between Software Code Changes and

Test Results.

[8] Pan, C., & Pradel, M. (2021). Continuous test suite failure prediction. 10.1145/3460319.3464840

[9] Pan, R., Bagherzadeh, M., & Ghaleb, T. (2021). Test Case Selection and Prioritization Using Machine

Learning: A Systematic Literature Review, (arXiv: Software Engineering).

AUTHOR

I am Rohit Khankhoje, a Software Test Lead with over 15+ years of experience in software quality

assurance and test automation. With a passion for ensuring the delivery of high-quality software products, I

am at the forefront of harnessing cutting-edge technologies to streamline and enhance the testing process. I

am dedicated to advancing the automation testing field and continue to inspire colleagues and peers.

© 2023 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

	Abstract
	2.1. Execution of a Thorough Test Suite
	2.3. Increased Overhead in Testing
	2.4. Delayed Feedback
	2.5. Resource Intensiveness
	2.6. Inefficiency in Continuous Integration
	2.7. Difficulty in Identifying Impactful Tests
	2.8. Limited Scalability
	A. Introducing a Machine Learning Model: Propose a machine learning model capable of intelligently analyzing code modifications and predicting their impacted features and need specific tests that feature only.
	B. Optimizing Test Execution: Implementing the model to selectively execute tests based on the identified impact of code changes, thereby reducing redundancy and expediting feedback cycles.

