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ABSTRACT 
 
This paper aims to find an automatic solution for the modulation’s classification of different 

types of radio signals by relying on Artificial Intelligence. This project is part of a long process 

of Communications Intelligence looking for an automatic solution to demodulate, decode and 

decipher communication signals. Our work therefore consisted in the choice of the database 

needed for supervised deep learning, the evaluation of existing techniques on raw 

communication signals, and the proposal of a solution based on deep learning networks 

allowing to classify the types of modulation with an optimal ratio (computation time / accuracy). 
We first carried out a research work on the existing models of automatic classification in order 

to use them as a reference. We consequently proposed an ensemble learning approach based on 

tuned ResNet and Transformer Neural Network that is efficient at extracting multi- scale 

features from the raw I/Q sequence data and also considers the challenge of predicting in low 

Signal Noise Ratio (SNR) conditions. In the end, we delivered an architecture that is easy to 

handle and apply to communication signals. This solution has an optimal and robust 

architecture that automatically determines the type of modulation with an accuracy up to 95%. 
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1. INTRODUCTION 
 

Communication signals, marked by diverse modulations to achieve high data rates while 
mitigating interference, present a formidable challenge for Intelligence Systems tasked with 

monitoring the communications spectrum. As the complexity of modulations increases, the 

identification and demodulation processes become progressively intricate, particularly for 
extracting valuable information in the realm of Communications Intelligence (COMINT). 

 

In the domain of COMINT, where the primary objective is to extract meaningful information, the 

study focuses on the intricate task of recognizing and classifying modulations in intercepted 
signals. This is pivotal for understanding the type of transmission and subsequently facilitating 

the demodulation process. Unlike Electronic Intelligence (ELINT), which predominantly deals 

with radars, COMINT involves decoding communication signals, whether voice or data. 
 

In the transmission of information through communication signals, modulation is a fundamental 

process. The information is modulated into a specific frequency, enabling high-speed 
transmission and overcoming atmospheric attenuation challenges. Intercepting an unknown 
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signal within the vast spectrum of communications initiates the Intelligence process, involving 
measurements of frequency and signal levels. However, the initial and critical challenge lies in 

determining the modulation used for transmitting the radio signal. Traditionally, intelligence 

approaches involved employing various demodulators iteratively, a method proven to be slow 

and ineffective, particularly with modern modulations. The advent of Artificial Intelligence (AI) 
has significantly transformed this landscape. Automatic classification of modulation types at the 

receiver has garnered substantial attention in the wireless research community, notably improving 

spectrum utilization efficiency. Early efforts utilized spectrogram images generated by different 
modulations and applied Convolutional Neural Network (CNN) architectures. Recent studies 

have taken a novel approach, leveraging the Inphase and Quadrature signals (I/Q) of the signal— 

referred to as the ”DNA” of any signal. I/Q data has demonstrated superior performance in 
automatic modulation recognition compared to traditional approaches. Essentially, any signal 

comprises two components: the In-phase component (Cosine) and the Quadrature component 

(Sinus). These I/Q samples describe a complex baseband signal, where the real and imaginary 

parts are represented by the waveforms I(t) and Q(t).  
 

The complete signal description, X(t) = I(t)+jQ(t), encapsulates the essence of the signal, encoded 

into a matrix of two rows representing I and Q. This I/Q-based approach proves to be a powerful 
methodology for modulation classification, providing a comprehensive and effective means of 

deciphering the intricate modulations present in modern communication signals. 

 

2. BACKGROUND 
 
Automatic Modulation Classification (AMC) techniques encompass a spectrum of 

methodologies, broadly categorized into traditional approaches, where most of them are basically 

categorized into the likelihood-based (LB) and feature-based (FB) approaches and advanced 
techniques leveraging deep learning. 

 

2.1. Traditional Approaches 
 

2.1.1. Likelihood-Based Methods 

 
In the early stages of Automatic Modulation Classification (AMC), likelihood-based methods 

were prevalent. These methods involve the precise derivation of likelihood functions for different 

modulation types. The fundamental idea is to match the received signal against a set of 

predefined likelihood functions to determine the most probable modulation type. Likelihood-
based methods employ probability theories and hypothetical models to address modulation 

identification challenges in scenarios with both known and unknown channel information [1]. 

