
G-KMM: A flexible kernel mean matching

optimization method for density ratio estimation

involving multiple train & test datasets

Cristian Daniel Alecsa

Technical University of Cluj-Napoca, Cluj-Napoca, Romania
Romanian Institute of Science and Technology, Cluj-Napoca, Romania

Abstract. In the present paper we introduce new optimization algorithms for the task of density ratio
estimation. More precisely, we consider extending the well-known KMM (kernel mean matching) method
using the construction of a suitable loss function, in order to encompass more general situations involving
the estimation of density ratio with respect to subsets of the training data and test data, respectively.
The codes associated to our Python implementation can be found at https://github.com/CDAlecsa/

Generalized-KMM.

Keywords: Kernel mean matching, quadratic optimization, density ratio estimation, loss function.

1 Introduction

In statistical data processing, the comparison of two distributions is of paramount im-
portance. In general, the problem of assessing whether two probability distributions are
equivalent or not is addressed through the so-called two-sample tests. There exists clas-
sical methods that tackle this issue, such as the t-test which compares the means of
two Gaussian distributions with common variance, and the well-known non-parametric
Kolmogorov-Smirnov test. Recently, in [1], Gretton et. al. introduced the maximum mean
discrepancy (MMD) statistic which compares the similarities through a positive-defined
kernel across two samples in an universal reproducing kernel Hilbert space (universal
RKHS), and is commonly used for multivariate two-sample testing. In [2], Kirchler et. al.
extended the MMD statistic by using a neural network trained on an auxiliary dataset
which defines the so-called deep maximum mean discrepancy (DMMD) statistic, where the
mapping from the input domain to the network’s last hidden layer is utilized as the kernel
used in the MMD statistic.
A different approach to the problem of two-sample testing is based upon the evaluation of
a divergence between two distributions, such as the f-divergence which includes the case of
the Kullback-Leibler divergence and the Pearson divergence, respectively. Due to the fact
that the density estimation is a hard task, a practical approach to the divergence esti-
mation is to directly approximate the density ratio function. One of the most well known
method is the kernel mean matching (KMM) algorithm from [3] based on infinite-order
moment matching, and which represents the MMD statistic in the particular case when a
distribution is weighted accordingly to the density ratio model. There are several exten-
sions of the KMM method such as the Ensemble KMM introduced in [4] where, instead
of a single train-test split, one uses multiple non-overlapping test datasets and a single
train dataset. A more generalized version was introduced in [5] where the main idea is
to divide the training data due to the fact that the Ensemble KMM is not suitable with
large training datasets. Consequently, this method which we will call it Efficient Sampling
KMM, takes a bootstrap approach for the training data and then merges the results with

David C. Wyld et al. (Eds): ICCSEA, NLAI, SCAI, CSIA, IBCOM, SEMIT, NECO, SPPR, MLDS -2023
pp. 287-91, 2023. CS & IT - CSCP 2023 DOI: 10.5121/csit.2023.132422

https://doi.org/10.5121/csit.2023.132422
https://airccse.org/csit/V13N24.html

an aggregation process. A combination between the aforementioned two methodologies
was done in [6] where Haque and his coauthors considered a KMM-type density ratio es-
timation called SKMM based on using bootstrap generation method for the training data
and a partitioning of the test data. An extension of the classical KMM method is the neu-
ral network technique introduced [7] where the loss function is the actual MMD objective
and the bandwidth of the underlying kernel is considered as a hyper-parameter. Due to
the inherent flexibility of neural architectures and that the training is done on randomized
batches this Deep Learning approach outperforms the classical KMM algorithms.
Different alternatives to MMD-based methods mostly rely on solving different optimization
problems. Such examples are the unconstrained least squares importance fitting (uLSIF)
from [8] and the relative uLSIF (RuLSIF) method introduced in [9], where in the latter one
the density ratio model involves a mixture of densities. The uLSIF method was successfully
employed in [10] for the comparison of distributions using a permutation test approach. In
more detail, by utilizing a weighted Gaussian kernel model at test samples, the weights of
the density ratio model are learned through a quadratic optimization problem, after which
the Pearson divergence is employed in order to compare the train and test distributions. A
general method encompassing the constrained variant of the uLSIF method, namely LSIF,
is the Bregman formulation given in [11]. The unified method which utilizes the Bregman
divergence contains as a particular case the well-known KL importance estimation proce-
dure (KLIEP) from [12] for which the objective function is given with respect to the test
samples, while the constraints depend on the training samples. When the true density
ratio is approximated through a linear or kernel model, then one obtains a convex opti-
mization problem with constraints. On the other hand, for the situation when the choice
of the density ratio model is the log-linear model as in [13] then the underlying density
fitting framework reduces to a unconstrained convex optimization problem and therefore
the global solution can be obtained by iterative methods such as gradient descent.
As previously mentioned, the KMM method introduced in [7] uses the MMD statistic as
the loss function for the density ratio approximation which is modeled through a neural
network. A similar approach was developed recently in [14] in which a neural-type ap-
proach was developed for the RuLSIF method in the setting of change point detection.
In both these works, the true density ratio is represented as a neural network and the
learning of such a network depends on a loss function suitable for density ratio estimation.
A different approach for the RuLSIF method is the one from [15] where the density ratio is
not directly represented as a neural network but is considered as a weighted feed-forward
neural model (instead of a weighted kernel model). By employing the RuLSIF approach
one finds at each iteration the weights as the global optimum solution for the quadratic
optimization problem. After finding the weights, the classical backpropagation algorithm
is applied to the density ratio model with respect to the parameters of the feed-forward
neural model. In addition to this, the aim of the method introduced in [15] is to estimate
the density ratio from a few training samples, by using instances in different but related
datasets (also called source datasets).
As we formerly emphasized, the framework regarding the density ratio models Ensemble
KMM from [4] and Efficient Sampling KMM from [5] depends on multiple train or test
datasets. On the other hand, the density fitting methodology proposed in [16] (which we
shall briefly call itMultiDistribution DRE) is related to the idea that one has access to i.i.d.
samples from multiple distributions. As a particular case, this can be perceived as having
multiple test datasets and a single reference train dataset. The purpose is to estimate the
density ratios between all pairs of distributions. This can be efficiently done by employing
the Bregman divergence with respect to the reference density function and thus optimizing

288 Computer Science & Information Technology (CS & IT)

a vector density ratio. Consequently, the optimization function can be written as a sum
of multiple objective mappings, where each of them depends on a particular density ratio
component. Accordingly, this approach generalizes the LSIF and KLIEP optimization al-
gorithms to the so-called Multi-LSIF and Multi-KLIEP methods, respectively.
There are various alternatives to the aforementioned density ratio methods. The most well
known approach to the previously mentioned techniques is the probabilistic density fitting
method where, as described in [17], one learns a probabilistic classifier that separates the
train and test samples. The methodology behind these classification algorithms is that
the density ratio is approximated by the ratio of the sample sizes multiplied by the class
posterior probabilities, the latter ones being obtained from the classifier’s output. Further-
more, the main advantage of the probabilistic classification technique is that it is easy to
implement it in a real world situation.
We end this section with the table (1), in which we describe the investigation that was
done in different papers which are in connection to our theoretical and empirical results.

