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ABSTRACT 
 
With the growing interest in neural network compression, several methods aiming to 

improve the networks accuracy have emerged. Data augmentation aims to enhance model 

robustness and generalization by increasing the diversity of the training dataset. 

Knowledge distillation, aims to transfer knowledge from a teacher network to a student 

network. Knowledge distillation is generally carried out using high-end GPUs because 

teacher network architectures are often too heavy to be implemented on the small resources 

present in the Edge. This paper proposes a new distillation method adapted to an edge 

computing infrastructure. By employing multiple monoclass teachers of small sizes, the 

proposed distillation method becomes applicable even within the constrained computing 

resources of the edge. The proposed method is evaluated with classical knowledge 

distillation based on bigger teacher network, using different data augmentation methods 

and using different amount of training data. 
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1. INTRODUCTION 
 

The accuracy of a neural network has been widely recognized to be influenced by its size and 

architectural complexity. Larger neural networks have the capacity to model intricate 

relationships between input data and desired outputs, thereby improving accuracy compared to 

smaller neural networks. 

 

In the context of Edge Computing, computational resources are commonly multiple but 

constrained in terms of memory and computing power. Consequently, the choice of neural 

network architecture must be carefully considered based on the available resources within this 

infrastructure. Having to choose smaller neural network architecture typically lead to scarifying 

accuracy. Several technics can be used to improve accuracy of small networks and not suffer to 

much from the resources constraints of the Edge. Data augmentation consist in enhancing the 

https://airccse.org/csit/V14N01.html
https://airccse.org/csit/V14N01.html
https://doi.org/10.5121/csit.2024.140107


114                                                 Computer Science & Information Technology (CS & IT) 

model robustness and generalization by increasing the diversity of the training dataset. It 

typically consists in applying various transformation to a given dataset to generate new data.  

 

One notable technique is knowledge distillation, which facilitates the transfer of knowledge from 

a teacher network to a student network, thereby enhancing the precision of the student network 

compared to training without distillation. 

 

In a classical distillation context, the architecture of the student network is chosen according to 

material constraints such as computing power and available memory. The teaching network is 

chosen solely for the purpose of obtaining the best possible precision. In general, the higher the 

precision of the teacher network is, the more effective the distillation of knowledge will be on the 

student network, if the student network has an architectural capacity to imitate the teacher 

network [1]. 

 

The teacher network often requires too much computing power and memory to run on the 

resources present in the Edge. Thus, to carry out the distillation, it is generally necessary to use 

high-end GPUs which are typically found in Cloud Computing.  

 

The proposed method in this article is based on the use of multiple monoclass teacher networks 

with architectures of small sizes (equivalent to the student network size). This allows to perform 

the entire distillation training in an Edge infrastructure composed of low/medium computational 

capacities.  

The contribution lies in the field of computer vision using Convolutional Neural Networks 

(CNNs), images dataset and image data augmentation methods.  

 

The proposed method has been evaluated using the three data augmentation, random crop, 

random horizontal flip and mixup. The experiments are based on the CIFAR10 dataset using 

different amount of training data and using a customized LeNet architecture. Different 

combinations of the three data augmentation methods have been evaluated during the distillation 

training using different number of training data. The best results are obtained when using only 

random crop and random horizontal flip techniques. When using the proposed method in 

combination with random crop and random horizontal flip, a consistent gain in accuracy is 

observed over a regular training using only data augmentation. The proposed method gives also 

overall better results than the regular distillation based on a large teacher with the same data 

augmentation methods.  

 

2. RELATED WORK 
 

This section presents data augmentation techniques used in the field of computer vision as well as 

the different knowledge distillation methods.  

 

2.1. Data Augmentation 
 

Data augmentation is a crucial element of computer vision tasks, aiming to enhance model 

robustness and generalization by increasing the diversity of the training dataset. Early computer 

vision research introduced foundational data augmentation methods such as noise, rotation, 

scaling, and flipping. These techniques have become the foundation for image data augmentation.  

Geometric transformations have been extended to include cropping, translation, and perspective 

transformations. Random cropping is used to increase the invariance of Convolutional Neural 

Networks (CNNs) to object location. The work of Wang et al. [2]  explored the application of 

perspective transformations to augment training data for object detection. Takashi et al. [3] 
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proposed a method combining random cropping (RICAP) which randomly crops four images and 

patches them to create a new training image. Zhang et al. [4] proposed mixup a method that trains 

a neural network on convex combinations of pairs of examples and their labels. 