While these approaches can achieve optimal classification accuracy under the assumption of 
perfect knowledge of signal and channel models, they demand considerable computational 

complexity for estimating model parameters [2], [3]. 

 

2.1.2. Feature-Based Approaches 

 

In the realm of AMC, feature-based techniques serve as a foundational approach for 

distinguishing modulation patterns. This method hinges on feature extraction and classifier 
building, offering a pragmatic balance between computational efficiency and classification 

accuracy. The fundamental premise is to capture the distinctive characteristics of various signals 

without the need to intricately derive the likelihood function of the signal. The feature-based 
approach unfolds in two critical steps: pre-processing the signal and extracting relevant features. 

Subsequently, a classifier is applied to categorize the signal based on these features. The success 
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of this approach crucially depends on the careful selection of signal attributes and the 
construction of robust classifiers. Feature-based techniques are particularly advantageous in 

scenarios where algorithm complexity needs to be minimized, making them suitable for real-time 

applications and resource-constrained environments [4]. 

 
Although feature-based methods exhibit adaptability to various channel models, they encounter 

significant limitations, including the weak discriminatory capability of manually crafted features 

and the constrained learning capacity of conventional classification algorithms [5], [6]. 

 

2.2. Advanced Approaches 
 
Deep learning (DL), with its exceptional data processing capabilities, has drawn extensive 

interest and been applied in a variety of sectors because of the rapid growth of Artificial 

Intelligence (AI) technology including radio signal processing for communications. The use of 
deep learning for AMC is an active area of research, with new techniques and architectures being 

proposed to improve classification accuracy and reduce computational complexity. Indeed, 

applications of DL as a solution to conventional feature-based signal classification issues provide 
an efficient and cost-effective alternative for AMC. Several recent AMC methods utilizing deep 

networks such as deep neural networks (DNNs), convolutional neural networks (CNNs) [7], 

recurrent neural networks (RNNs), and long short-term memory networks (LSTMs) [8], have 

been proposed to address the existing limitations of traditional approaches. However, the 
performance of these deep learning-based AMC methods may still be affected by the over-fitting 

issue brought on by a considerable number of network parameters [9]. 

 

2.3. Ensemble Learning for AMC 
 

Ensemble learning has emerged as a powerful paradigm in machine learning, demonstrating 
significant success in various domains. The concept involves combining predictions from 

multiple models to enhance overall performance, providing improved robustness and accuracy 

[10]. The application of ensemble models in Automatic Modulation Classification (AMC) has 
garnered attention due to its ability to address the complex and dynamic nature of communication 

signals. Ensemble models integrate diverse sources of information, enabling them to capture 

intricate patterns inherent in modulation types and varying SNR conditions [11],[12]. Ensemble 

models offer several advantages in the context of AMC. They excel in handling diverse 
modulation types, adapting to variations in SNR, and providing enhanced accuracy in 

classification outcomes. Recent advancements in ensemble models for AMC include innovative 

architectures and methodologies. Noteworthy examples include ensemble models based on deep 
learning, leveraging architectures such as deep neural networks (DNNs), convolutional neural 

networks (CNNs), and recurrent neural networks (RNNs). These models demonstrate the 

potential to improve classification accuracy and reduce computational complexity [13]. 
 