Articles Methodology

Sugiyama et al. (2011) [10] - comparison of distributions using permutation tests based on
the uLSIF method

Miao et al. (2015) [4] - Ensemble KMM method which utilizes multiple non-
overlapping test datasets and a single train dataset

Chandra et al. (2016) [5] - Efficient Sampling KMM method based upon a bootstrap ap-
proach for the training data which merges the results with an
aggregation proces

Haque et al. (2016) [6] - SKMM method which uses a using bootstrap generation
method for the training data and a partitioning of the test data

Hushchyn & Ustyuzhanin (2021) [14] - a RuLSIF type neural network model for change point detec-
tion tasks

Yu et al. (2021) [16] - the aim is to estimate the density ratios between all pairs of
distributions.

de Mathelin et al. (2022) [7] - an extension of the classical KMM method to neural networks

Table 1: Recent research contributions

2 Motivation

Let’s consider two sample sets X = {xi |xi ∈ Rd}ni=1 and X ′ = {x′j |x′j ∈ Rd}n′
j=1 such that

X i.i.d.∼ P and X ′ i.i.d.∼ P ′, where P and P ′ are probability distributions with densities p, p′,
respectively.
The MMD (maximum mean discrepancy) statistic between X and X ′ is defined as

MMDϕ,ψ(X ,X ′) = ∥Ep′(x)[ψ(x)]− Ep(x)[ϕ(x)]∥2,

where ϕ, ψ : Rd → Rp are two given feature maps. By defining the density ratio function

r(x) =
p(x)

p′(x)
, where we assume that p′(x) > 0 for all x, and choosing ψ(x) = r(x)ϕ(x),

then we obtain the loss function used in the KMM (kernel mean matching) approach from
[3] with respect to an approximation r̂ of r:

MMDϕ,r̂ϕ(X ,X ′) = ∥Ep′(x)[r̂(x)ϕ(x)]− Ep(x)[ϕ(x)]∥2

Computer Science & Information Technology (CS & IT) 289

By using that

1 =

∫
p(x)dx =

∫
r(x)p′(x)dx = Ep′(x)[r(x)]

and taking into account the above objective function, one obtains the following optimiza-
tion problem with constraints (that needs to be solved by considering an approximation
of the density ratio model r̂):

min
r̂

∥Ep′(x)[r̂(x)ϕ(x)]− Ep(x)[ϕ(x)]∥2

subject to

{
r̂(x) ≥ 0 for all x

Ep′(x)[r̂(x)] = 1

(OptPb-KMM)

For simplifying the formulation of (OptPb-KMM), we introduce the kernel map K : Rd×
Rd → R such that K(x, y) = ⟨ϕ(x), ϕ(y)⟩. Furthermore, let’s consider h ∈ Rn′

such

that hj =
n′

n

n∑
i=1

K(x′j , xi) for j = {1, . . . , n′}. At the same time, define H ∈ Rn′×n′

such that Hjk = K(x′j , x
′
k) for j, k ∈ {1, . . . , n′}, along with rX ′ ∈ Rn′×1, where rX ′ =

(r(x′1), . . . , r(x
′
n′))T . If we define r̂(x) as a model approximating the true density ratio

r(x), and ignoring irrelevant constants with respect to r̂(x) then (OptPb-KMM) becomes
the following quadratic optimization problem with constraints:

min
r̂X′

(
1

2
r̂TX ′Hr̂X ′ − hT r̂X ′

)

subject to

(r̂X ′)j ≥ 0 for j ∈ {1, . . . , n′}

1

n′

n′∑
j=1

(r̂X ′)j = 1

A different kind of density ratio technique is the RuLSIF method from [9] which uses

a generalization of the density ratio i.e., the α-relative density ratio rα(x) =
p(x)

qα(x)
for

α ∈ [0, 1), where qα(x) represents the α-mixture density of p(x) and p′(x) i.e., qα(x) =
αp(x) + (1 − α)p′(x). In the RuLSIF method, one models the true density ratio as a
linear kernel method with weights w ∈ Rn×1, namely r̂(x) = wTk(x), where k(x) =

(K(x, x1), . . . ,K(x, xn))
T ∈ Rn×1 and K(x, y) = exp

(
−∥x− y∥2

2σ̃2

)
is the correspond-

ing Gaussian kernel with the variance σ̃2, respectively. Let’s define H ∈ Rn×n and h ∈

Rn×1, namely Hl,k =
α

n

n∑
i=1

K(xi, xl)K(xi, xk) +
1− α

n′

n′∑
j=1

K(x′j , xl)K(x′j , xk) and hl =

1

n

n∑
i=1

K(xi, xl), where l, k ∈ {1, . . . , n}. By ignoring constants irrelevant to the weights w

and using a regularization parameter λ, we obtain the following unconstrained regularized
quadratic optimization problem corresponding to the RuLSIF loss:

min
w

(
1

2
wTHw − hTw +

λ

2
wTw

)
(OptPb-RuLSIF)

In order to generalize the KMM approach to multiple sample sets, we observe that the
objective function belonging to (OptPb-KMM) leads to

Ep(x)[ϕ(x)] =
∫
ϕ(x)p(x)dx =

∫
r(x)ϕ(x)p′(x)dx = Ep′(x)[r(x)ϕ(x)], (1)

290 Computer Science & Information Technology (CS & IT)

therefore, under the true density ratio model r(x), the loss function is minimized. We
will use this simple technique for extending in a precise manner the KMM algorithm to
multiple sample sets.

• The first case we investigate is when we have, for i ∈ {1, . . . , N}, the sets Xi =

{xk,(i) |xk,(i) ∈ Rd}ni
k=1 and X ′ = {x′j |x′j ∈ Rd}n′

j=1 such that Xi
i.i.d.∼ Pi and X ′ i.i.d.∼

P ′, where Pi and P
′ are probability distributions with densities pi, p

′, respectively. If we
consider X ′ to be the training dataset and Xi to represent the non-overlapping partitions of
a given test dataset X , then the technique proposed in Ensemble KMM uses the fact that

p(x ∈ X) =
N∑
i=1

ni
n
p(x |x ∈ Xi), where n =

N∑
j=1

nj . Therefore, the probability associated to

the test sample set X can be written as a mixture between non-overlapping partitions with
the weights given by the ratio between the size of the partition and the total size of the
test dataset. This is in accordance with the definition from the formulation of Ensemble
KMM of the density ratio corresponding to X and X ′ which is given by a mixture of
density ratios between Xi and X ′, respectively. By dropping the notation of conditional
probability density concerning the partitions of X , let’s consider the general case when

r(x) =
N∑
i=1

ωiri(x) where ri(x) =
pi(x)

p′(x)
for i ∈ {1, . . . , N} and where the weights satisfy

N∑
i=1

ωi = 1 with ωi ∈ [0, 1] for i ∈ {1, . . . , N}. Therefore

r(x) =

N∑
i=1

ωiri(x) =

N∑
i=1

ωi
pi(x)

p′(x)
=

N∑
i=1

ωipi(x)

p′(x)
=
p(x)

p′(x)
,

where p(x) represents the mixture density defined as p(x) =
N∑
i=1

ωipi(x). Inspired by the

identity (1) from the case of KMM, we infer the loss function which is minimized under
the true density ratio r(x):