Despite their success, challenges exist in designing effective ensemble models for AMC. Striking 

the right balance between model diversity and coherence is crucial. Additionally, addressing  

issues related to overfitting and ensuring the generalization of ensemble models across different 
signal scenarios are ongoing research areas. The proposed ensemble model in this study draws 

inspiration from the advancements and challenges outlined in the literature on ensemble models 

in AMC. The choice of combining ResNet and Transformer neural networks is motivated by the 
need to leverage complementary strengths. A critical analysis of existing ensemble models in 

AMC reveals gaps and opportunities for improvement. The proposed model aims to address these 

gaps by integrating state-of-the-art architectures and refining the ensemble learning process for 
more effective modulation classification. 
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3. THE PROPOSED APPROACH  
 

In this section, we present our innovative approach (Figure 1) to modulation classification, 

leveraging an ensemble of two powerful neural network models: Residual Network (ResNet) and 

Transformer Neural Network (TNN): one optimized for accurately predicting signals with high 
SNRs, and the other for predicting signals with low SNRs. The key objective is to address 

challenges posed by varying Signal-to-Noise Ratios (SNRs) by tailoring each model to excel in 

specific SNR conditions. The ensemble design aims to capitalize on the complementary strengths 
of ResNet, proficient in spatial feature extraction, and TNN, adept at handling sequential data and 

capturing temporal dependencies. 

 

 
 

Figure 1. Proposed ensemble model (Resnet with TNN). 

 

3.1. High SNR Model: Residual Net 
 

ResNet (Residual Network) is a type of convolutional neural network (CNN) architecture that 
was introduced in 2015 by Microsoft researchers [14]. The key innovation of ResNet is the use 

of” residual connections,” which allow the network to learn a residual mapping rather than an 

explicit mapping from the input to the output. This makes it possible to train much deeper 
networks than was previously possible, while still maintaining satisfactory performance and 

without encountering the vanishing gradient problem. ResNet has been used to achieve state-of- 

the-art results on a variety of im-age classification tasks and can also be utilized for AMC [15]. 

 
The ResNet architecture is composed of two main parts: the residual stack and the residual unit. 

The residual stack is a sequence of residual unit, where each unit contains multiple layers. The 

residual stack is responsible for learning a residual function with reference to the layer inputs. 
This can be accomplished by adding the input of a layer to the output of the same layer, before 

passing it through the next layer. It is responsible for deeping network and allowing it to learn 

complex characteristics from the data. The residual unit is the core building block of the ResNet 

architecture. It consists of two or more convolutional layers, with the output of the first layer 
being added to the input of the second layer. This helps to save information from the source and 

allows the network to learn a residual function. The residual unit also includes a batch that 
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normalize the layer, which is used to normalize the output of the convolutional and im-prove the 
stability of the network. 

 

3.2. Low SNR Model: Transformer Neural Network 

 

The TNN is an architecture that is solving easily sequence to sequence tasks in the long-range 

dependencies [16]. Transformer models apply a set of mathematical procedures known as 
attention or self-attention, to detect influence and dependency of distant data elements. Attention 

mechanisms are used to weight the various parts of the input signal differently, which can help 

the network focus on the most important parts of the signal, like the signal of interest, and 

disregard the noise. The core function of this mechanism is to determine which features in the 
input are significant for the target and which features are not by generating a weighting 

coefficient to weight the input to sum up for a given target. 

 
The Transformer neural network architecture comprises several layers, including encoding and 

decoding. The encoder is composed of multiple layers of self-attention and feed-forward neural 

networks. The self-attention mechanism enables the model to weigh the importance of different 
in- put components when making predictions. The feed-forward neural network is used to process 

the output of the self- attention layer. 

 

The decoder is also composed of multiple layers of self-attention and feed-forward neural 
networks. The decoder also uses a mechanism called “masked self-attention” which prevents the 

model from ”peeking” at future tokens in the input sequence when making predictions. The 

transformer architecture also contains a Multi-Head Attention mechanism, which allow the model 
to attend to various parts of the input at the same time, improving its ability to understand the 

input. It is highly parallelizable and computationally efficient. The architecture used is as follows: 

 
• Transformer Block: contains a Feed-Forward neural network (FFN) with 256 nodes, used to 

increase the capacity of the model by introducing non- linearity. 

• Global Average Pooling: average of all the values in the input tensor. 

• Alpha Dropout (0.3): which randomly drops out certain proportion of the activations to 
prevent overfitting. It maintains the mean and variance of the input by keeping them at their 

original values. 

• Two fully connected network along with Alpha Dropout (0.2): the activation function 
applied is SeLU that stands for Scaled Exponential Linear Unit. 

 

The Transformer neural network has been chosen for low SNR signals as it is able to handle 

sequential data such as time series, and also it has been shown to be effective in tasks that require 
understanding the context and dependencies among different inputs. Indeed, our method involves 

using a transformer encoder to extract features from a low SNR signal, which are then used by a 

transformer decoder to reconstruct the signal. The encoder and decoder are jointly trained to 
reduce the error of reconstitution between input and out-put signals. 

 

3.3. Ensemble Model Integration 

 

The ensemble model proposed in this study leverages the synergies between two distinct deep 

learning architectures: Residual Network (ResNet) and Transformer Neural Network (TNN). This 

integration is designed to harness ResNet’s proficiency in capturing spatial features and TNN’s 
effectiveness in handling sequential data and temporal dependencies. 

 

ResNet, optimized for high Signal-to-Noise Ratio (SNR) environments, excels in distinguishing 
modulation signals in clear, noise-free conditions. To seamlessly integrate ResNet into the 
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ensemble, its spatial feature extraction output becomes a crucial input. The model is trained to 
make predictions based on spatial characteristics. Conversely, the Transformer Network is 

tailored for low SNR scenarios and adeptly processes sequential data, making it suitable for 

capturing temporal dependencies. 

 
In the ensemble, the TNN’s output, enriched with its self-attention mechanisms, contributes 

predictions based on sequential patterns in the signal. Unique to our ensemble model is the 

simultaneous prediction capability of both ResNet and TNN. Each model independently 
processes the input signal and generates a prediction. The ensemble decision-making mechanism 

is then employed, where the maximum prediction among the two is selected as the final output. 

This strategy ensures that the ensemble benefits from the strengths of both models, providing a 
robust and adaptive classification approach. During the joint training of the ensemble, the models 

are fine-tuned collaboratively. This involves optimizing the parameters of ResNet and TNN while 

incorporating the decision-making mechanism that selects the maximum prediction. The 

ensemble learns to dynamically adapt to varying challenges posed by different SNR conditions, 
making it a versatile solution. Architecturally, the ensemble model is enhanced to accommodate 

the dual predictions and the decision making process. Additional layers and connections are 

introduced to facilitate the flow of information between ResNet and TNN, preserving their 
unique contributions to the overall classification process. 

 

The proposed ensemble model uniquely involves the simultaneous predictions of ResNet and 
TNN, with the final output determined by selecting the maximum prediction. This dynamic 

approach ensures that the ensemble is robust and capable of capitalizing on the strengths of both 

models, ultimately enhancing the accuracy of modulation classification across diverse SNR 

conditions. 

 

4. EXPERIMENTAL RESULTS 
 

4.1. Experimental Setting: Dataset Selection and Characteristics 
 

To validate the efficacy of our proposed model, we curated a comprehensive dataset that 

combines synthetic and real-world gathered data. This dataset is carefully designed to encompass 
a diverse range of modulation scenarios, including both synthetic and simulated channel effects. 

 

4.1.1. Dataset Composition 

 
The dataset consists of the following key components: 

 

• Synthetic Data: Our synthetic dataset incorporates twenty-four different modulation types, 
reflecting the complexities of real-world communication. Notably, high-order modulations 

prevalent in high-SNR low-fading channel environments are included. 

 
• Real Gathered Data: To further enhance the realism of our dataset, we incorporated real-

world gathered data with 44,876 frames, each representing different modulations at varying 

noise levels. The presence of real-world noise introduces challenges that closely mimic 

practical communication scenarios. 
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4.1.2. Dataset Structure 

 

The dataset is structured as follows: 

 

• Size: In total, our dataset comprises 2,600,780 samples, ensuring a robust representation 
of diverse modulation scenarios. 

• Split: We partitioned the dataset into training (80%) and testing (20%) sets, maintaining a 

balanced distribution to ensure unbiased model evaluation. 
 