Ep′(x)[r(x)ϕ(x)] =
∫
r(x)ϕ(x)p′(x)dx =

∫ (N∑
i=1

ωipi(x)

)
ϕ(x)dx

=
N∑
i=1

ωi

∫
pi(x)ϕ(x)dx =

N∑
i=1

ωiEpi(x)[ϕ(x)],

thus we consider the following loss function which needs to be solved with respect to the
approximate model r̂ of the density ratio r:

L =

∥∥∥∥∥Ep′(x)[r̂(x)ϕ(x)]−
N∑
i=1

ωiEpi(x)[ϕ(x)]

∥∥∥∥∥
2

(2)

An alternative of the above computations is to consider the approach of MultiDistri-

bution DRE where we define as before, for i ∈ {1, . . . , N}, ri(x) =
pi(x)

p′(x)
. In this case we

compute for every i ∈ {1, . . . , N} the following:

Ep′(x)[ri(x)ϕ(x)] =
∫
ri(x)ϕ(x)p

′(x)dx =

∫
ϕ(x)pi(x)dx = Epi(x)[ϕ(x)],

Computer Science & Information Technology (CS & IT) 291

hence we can define the ith loss mapping with respect to the approximation r̂i of ri:

Li = ∥Ep′(x)[r̂i(x)ϕ(x)]− Epi(x)[ϕ(x)]∥
2,

therefore one can propose the mixture loss function L where the weights wi represent the
contribution of each particular loss function Li, namely

L =

N∑
i=1

ωiLi =
N∑
i=1

ωi∥Ep′(x)[r̂i(x)ϕ(x)]− Epi(x)[ϕ(x)]∥
2. (3)

It is worth pointing out that the loss function (3) resembles the approach of Ensemble
KMM structure, where one solves simultaneously N optimization problems, with the con-
dition that the objective function of the ith problem is related to the approximation r̂i(x)
of its associated density ratio model ri.

• Now we turn our attention to our second case which we shall analyze it, where from
a practical point of view one has multiple non-overlapping training datasets and a single
test dataset. In order to do this we consider, for i ∈ {1, . . . , N ′}, the sets X = {xk |xk ∈
Rd}nk=1 and X ′

i = {x′j,(i) |x
′
j,(i) ∈ Rd}n

′
i
j=1 such that X i.i.d.∼ P and X ′

i
i.i.d.∼ P ′

i , where P

and P ′
i are probability distributions with densities p, p′i, respectively. In a similar fashion

with the previous case, let’s consider ri(x) =
p(x)

p′i(x)
and the weights ω̃i ∈ [0, 1], for each

i ∈ {1, . . . , N ′} such that
N ′∑
i=1

ω̃i = 1. Then, it follows that

Ep(x)[ϕ(x)] =
∫
ϕ(x)p(x)dx =

∫
ϕ(x)p(x)

(
N ′∑
i=1

ω̃i

)
dx

=

∫
ϕ(x) (ω̃1p(x) + . . .+ ω̃N ′p(x)) dx

=

∫
ϕ(x)

(
ω̃1r1(x)p

′
1(x) + . . .+ ω̃N ′rN ′(x)p′N ′(x)

)
dx

=

∫
ϕ(x)

(
N ′∑
i=1

ω̃iri(x)p
′
i(x)

)
dx =

N ′∑
i=1

ω̃i

∫
ϕ(x)ri(x)p

′
i(x)dx

=

N ′∑
i=1

ω̃iEp′i(x)[ri(x)ϕ(x)],

hence it is natural to propose the following loss function:

L =

∥∥∥∥∥
N ′∑
i=1

ω̃iEp′i(x)[r̂i(x)ϕ(x)]− Ep(x)[ϕ(x)]

∥∥∥∥∥
2

(4)

For the previous case we shall present an alternative method in order to infer a suitable
loss function. We proceed by considering, for each i ∈ {1, . . . , N ′} the weights ωi ∈ [0, 1]

that satisfy
N ′∑
i=1

ωi = 1. Along with these we define the mixture probability density p′(x) =

292 Computer Science & Information Technology (CS & IT)

N ′∑
i=1

ωip
′
i(x) and the corresponding true density ratio r(x) =

p(x)

p′(x)
. Then, it follows that

Ep(x)[ϕ(x)] =
∫
ϕ(x)p(x)dx =

∫
ϕ(x)r(x)p′(x)dx =

∫
ϕ(x)r(x)

(
N ′∑
i=1

ωip
′
i(x)

)
dx

=
N ′∑
i=1

ωi

∫
ϕ(x)r(x)p′i(x)dx =

N ′∑
i=1

ωiEp′i(x)[r(x)ϕ(x)],

which defines the following loss function:

L =

∥∥∥∥∥
N ′∑
i=1

ωiEp′i(x)[r̂(x)ϕ(x)]− Ep(x)[ϕ(x)]

∥∥∥∥∥
2

(5)

In what follows we will show an equivalence between (4) and (5) under certain assump-
tions on the weights with respect to the true density ratio. By using that p(x) = ri(x)p

′
i(x),

it follows for each i ∈ {1, . . . , N ′} that

r(x) =
ri(x)p

′
i(x)

N ′∑
j=1

ωjp′j(x)

.

So, for every k ∈ {1, . . . , N ′} we have that

N ′∑
i=1

ωiEp′i(x)[r(x)ϕ(x)] =
N ′∑
i=1

ωi

∫
r(x)ϕ(x)p′i(x)dx =

∫
ϕ(x)r(x)

(
N ′∑
i=1

ωip
′
i(x)

)
dx

=

∫
ϕ(x)rk(x)p

′
k(x)dx = Ep′k(x)[rk(x)ϕ(x)].

Therefore, by summing over k, it follows that

N ′∑
i=1

ωiEp′i(x)[r(x)ϕ(x)] =
N ′∑
k=1

(
1

N ′

)
Ep′k(x)[rk(x)ϕ(x)],

for which we can select the uniformly distributed weights ω̃i =
1

N ′ for every i ∈ {1, . . . , N ′}.

• We end the present section with a brief remark about a particular case regarding
the inference of (5). By using the form of the true density ratio, we obtain the following
computations:

r(x) =
p(x)

p′(x)
=

p(x)
N ′∑
i=1

ωip′i(x)

=
p(x)

N ′−1∑
i=1

ωip′i(x) + ωN ′p′N ′(x)

.

Let’s consider the situation when p′N ′(x) = p(x) and ωN ′ = α ∈ [0, 1). Then, it follows
that

r(x) =
p(x)

N ′−1∑
i=1

ωip′i(x) + αp(x)

,

Computer Science & Information Technology (CS & IT) 293

where
N ′−1∑
i=1

ωi+α =
N ′∑
i=1

ωi = 1, so
N ′−1∑
i=1

ωi = 1−α. This can be considered as a generaliza-

tion of the relative density ratio due to the fact that, when N ′ = 2, one has access to the
test dataset X and the train dataset X ′

1, respectively. Therefore, one obtains the α-relative

density ratio rα(x) =
p(x)

αp(x) + (1− α)p′(x)
. Finally, we highlight that, for i ∈ {1, . . . , N ′},

the sample sets X ′
i = {x′j,(i) |x

′
j,(i) ∈ Rd}n

′
i
j=1 corresponding to p′i(x) form a partition of

non-overlapping sets. Hence, the situation when p′N ′(x) = p(x) is equivalent to the fact
that X is non-overlapping with any other training subsets X ′

i for i ∈ {1, . . . , N ′ − 1}. In
order to avoid this limitation, when dealing with the particular case of the generalized
relative density ratio, we propose to formally use the same formulas as above despite the
fact that the non-overlapping condition does not hold in general between train and test
datasets, respectively.