4.1.3. Modulation types 

 
Our dataset covers a spectrum of modulation types (See Figures 3 and 4), including: 

 

• PSK Modulations: QPSK, 8PSK, 16PSK, 32PSK, 16APSK, 32APSK, 64APSK, 128APSK. 

• QAM Modulations: 16QAM, 32QAM, 64QAM, 128QAM, 256QAM. 
• Others: AM-SSB-WC (Amplitude Modulation - Single Sideband – Wideband Carrier). 

 

4.1.4. Synthetic Dataset Details 

 

The synthetic dataset is characterized by: 

 
• SNR Levels: Featuring twenty-six levels of Signal-to-Noise Ratio (SNR) for each 

modulation type, providing a comprehensive range of noise conditions. 

• Frame Composition: Comprising 4,096 frames for each modulation-SNR combination, 

with each frame containing 1,024 complex time-series samples. 
• Data Format: Samples are represented as floating-point in-phase and quadrature 

(I/Q) components. 

 

 
 

Figure 2. FSK and PSK modulations. 

 

 

 
 
 
 
 

 
Figure 3.  4 DPSK modulation in constellation  representation. 

 

4.1.5. Real Dataset Characteristics 

 
The real dataset introduces authentic challenges: 

 

• Frame Count: Containing 44,876 frames, each representing different modulations in the 

presence of real-world noise. 
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• Classification Challenges: The noise component in the real dataset enhances the 
difficulty of modulation classification, reflecting the complexities encountered in 

practical applications. Both synthetic and real datasets were thoughtfully merged into a 

unified dataset of 2,600,780 samples, ensuring a holistic representation of diverse 

modulation scenarios. 
 

4.1.6. Technical Implementation 

 
All neural network implementations are constructed using Keras, with Tensorflow serving as the 

backend, ensuring a robust and standardized framework for model development and evaluation. 

In summary, our dataset composition, structure, and inclusion of both synthetic and real-world 
data positions it as a robust foundation for evaluating the performance of our proposed ensemble 

model under varied and realistic conditions. 

 

4.2. Results for high SNR (ResNet) 
 

After conducting various experiments, it was observed that the ResNet model achieved almost 

perfect accuracy in classifying the high signal-to-noise ratio (SNR) dataset. The highest accuracy 
attained by the model was 95.9%, which was achieved at 30dB (Figure 5). Nevertheless, the 

classification over signals at a low SNR was too modest (35% for -4 dB). This is due to the effect 

of noise, and it is also related to certain modulation signals which are clearly more difficult to 
classify due to signal characteristics. 

 

The consistency of our results across all test cases indicates that this deep learning model is 

robust and generalizable for predicting high SNR signals rather than those in low SNR 
environments (Figures 7, 6 and 8). Furthermore, when comparing our results to those of other 

state-of-the-art techniques for high SNR conditions, our proposed ResNet-based method 

surpasses existing approaches in terms of accuracy.  
 

This showcases the potential of our method as a dependable solution for automatic modulation 

classification tasks in high SNR conditions. 

 

 
 

Figure 5. Confusion matrix of the ResNet model at         Figure 6. Confusion matrix of the ResNet model at    

                +30 dB SNR.                                                                            -20dB SNR. 
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Figure 7. Confusion matrix of the ResNet model                Figure 8. Confusion matrix of the ResNet model     
                at - 14dB SNR.                                                                   at +26dB SNR. 

 

4.3. Results for low SNR (Transformer network) 
 

The Transformer Network (TNN) underwent rigorous testing under challenging low SNR 

conditions, and the outcomes revealed its impressive capabilities. The model exhibited a 
remarkable ability to not only reconstruct input signals but also to accurately recognize them, 

achieving an outstanding accuracy rate of 72.6%. This performance signifies a substantial 

advancement over previous methodologies that struggled to attain high accuracy rates in low 

SNR conditions. The Transformer Network’s efficacy in such challenging environments 
establishes it as a breakthrough in the realm of modulation classification under adverse signal-to-

noise scenarios. In direct comparison with the ResNet model, which encountered difficulties in 

detecting signals in low SNR conditions (ranging from -20 dB to 0 dB) and achieved a maximum 
accuracy of only 20%, the Transformer Network’s superiority becomes apparent. This notable 

contrast highlights the inherent limitations of traditional deep learning models, such as ResNet, 

when tasked with signal processing in environments with low SNR.  
 

The robustness of the Transformer Network in low SNR conditions can be attributed to its 

architectural features, particularly the incorporation of self-attention mechanisms. These 

mechanisms empower the model to selectively focus on relevant components of the input signal 
while effectively filtering out noise. By intelligently attending to significant parts of the signal, 

the Transformer Network demonstrates a unique resilience to the challenges posed by low SNR 

conditions, resulting in a substantial boost in classification accuracy. The success of the 
Transformer Network in low SNR conditions holds promising implications for real-world 

applications, particularly in communication systems where noise interference is a prevalent 

concern. The model’s ability to navigate through challenging signal environments positions it as 

a valuable tool for modulation classification tasks in scenarios where maintaining signal 
integrity amidst low SNR is crucial. 

 

In conclusion, the Transformer Network’s outstanding performance in low SNR conditions, 
coupled with its architectural strengths, marks a significant stride forward in the development of 

robust and accurate modulation classification models, particularly in the face of challenging 

noise-laden communication channels. 

 

4.4. Results of ensemble model 
 
The experimental results of the deep ensemble learning model, depicted in Figures 9, 10, 11, and 

12, offer a comprehensive insight into the model’s performance across a spectrum of Signal-to-
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Noise Ratios (SNRs). The chosen architecture consistently outperforms baseline models, 
showcasing superior results for both low and high SNR conditions.  

 

The proposed ensemble architecture excels in achieving higher overall accuracy, a notable 

advantage that becomes apparent when considering diverse SNR scenarios. Figure 11 and Figure 
10 depict the model’s robust performance in low SNR conditions, while Figure 12 and Figure 9 

highlight its proficiency in high SNR environments. 

 
These findings underscore the efficacy of the ensemble learning approach in enhancing the 

stability and accuracy of the model across varied SNR conditions. The ensemble model’s ability 

to consistently outperform individual baseline models reflects its capacity to adapt and perform 
optimally under different signal challenges. Notably, our observations reveal a remarkable trend: 

when the signal-to-noise ratio (SNR) is lower, the classification performance of the ensemble 

model is approximately 50% greater than that of the single baseline model, ResNet. This 

substantial performance gain in low SNR conditions highlights the inherent strength of ensemble 
learning in mitigating the impact of noise and improving classification accuracy when signal 

clarity is compromised. The observed performance of the ensemble model has significant 

implications for modulation classification tasks in practical communication scenarios.  
 

The model’s ability to maintain high accuracy across a range of SNR conditions positions it as a 

robust solution for real-world applications, where signal quality can vary widely. 
 

In conclusion, the ensemble learning model’s superior performance across different SNR levels 

signifies its adaptability and resilience in the face of varying signal challenges. These results 

strengthen the case for employing ensemble learning as an effective strategy for improving the 
stability and accuracy of modulation classification models, particularly in dynamic 

communication environments where SNR fluctuations are prevalent. 

 

 
 

Figure 9. Confusion matrix of the ensemble model          Figure 10. Confusion matrix of the ensemble  

                model at +30dB SNR.                                                          at -20dB SNR 
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Figure 11. Confusion matrix of the ensemble model       Figure 12.Confusion matrix of the ensemble model 

                  at -18dB SNR.                                                          at +24dB SNR. 

 

4.5. Advantages in Practical Applications 
 

To elucidate the advantages of our chosen models in practical applications, we consider the 
following factors: 

 

4.5.1. ResNet in High SNR Environments: 

 
Capturing Spatial Features in Rich Detail: 

 

ResNet’s effectiveness in high Signal-to-Noise Ratio (SNR) scenarios is underpinned by its 
proficiency in capturing spatial features from high-dimensional data. The architecture’s unique 

use of residual connections enables the network to learn intricate patterns and structures in the 

data. In modulation classification tasks characterized by high SNR and minimal fading, ResNet 
excels at extracting and interpreting spatial features. This capability is crucial for accurately 

distinguishing modulation signals within clear, noise-free conditions. 