3 Structure of the paper

The aim of the previous section (2) was to present in a step-by-step manner the main
stimulus behind our Generalized KMM method. For this, we investigated an approach for
devising a quadratic optimization problem with constraints based on the situation of mul-
tiple non-overlapping training datasets, along with the case of multiple non-overlapping
test datasets. Our algorithmic framework is different than the methodologies from Ensem-
ble KMM introduced in [4] and Efficient Sampling KMM from [5] since our technique is
constructed using a loss-function approach. In section (4) we will actually construct our
optimizer. By introducing an extended density ratio function using mixtures of probabil-
ity densities, our technique is based upon the construction of a non-negative loss mapping
which attains its minimum value of 0 under the true density ratio. The empirical version is
obtained when one uses an approximate linear kernel model using the points of the whole
test dataset, by utilizing some constraints suitable to numerical implementations. In sec-
tion (5) we present some numerical simulations developed with a custom implementation
made in Python regarding the comparison of probability densities under the learned den-
sity ratio weights, along with importance reweighting examples. Finally, in the last section
(6), we discuss about the advantages of our generalized method along with the underlying
limitations.

4 Proposed optimization method

In what follows we consider our general KMM-type optimization technique based upon the
computations made in the previous section. In the usual case of (OptPb-KMM) and its ex-
tensions, one considers optimizing the MMD-based loss function involving the density ratio
model only at the training points. Inspired by the techniques utilized in (OptPb-RuLSIF)
we propose to use a linear kernel model for the density ratio in order to obtain an optimiza-
tion problem with respect to the underlying parameters of the model. It is worth pointing
out that this methodology is similar to the one proposed in [7] where a neural network was
used for the density ratio model. Furthermore, the training of the neural network model is
made at each epoch with respect to non-overlapping shuffled data batches thus the setting
from [7] is similar to ours (see also the alternative of the bootstrap aggregation tech-
nique from [5]). But, the main difference is that, in our case, the train and test partitions
are given at the beginning of the algorithm and are not randomly created at each iteration.

294 Computer Science & Information Technology (CS & IT)

Let’s consider N ′ training sets X ′
l = {x′j,(l) |x

′
j,(l) ∈ Rd}n

′
l
j=1 such that X ′

l
i.i.d.∼ P ′

l , where

P ′
l is the probability distribution with the underlying density p′l for every l ∈ {1, . . . , N ′}.

At the same time, let’s suppose that we have N test sets Xi = {xk,(i) |xk,(i) ∈ Rd}ni
k=1

such that Xi
i.i.d.∼ Pi where Pi is the probability distribution corresponding to the density

pi for each i ∈ {1, . . . , N}. In what follows we will consider the test and train mixtures of

probability densities p(x) =
N∑
i=1

ωipi(x) and p
′(x) =

N ′∑
j=1

γjp
′
j(x), where the weights satisfy

N∑
i=1

ωi =
N ′∑
j=1

γj = 1, with ωi ∈ [0, 1] for every i ∈ {1, . . . , N} and γj ∈ [0, 1] for each

j ∈ {1, . . . , N ′}. The general density ratio between the train and test samples is defined
as

r(x) =
p(x)

p′(x)
=

N∑
i=1

ωipi(x)

N ′∑
j=1

γjp′j(x)

.

One observes that

Ep(x)[ϕ(x)] =
∫
ϕ(x)p(x)dx =

∫
ϕ(x)

(
N∑
i=1

ωipi(x)

)
dx

=
N∑
i=1

∫
ϕ(x)ωipi(x)dx =

N∑
i=1

ωi

∫
ϕ(x)pi(x)dx =

N∑
i=1

ωiEpi(x)[ϕ(x)]. (6)

At the same time we have that

Ep′(x)[r(x)ϕ(x)] =
∫
r(x)ϕ(x)p′(x)dx =

∫
r(x)ϕ(x)

 N ′∑
j=1

γjp
′
j(x)

 dx

=
N ′∑
j=1

γj

∫
r(x)ϕ(x)p′j(x)dx =

N ′∑
j=1

γjEp′j(x)[r(x)ϕ(x)]. (7)

Also

Ep′(x)[r(x)ϕ(x)] =
∫
r(x)ϕ(x)p′(x)dx =

∫
ϕ(x)p(x)dx = Ep(x)[ϕ(x)] (8)

By combining (6), (7) and (8) we arrive at

N ′∑
j=1

γjEp′j(x)[r(x)ϕ(x)] =
N∑
i=1

ωiEpi(x)[ϕ(x)],

and taking into account that

Ep′(x)[r(x)] =
∫
r(x)p′(x)dx =

∫
p(x)dx = 1,

along with

Ep′(x)[r(x)] =
∫
r(x)p′(x)dx =

∫
r(x)

 N ′∑
j=1

γjp
′
j(x)

 dx =

N ′∑
j=1

γjEp′j(x) [r(x)] ,

Computer Science & Information Technology (CS & IT) 295

we therefore consider the following optimization problem:

min
r̂

∥∥∥∥∥ N ′∑
j=1

γjEp′j(x)[r̂(x)ϕ(x)]−
N∑
i=1

ωiEpi(x)[ϕ(x)]

∥∥∥∥∥
2

subject to

r̂(x) ≥ 0 for all x
N ′∑
j=1

γjEp′j(x) [r̂(x)] = 1

(OptPb-G-KMM)

where r̂(x) represents a density ratio model which approximates the true density ra-
tio r(x). In the following we shall show that the optimization problem presented in
(OptPb-G-KMM) can be written as a quadratic optimization problem with constraints.
Then, the underlying loss function can be written as

L :=

∥∥∥∥∥∥
N ′∑
j=1

γjEp′j(x)[r̂(x)ϕ(x)]−
N∑
i=1

ωiEpi(x)[ϕ(x)]

∥∥∥∥∥∥
2

=

∥∥∥∥∥
N∑
i=1

ωiEpi(x)[ϕ(x)]

∥∥∥∥∥
2

+

〈
N ′∑
j=1

γjEp′j(x)[r̂(x)ϕ(x)],
N ′∑
k=1

γkEp′k(x)[r̂(x)ϕ(x)]

〉

− 2

〈
N ′∑
j=1

γjEp′j(x)[r̂(x)ϕ(x)],
N∑
i=1

ωiEpi(x)[ϕ(x)]

〉
.

Ignoring constants irrelevant with respect to r̂(x), the objective function defined above
can be taken as

L =

〈
N ′∑
j=1

γjEp′j(x)[r̂(x)ϕ(x)],
N ′∑
k=1

γkEp′k(x)[r̂(x)ϕ(x)]

〉
− 2

〈
N ′∑
j=1

γjEp′j(x)[r̂(x)ϕ(x)],
N∑
i=1

ωiEpi(x)[ϕ(x)]

〉
,

hence

L =
N ′∑
j=1

N ′∑
k=1

〈
γjEp′j(x)[r̂(x)ϕ(x)], γkEp′k(x)[r̂(x)ϕ(x)]

〉
− 2

N ′∑
j=1

N∑
i=1

〈
γjEp′j(x)[r̂(x)ϕ(x)], ωiEpi(x)[ϕ(x)]

〉
.

By consider employing empirical averages, we therefore obtain that Epi(x)[ϕ(x)] ≈
1

ni

ni∑
l=1

ϕ(xl,(i))

and Ep′j(x)[r̂(x)ϕ(x)] ≈ 1

n′j

n′
j∑

t=1
r̂
(
x′t,(j)

)
ϕ
(
x′t,(j)

)
, which implies that the empirical loss

function L̂ which approximates L takes the form

L̂ =
N ′∑
j=1

N ′∑
k=1

〈
γj

 1

n′j

n′
j∑

t=1

r̂
(
x′t,(j)

)
ϕ
(
x′t,(j)

) , γk

 1

n′k

n′
k∑

s=1

r̂
(
x′s,(k)

)
ϕ
(
x′s,(k)

)〉

− 2
N ′∑
j=1

N∑
i=1

〈
γj

 1

n′j

n′
j∑

t=1

r̂
(
x′t,(j)

)
ϕ
(
x′t,(j)

) , ωi

(
1

ni

ni∑
l=1

ϕ(xl,(i))

)〉
.

296 Computer Science & Information Technology (CS & IT)

Taking n′max := max
j∈{1,...,N ′}

{n′j} and multiplying L̂ with
1

2
(n′max)

2, we simplify the previous

identity as follows:

L̂ =
N ′∑
j=1

N ′∑
k=1

(n′max)
2

n′jn
′
k

γjγk
2

〈 n′
j∑

t=1

r̂
(
x′t,(j)

)
ϕ
(
x′t,(j)

)
,

n′
k∑

s=1

r̂
(
x′s,(k)

)
ϕ
(
x′s,(k)

)〉
−

N ′∑
j=1

N∑
i=1

(n′max)
2

nin′j
γjωi

〈 n′
j∑

t=1

r̂
(
x′t,(j)

)
ϕ
(
x′t,(j)

)
,

ni∑
l=1

ϕ
(
xl,(i)

)〉 .

By utilizing the linearity of the inner product, we obtain

L̂ =

N ′∑
j=1

N ′∑
k=1

(n′max)
2

n′jn
′
k

γjγk
2

n′
j∑

t=1

n′
k∑

s=1

r̂
(
x′t,(j)

)〈
ϕ
(
x′t,(j)

)
, ϕ
(
x′s,(k)

)〉
r̂
(
x′s,(k)

)
−

N ′∑
j=1

N∑
i=1

(n′max)
2

nin′j
γjωi

n′
j∑

t=1

ni∑
l=1

r̂
(
x′t,(j)

)〈
ϕ
(
x′t,(j)

)
, ϕ
(
xl,(i)

)〉 .

From the definition of the kernel mapping as an inner product of the feature maps i.e.,
K(x, y) = ⟨ϕ(x), ϕ(y)⟩, it follows that

L̂ =

N ′∑
j=1

N ′∑
k=1

(n′max)
2

n′jn
′
k

γjγk
2

n′
j∑

t=1

n′
k∑

s=1

r̂
(
x′t,(j)

)
K
(
x′t,(j), x

′
s,(k)

)
r̂
(
x′s,(k)

)
−

N ′∑
j=1

N∑
i=1

(n′max)
2

nin′j
γjωi

n′
j∑

t=1

ni∑
l=1

r̂
(
x′t,(j)

)
K
(
x′t,(j), xl,(i)

) . (9)

In order to simplify the previous computations we consider the following notations:

r̂X ′
j
:=
(
r̂
(
x′1,(j)

)
, . . . , r̂

(
x′n′

j ,(j)

))T
∈ Rn

′
j×1 , j ∈ {1, . . . , N ′}

r̂Xi :=
(
r̂
(
x1,(i)

)
, . . . , r̂

(
xni,(i)

))T ∈ Rni×1 , i ∈ {1, . . . , N}.

At the same time we define for i ∈ {1, . . . , N} and j ∈ {1, . . . , N ′} the vector h[i,j] ∈ Rn
′
j×1,

such that

h
[i,j]
t =

(n′max)
2

nin′j
γjωi

ni∑
l=1

K
(
x′t,(j), xl,(i)

)
for each t ∈ {1, . . . , n′j}.

Also, for every j, k ∈ {1, . . . , N ′} we define the matrix H [j,k] ∈ Rn
′
j×n′

k , such that

H
[j,k]
t,s =

(n′max)
2

n′jn
′
k

γjγk
2

K
(
x′t,(j), x

′
s,(k)

)
for each t ∈ {1, . . . , n′j} and s ∈ {1, . . . , n′k}.

By using the above notations we obtain the following computations:

(n′max)
2

nin′j
γjωi

n′
j∑

t=1

ni∑
l=1

r̂
(
x′t,(j)

)
K
(
x′t,(j), xl,(i)

)
=

n′
j∑

t=1

r̂
(
x′t,(j)

)((n′max)
2

nin′j
γjωi

ni∑
l=1

K
(
x′t,(j), xl,(i)

))

=

n′
j∑

t=1

r̂
(
x′t,(j)

)
h
[i,j]
t

=
(
h[i,j]

)T
r̂X ′

j
. (10)

Computer Science & Information Technology (CS & IT) 297

On the other hand, by denoting

C [j,k] :=
(n′max)

2

n′jn
′
k

γjγk
2

n′
j∑

t=1

n′
k∑

s=1

r̂
(
x′t,(j)

)
K
(
x′t,(j), x

′
s,(k)

)
r̂
(
x′s,(k)

)
, (11)

we find that

C [j,k] =

n′
j∑

t=1

n′
k∑

s=1

r̂
(
x′t,(j)

)((n′max)
2

n′jn
′
k

γjγk
2

K
(
x′t,(j), x

′
s,(k)

))
r̂
(
x′s,(k)

)

=

n′
j∑

t=1

r̂
(
x′t,(j)

) n′
k∑

s=1

(
(n′max)

2

n′jn
′
k

γjγk
2

K
(
x′t,(j), x

′
s,(k)

)
r̂
(
x′s,(k)

))

=

n′
j∑

t=1

r̂
(
x′t,(j)

) n′
k∑

s=1

H
[j,k]
t,s r̂

(
x′s,(k)

)

=

n′
j∑

t=1

r̂
(
x′t,(j)

)(
H [j,k]r̂X ′

k

)
t

=
(
r̂X ′

j

)T
H [j,k]

(
r̂X ′

k

)
. (12)

By merging (9), (10), (11) and (12), we find a simpler formulation of the empirical loss,
namely

L̂ =
N ′∑
j=1

N ′∑
k=1

((
r̂X ′

j

)T
H [j,k]

(
r̂X ′

k

))
−

N ′∑
j=1

N∑
i=1

((
h[i,j]

)T (
r̂X ′

j

))
. (13)

In order to make our method more similar to RuLSIF we consider modeling the true
density ratio as a linear model i.e., r̂(x) = ⟨θ, ξ(x)⟩ where θ = (θ1, . . . , θb) ∈ Rb and
ξ : Rd → Rb such that ξ(x) = (ξ1(x), . . . , ξb(x)) for each x ∈ Rd. For j ∈ {1, . . . , N ′} we

define the matrix A[j] ∈ Rn
′
j×b such that

A[j] =

ξ1(x

′
1,(j)) . . . ξb(x

′
1,(j))

...
...