 

Robust Signal Discernment in Noise-Free Conditions: 
 

In pristine environments with high SNR, ResNet showcases a remarkable ability to discern subtle 

nuances in modulation signals. The model’s capacity to navigate through intricate spatial patterns 
ensures a high level of accuracy in identifying modulation schemes, contributing to its reliability 

in scenarios where signal clarity is paramount. The robustness of ResNet in noise-free conditions 

positions it as a dependable solution for applications where the integrity of the transmitted signal 

is of utmost importance, such as in high-quality communication channels. 
 

Applicability in Real-World High-SNR, Low-Fading Channels: 

 
Furthermore, ResNet’s aptness extends to real-world high-SNR, low-fading channel 

environments. Its adaptability to varying signal complexities makes it well-suited for scenarios 

where signal strength is consistently high. This adaptability enhances its applicability in 
communication systems where maintaining a high SNR is a priority, ensuring reliable 

performance in conditions akin to those encountered in stable communication channels. 

 

4.5.2. TNN in Low SNR Environments: 
 

Handling Sequential Data with Precision: 
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The Transformer Neural Network (TNN) emerges as a robust solution for modulation 
classification tasks in low Signal-to-Noise Ratio (SNR) environments. Its strength lies in its adept 

handling of sequential data, a characteristic particularly valuable in scenarios marked by low 

SNR and heightened noise levels. TNN’s architecture, based on attention mechanisms, enables it 

to analyze sequential input signals with precision, allowing for effective extraction of temporal 
dependencies. 

 

Selective Focus on Relevant Signal Components: 
 

The distinctive feature of attention mechanisms within TNN empowers the model to selectively 

focus on relevant parts of the input signal. In low SNR conditions, where noise can obfuscate 
crucial signal components, TNN’s ability to discern and prioritize informative sections of the 

signal proves advantageous. This selective focus contributes to the model’s resilience against 

noise interference, enhancing its accuracy in classifying modulation schemes in challenging, low 

SNR environments. 
 

Adaptability to Real-World Noisy Communication Channels: 

 
TNN’s suitability for modulation classification in low SNR conditions extends to real-world 

communication channels characterized by noise and interference. Its ability to effectively handle 

sequential data, coupled with the attention mechanisms, positions TNN as a viable solution for 
applications where signal degradation due to noise is a prevalent challenge. The model’s 

adaptability in such noisy communication channels highlights its potential for deployment in 

practical scenarios with varying degrees of signal clarity. 

 
In summary, our choice of ResNet and Transformer Neural Network is informed by a nuanced 

understanding of their strengths and limitations. While ResNet excels in high SNR conditions, 

TNN demonstrates superiority in low SNR environments. The ensemble of these models 
leverages their respective strengths, resulting in a robust solution that exhibits improved stability 

and accuracy across a spectrum of SNR scenarios. 

 

 CONCLUSION 
 
As key part of communication signal processing, automatic modulation classification (AMC) has 

become increasingly crucial in areas such as cognitive electronic warfare and cognitive radio 

(CR) with the development of Artificial Intelligence, including Deep Learning, neural networks 
and others. Its primary goal is to accurately classify the modulated modes of the received signals. 

This paper proposes an end-to-end deep learning model for modulation signal classification, 

which uses an ensemble learning network to boost the model’s stability and integrate the 

prediction capacity of several features. Ensemble learning techniques are commonly employed 
for managing multi-class classification problems and enhancing the overall accuracy of 

classification. These methods work by improving the functionality of features and promoting 

each model. Our approach in-volves leveraging the strengths of two deep learning architectures: 
ResNet and Transformer network and learning from each other to form a robust algorithmic 

framework with strong adaptability. Through our experiments, we demonstrated that the 

proposed deep ensemble method achieves high classification recognition accuracy and stability 
for both high and low SNRs. 
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