...

ξ1(x
′
n′
j ,(j)

) . . . ξb(x
′
n′
j ,(j)

)

 (14)

Some easy computations reveal that

A[j]θ =

(
ξT (x′1,(j))θ. . .
ξT (x′n′

j ,(j)
)θ

)
= r̂X ′

j
∈ Rn

′
j×1 (15)

Therefore, (15) implies that(
r̂X ′

j

)T
H [j,k]

(
r̂X ′

k

)
= (A[j]θ)TH [j,k](A[k]θ) = θT

(
(A[j])TH [j,k]A[k]

)
θ. (16)

Using again (15), it follows that(
h[i,j]

)T (
r̂X ′

j

)
=
(
h[i,j]

)T
A[j]θ =

((
h[i,j]

)T
A[j]

)
θ. (17)

298 Computer Science & Information Technology (CS & IT)

Consequently, (13), (16) and (17) imply that

L̂ = θT

 N ′∑
j=1

N ′∑
k=1

(A[j])TH [j,k]A[k]

 θ −

 N ′∑
j=1

N∑
i=1

(h[i,j])TA[j]

 θ. (18)

For the particular case of kernel methods we can choose ξ(x) with the same technique as in
the case of RuLSIF, namely we will use the test dataset defined as the reunion of the non-

overlapping test sample datasets: X =
N⋃
i=1

Xi. Therefore, we will select ξk(x) = K(x, xk)

where xk ∈ X for each k ∈ {1, . . . , b}, thus b =
N∑
i=1

ni.

In what follows we will select K as a kernel endowed with non-negative values, such as
the RBF kernel or the Laplacian kernel. In [3] the value of r̂(x) was bounded (only with
respect to the training samples) in the interval [0, B], where B > 0. In our case, in order
to simplify this condition, we consider r̂(x) = ⟨θ, ξ(x)⟩ ≥ 0 and using that K takes non-
negative values, we shall impose that θk ∈ [0, B] for every k ∈ {1, . . . , b}, where B > 0 is a
constant chosen up to our choice. On the other hand, we define Ξ = (Ξ1, . . . , Ξb) ∈ Rb as

Ξ :=
N ′∑
j=1

(
γj
n′j

) n′
j∑

k=1

ξ(xk,(j)).

The constraint
N ′∑
j=1

γjEp′j(x) [r̂(x)] = 1 from (OptPb-G-KMM) leads to its empirical coun-

terpart, namely

1 ≈
N ′∑
j=1

γj

 1

n′j

n′
j∑

k=1

r̂(xk,(j))

 =
N ′∑
j=1

(
γj
n′j

) n′
j∑

k=1

r̂(xk,(j)) =
N ′∑
j=1

(
γj
n′j

) n′
j∑

k=1

⟨θ, ξ(xk,(j))⟩ = ⟨θ,Ξ⟩.

Using the above identity ⟨θ,Ξ⟩ = 1, similar to the numerical description of KMM from [3],

we consider ε > 0 such that |⟨θ,Ξ⟩−1| ≤ ε, hence
b∑

k=1

θkΞk ≤ ε+1 and −
b∑

k=1

θkΞk ≤ ε−1,

respectively.
By combining (18) with the constraints presented above, we finally obtain our Generalized
KMM method represented by the following empirical generalized KMM optimization prob-
lem:

min
θ

[
θT

(
N ′∑
j=1

N ′∑
k=1

(A[j])TH [j,k]A[k]

)
θ −

(
N ′∑
j=1

N∑
i=1

(h[i,j])TA[j]

)
θ

]

subject to

θk ∈ [0, B] for k ∈ {1, . . . , b}

+
b∑

k=1

θkΞk ≤ ε+ 1

−
b∑

k=1

θkΞk ≤ ε− 1.

(OptPb-Empirical-G-KMM)

5 Results & experiments

In this section we present some numerical simulations based on our implementation of
the Generalized KMM optimizer concerning certain experiments made on some synthetic

Computer Science & Information Technology (CS & IT) 299

datasets. We highlight that our codes hinge on SKLearn [18] and the CVXPY package [19]
and [20], respectively. At the same time, all the details about our implementation and
the corresponding experiments can be found in our GitHub link presented in the Abstract
of the present paper. It is of utmost importance to mention that our parameter σ which
will appear in the experiments from the following sequel and in the underlying imple-
mentation, is denoted as γ in the SKLearn implementation (and when γ ≈ σ̃−2 then the
aforementioned parameter is associated with the variance σ̃2 of the kernel K).

Our first experiment is related to an application of the Generalized KMM described through
the optimization problem (OptPb-Empirical-G-KMM), along with the classical KMM
method, respectively. The implementation for the underlying KMM algorithm is inspired
by the codes belonging to [21] and [22], respectively. For this experiment we have considered
4 clusters (two of them belonging to the training dataset and the other two representing
the test samples) consisting of different number of samples, i.e. 200, 1000, 1000 and 300,
respectively. The clusters were generated using the function make blobs from SKLearn

with the following standard deviation values: 0.6, 0.6, 0.9 and 0.6, respectively. For both
numerical methods, the parameter B was set to 1000 while the values of the parameter σ
were chosen as 1.0, 3.5, 2.0 and None. We mention that None is equivalent to the default
value used in the definition of the kernels from SKLearn. In the case of the Generalized

KMM algorithm each vector and matrix that is defined through a kernel has the same default
value defined as 1/n features, but we have chosen to write it as None since this value
is already shown in the plots related to the KMM method (due to the fact that we use
the same datasets for both methods hence we have the same number of features). From
the results depicted in figure (1) we observe that the classical KMM method has weight
values smaller than those of the Generalized KMM algorithm. Our optimization method
gives weights a higher value near the boundary of the two training clusters, while KMM
emphasize also the samples belonging near the center of the training data. One also ob-
servers that by increasing the σ parameter the values of the weights also increase. On the
other hand, the particular case when σ is attributed the value of None (depicted in the
bottom right plot) shows that KMM leads to fewer weights with high values in contrast
with the Generalized KMM method.

Our next experiments are related to the comparison of various distributions by em-
ploying the cases of multiple train and test datasets. In figures (2), (3) and (4), for each
simulation that we have made, a custom selection of the train and test distributions is
represented in the corresponding left plot while in the associated right plot we have con-
sidered visualizing the predictions of a basic SGDRegressor with and without the sample
weights generated by the Generalized KMM algorithm. In order to inspect more closely
the comparison of the effect of the density ratio weights, the title of each right plot shows
the MAE with and without the sample weights. For all the plots containing the regres-
sion results, the target is generated using a sinc function at which we added a noise term
following a normal distribution. Also, the B term involved in (OptPb-Empirical-G-KMM)
was set to 1000.
The first simulation we have done is related to the case of multiple train datasets and it
is shown in figure (2). For this, we have generated 3 random normal train datasets with
sizes 200, 150 and 100, with the means −0.5, 0.5 and 1.5, and with the standard deviation
equal to 0.1. At the same time, the test dataset is composed of only 30 samples generated
using a normal distribution with mean 1.0 and standard deviation 0.4. In the left plots
of the first row we have chosen a lower of value of σ, namely 0.1 which implies that the
weighted train distribution is uniformly distributed with respect to the train partitions.
This can be easily visualized in the corresponding right plot where the weighted and un-

300 Computer Science & Information Technology (CS & IT)

Fig. 1: KMM vs. Generalized KMM

weighted predictions behave similarly. In the right pair of plots from the first row of figure
(2) we took σ equal to 1.0 but we have chosen the case of the α-relative density ratio
with α = 0.25, and where the γj weights of the training subsets were considered as 0.5,
0.2 and 0.05, respectively. The effect of the α-mixture density can be seen through the
visualization of the distorsion of the weighted train distribution towards the skewed test
dataset. For the last case, which is represented in the second row, we have set σ to 100, α
to 0.5 and the γj values as 0.05, 0.2 and 0.25, respectively. These choices shows a similar
effect as in the previous case regarding the γj mixture values.

Our next simulations presented in figure (3) correspond to the case of multiple test
datasets. We have generated a single train dataset of size 300 from a normal distribution
with mean 1.0 and standard deviation 0.25 for the results depicted in the first row, while
for the second row the train was generated using a normal distribution with mean 0.5
and standard deviation 0.25, respectively. On the other hand, the test datasets, both
of size 100, were generated from normal distributions with means −0.5 and 1.5, with
the corresponding standard deviations equal to 0.15. Furthermore, for all our simulations
depicted in figure (3) the parameter σ was chosen as 100. The left plots belonging to the
first row shows that the weighted train distribution becomes closer to the test subset which
overlaps the train dataset. On the other hand, the right plots from the first row shows
the effect of the α mixture coefficient which was set to 0.75 along with the γ1 coefficient
of the single train dataset which was eventually chosen as 0.25. Here, we see that the
mixture coefficient emphasize much more the test dataset which is closer to the training
dataset, and it eventually leads to a worse approximation of the SGDRegressor. Finally,
the simulation made in the plots from the second rows are based upon the same choice of

Computer Science & Information Technology (CS & IT) 301

Fig. 2: Multiple train datasets

the coefficents as in the previously described simulation, namely α is 0.75, γ1 was set to
0.25 and σ to 100, respectively. The main difference is that the training dataset is shifted
to the left hence it is located between the two test datasets. One can observe that the α-
mixture density ratio approach is suitable for this regression problem setting, by leading
to a uniform-like distribution of the weighted train dataset.

The last experiment that we will present involves multiple train and also multiple test
datasets and it is shown in figure (4). As before, we generate the train and test datasets
using a random normal distribution. In the corresponding simulations we created 3 train
datasets of sizes 200, 150 and 100, along with 2 test datasets of sizes equal to 100. The
training subsets were generated from random normal distributions with means −0.5, 0.5
and 1.5, and standard deviation 0.1. On the other hand, the two test datasets were gener-
ated using random normal distribution with means −0.5 and 1.5, with a standard deviation
equal to 0.15. In the plots further to the left from the first row of (4), we have chosen the
value 0.1 for σ. Similar to the left-most plots from the first row of figure (2), the low value
for σ implies a weighted train distribution with 3 peaks uniformly distributed, along with
a weighted MAE equal to the MAE obtained from the unweighted predictions. On the
other hand, in the right-most plots from the first row of (4) the value for σ was increased
to 10. This leads to only 2 peaks, uniformly distributed and centered at the test distribu-
tions. Consequently, the MAE metric decreases if one uses the weighted predictions of the
SGDRegressor.
Now, let’s turn our attention to the simulations made in the second row of figure (4). For
the results shown in the further to the left plots we have chosen σ equal to 100, and the ωi
test weights 0.85 and 0.15, respectively. Along with these we have considered an α-mixture
density approach, where α was not defined directly, i.e. at first the γj weights of the train

302 Computer Science & Information Technology (CS & IT)

Fig. 3: Multiple test datasets

subsets were constructed using the ratio of each train subset size and the size of the total
training dataset, and then α was determined such that α and the sum of γj add to the
value of 1 (for this see the basic example belonging to the ending part of section (2)).
In this case one observes that the mixture density technique modifies the distribution of
the peaks of the weighted training data. Furthermore, the value of the weights ωi related
to the test datasets shows that the higher the ωi weight is then the higher is the peak
pointing to the corresponding test dataset. Similar to the case of multiple test datasets
which were depicted in the last row of figure (3), the α-mixture density approach is crucial
in the learning process of the optimal density ratio weights.
For the right-most plots shown in the second row of figure (4) we considered also σ equal
to 100. But, the weights corresponding to the training subsets, namely γj were chosen this
time as 0.25, 0.2 and 0.05 while the weights ωi for the test subsets were selected with the
values 0.15 and 0.85, respectively. As explained before, since α and the sum of all the γj
coefficients must sum up to 1, we set α to the value of 0.5. Due to the fact that the weight
of the second test subset is higher than the coefficient corresponding to the first test sub-
set, the peak of the weighted train dataset is higher in the location of the second test subset.

Finally, we conclude the present section by highlighting that the experiment made in
figure (1) reveals a qualitative comparison between the classical KMM algorithm and our
Generalized KMM density ratio optimization method. At the same time, the simulations
presented in figures (2), (3) and (4) shows the versatility of our method through the choices
of the coefficients, especially for the case of the α-mixture density ratio.

Computer Science & Information Technology (CS & IT) 303

Fig. 4: Multiple train & test datasets

6 Conclusions & perspectives

In this final section we present a brief overview of our Generalized KMM algorithm given
through the quadratic optimization problem with constraints (OptPb-Empirical-G-KMM)
along with the underlying limitations and the possible extensions for future research.

6.1 Novelty

In the present study, our main contribution is the introduction of a new type of density
ratio estimation technique entitled Generalized KMM, which is an extension of the classical
KMM algorithm. From both a theoretical and a practical point of view our proposed
method is completely novel from the following perspectives:

– The Ensemble KMM method from [4] is based on the idea of dividing the test dataset
into multiple non-overlapping test sets, while Efficient Sampling KMM introduced in
[5] is associated with the idea of a bootstrap aggregation approach for the training
data. In contrast, our method is not developed using heuristic arguments, but it relies
on the construction of a suitable loss function which attains its minimum value in the
theoretical situation when one uses the true density ratio.

– In [3], the classical KMM algorithm uses directly the density ratio model with respect to
the training samples. But, in our work we employed the approach used in RuLSIF where
the density ratio is approximated with a linear kernel model, where the underlying
kernel depends on the test points. Hence we minimize a loss function with respect to
some weights belonging to a lower-dimensional space, where the dimension is given by
the total number of test samples.

304 Computer Science & Information Technology (CS & IT)

– Although we have constructed our minimization problem in connection to the cases
consisting of non-overlapping train/test datasets, our approach contains as a particular
case also a generalized version of the α-relative density ratio, which is unique from the
point of view of KMM-type methods. On the other hand, it is worth emphasizing that
the theoretical construction of our method was done using the idea of non-overlapping
sets, while the case of the α-relative density ratio is devised only through a formal and
mimetic approach.

6.2 Research limitations

Our method has not only advantages but it is also constrained by our inherent methodology
as shown below:

– Despite the fact that the Generalized KMM is rigorously developed, one loses the paral-
lelization property of the Ensemble KMM and Efficient Sampling KMM, respectively.

– Similar to the classical KMM algorithm, our method has the same dependence on the
hyper-parameters ε, B and σ, respectively.

6.3 Recommendations for future research

For future research, we propose the following methods to enlarge our KMM-type frame-
work:

– In a similar manner with [7] we can extend our algorithm to the case of neural networks.
More precisely, one can utilize the objective function given in (OptPb-Empirical-G-KMM)
along with the constraints which can be applied directly into the forward propaga-
tion process. Consequently, we can make our method faster using randomized batch
learning, hence we may utilize the KMM-type algorithm for adjusting the probability
densities associated to data augmentation sample sets.

– Similar to the classical KMM algorithm, our method is suitable for the estimation of
the density ratio weights. In general, only a few training samples contribute to the
reweighting process, due to the fact that the density ratio estimation and the regres-
sion/classification learning are separated. In order to alleviate this, we can proceed as
in [23] by simultaneously training our Generalized KMM density ratio model and the
underlying weighted loss function, in the framework of supervised learning.

References

1. A. Gretton, K.M. Borgwardt, M.J. Rasch, B. Schölkopf, A. Smola, A kernel two-sample test, The
Journal of Machine Learning Research, vol. 13, no. 1, 2012, pp. 723-773.

2. M. Kirchler, S. Khorasani, M. Kloft, C. Lippert, Two-sample testing using deep learning, in: Interna-
tional Conference on Artificial Intelligence and Statistics, PMLR, 2020, pp. 1387-1398.

3. A. Gretton, A. Smola, J. Huang, M. Schmittfull, K. Borgwardt, B. Schölkopf, Covariate shift by kernel
mean matching, Dataset shift in machine learning, vol. 3, no. 4, 2009, pp. 5.

4. Y-Q. Miao, A.K. Farahat, M.S. Kamel, Ensemble kernel mean matching, in: 2015 IEEE International
Conference on Data Mining, IEEE, 2015, pp. 330-338.

5. S. Chandra, A. Haque, L. Khan, C. Aggarwal, Efficient sampling-based kernel mean matching, in: 2016
IEEE 16th International Conference on Data Mining (ICDM), IEEE, 2016, pp. 811-816.

6. A. Haque, Z. Wang, S. Chandra, Y. Gao, L. Khan, C. Aggarwal, Sampling-based distributed kernel
mean matching using Spark, in: 2016 IEEE International Conference on Big Data (Big Data), IEEE,
2016, pp. 462-471.

7. A. de Mathelin, F. Deheeger, M. Mougeot, N. Vayatis, Fast and Accurate Importance Weighting for
Correcting Sample Bias, Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, Cham: Springer International Publishing, 2022, pp. 659-674.

Computer Science & Information Technology (CS & IT) 305

8. T. Kanamori, S. Hido, M. Sugiyama, A least-squares approach to direct importance estimation, The
Journal of Machine Learning Research, vol. 10, 2009, pp. 1391-1445.

9. M. Yamada, T. Suzuki, T. Kanamori, H. Hachiya, M. Sugiyama, Relative density-ratio estimation for
robust distribution comparison, Neural computation, vol. 25, no. 5, 2013, pp. 1324-1370.

10. M. Sugiyama, T. Suzuki, Y. Itoh, T. Kanamori, M. Kimura, Least-squares two-sample test, Neural
networks, vol. 24, no. 7, 2011 pp. 735-751.

11. M. Sugiyama, T. Suzuki, T. Kanamori, Density-ratio matching under the Bregman divergence: a
unified framework of density-ratio estimation, Annals of the Institute of Statistical Mathematics, vol.
64, 2012, pp. 1009-1044.

12. M. Sugiyama, T. Suzuki, S. Nakajima, H. Kashima, P. Von Bünau, M. Kawanabe, Direct importance
estimation for covariate shift adaptation, Annals of the Institute of Statistical Mathematics, vol. 60,
2008, pp. 699-746.

13. Y. Tsuboi, H. Kashima, S. Hido, S. Bickel, M. Sugiyama, Direct density ratio estimation for large-scale
covariate shift adaptation, Journal of Information Processing, vol. 17, 2009, pp. 138-155.

14. M. Hushchyn, A. Ustyuzhanin, Generalization of change-point detection in time series data based on
direct density ratio estimation, Journal of Computational Science, vol. 53, 2021, pp. 101385.

15. A. Kumagai, T. Iwata, Y. Fujiwara, Meta-learning for relative density-ratio estimation, Advances in
Neural Information Processing Systems, vol. 34, 2021, pp. 30426-30438.

16. L. Yu, Y. Jin, S. Ermon, A unified framework for multi-distribution density ratio estimation, arXiv
preprint arXiv:2112.03440, 2021.

17. M. Sugiyama, T. Suzuki, T. Kanamori, Density ratio estimation in machine learning, Cambridge
University Press, 2012.

18. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E.
Duchesnay, Scikit-learn: Machine learning in Python, the Journal of machine Learning research, vol.
12, 2011, pp. 2825-2830.

19. A. Agrawal, R. Verschueren, S. Diamond, S. Boyd, A rewriting system for convex optimization prob-
lems, Journal of Control and Decision, vol. 5, no. 1, 2018, pp. 42-60.

20. S. Diamond, S. Boyd, CVXPY: A Python-embedded modeling language for convex optimization, The
Journal of Machine Learning Research, vol. 17, no. 1, 2016, pp. 2909-2913.

21. A. de Mathelin, F. Deheeger, G. Richard, M. Mougeot, N. Vayatis, ADAPT: Awesome domain adap-
tation python toolbox, arXiv preprint arXiv:2107.03049, 2021.

22. T. Fang, N. Lu, G. Niu, M. Sugiyama, Rethinking importance weighting for deep learning under
distribution shift, Advances in neural information processing systems, vol. 33, 2020, pp. 11996-12007.

23. S. Chen, X. Yang, Tailoring density ratio weight for covariate shift adaptation, Neurocomputing, vol.
333, 2019, pp. 135-144.

Authors

C.D. Alecsa received his PhD in Mathematics from Babeş-Bolyai University and has
a broad experience in both academia and industry. Currently, he is a researcher on two
national grants: at the Technical University of Cluj-Napoca (on Optimization) and at the
Romanian Institute of Science and Technology (on Machine Learning), respectively. His
research interests include Pattern Recognition, Machine Learning, Statistics, and Applied
Mathematics.

306 Computer Science & Information Technology (CS & IT)

© 2023 By AIRCC Publishing Corporation. This article is published under the Creative Commons Attribution
(CC BY) license.