 

Recent advancements have introduced advanced augmentation techniques leveraging deep 

learning. Cubuk et al. [5] proposed AutoAugment, a method that employs reinforcement learning 

to discover optimal augmentation policies for image classification tasks. Similarly, latter they 

introduced RandAugment[6], a simple yet effective method for augmenting data with random 

transformations, demonstrating state-of-the-art results in various tasks. 

 

Generative adversarial networks (GANs) have gained prominence in data augmentation. For 

instance, Perez and Wang. [7] employed GANs to generate realistic samples for object 

detection, addressing the challenges of limited training data. GAN-based approaches have shown 

promise in creating synthetic data that complements real-world datasets. 

 

The data augmentation field has evolved from basic transformations to advanced methods, 

leveraging deep learning and generative models. As we advance in our understanding of data 

augmentation, addressing biases and overfitting while improving computational efficiency 

remains a primary research focus. 

 

The Table 1 present a relative comparison of the different data augmentation using their 

computational complexity and their expected accuracy gain. A low computational complexity is 

labeled when the operations applied are on the order of few matrix operations. A High 

computational complexity is labeled when a high number of matrix operations is required to 

apply a data augmentation method such as GAN based data augmentation methods that use 

neural networks. The GANs data augmentations in some cases shows a significant gain in 

accuracy compared to the use of regular data augmentation, Frid-Adar et al[8]. demonstrated this 

technique on a liver lesion classification task and achieved a significant improvement of 7% 

using synthetic augmentation over the classic augmentation. Therefore, the GANs based methods 

have been labeled as Medium/High expected accuracy gain and the traditional method such as 

Random crop and random horizontal flip have been label as low expected accuracy gain. The 

mixup method shows a 1-2% gain in accuracy[9] when the baseline accuracy is around 95-96%. 

This can be considered as medium gain. The AutoAugment[5] method shows a 3% gain in 

accuracy when the baseline is also around 93-94%. This can be considered as medium/high gain. 

Finally, the RandAugment[6] method shows a 1% gain in accuracy when the baseline accuracy is 

around 97% which can also be considered as Medium/High gain.  In this paper, the data 

augmentation methods evaluated are random crop, random horizontal flip and mixup. These 

methods are chosen for their low computational complexity even if their expected effect on the 

accuracy is lower than more advanced data augmentation methods.  

 
Table 1. Relative comparison of computational complexity vs expected accuracy gain for different data 

augmentation methods.  

 
Data augmentation method Method computational 

complexity 

Expected accuracy gain 

Random crop Low Low 

Random horizontal flip Low Low 

Mixup Low Medium 

GANs based High Medium/high 

AutoAugment Medium Medium/high 

RandAugment Medium Medium/high 
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2.2. Distillation 
 

Knowledge distillation is a technique that aims to transfer knowledge from a large, complex 

model (teacher) to a smaller, computationally efficient model (student). There are several 

knowledge distillation methods[10]. The distillation of knowledge based on the logits (un-

normalized predictions) of outputs consists in training a student network with a restricted 

architecture to generate logits similar to a more complex teacher model and having a high 

accuracy. This method is often used in the context of image classification. 

 

The distillation of knowledge based on feature maps generated by intermediate layers of a 

network consists in training a student network to extract feature maps similar to a teacher model. 

This method is often used in the context of image segmentation. 

 

Gradient-based knowledge distillation is a method to improve the robustness of the two previous 

methods. The gradients generated during the training of a network make it possible to know 

which parts of the network are the most active. Therefore, it is possible to use this information to 

ensure that a student network can replicate the operation of the most active parts of the teacher 

network. 

 

There are multiple distillation schemes, the three main ones are: 

 

- Offline distillation consists of distilling knowledge from a pre-trained teacher network to a 

student network. 

- Online distillation consists of jointly training a student network and a teacher network while 

carrying out the distillation in parallel. 

- Self-distillation consists of carrying out distillation between the intermediate layers of the 

same network. 

 

You et al. [11] proposed to use multiple teacher network to perform knowledge distillation. They 

showed that their method is capable of generating a well-performed student network.  

 

The offline distillation methods presented in the literature focus mainly on using teacher 

networks of larger sizes than the student network as shown in Table 2. The proposed method uses 

teachers and student network architectures of similar sizes. 

 
Table 2. Comparison of teacher/student parameters for different distillation techniques. 

 
Method Teacher Student Ratio params T/S 

CTKD[12] WRN-40-1 

WRN-40-2 

WRN-16-1 

WRN-16-2 

3.29 

3.19 

TOFD[13] ResNet152 

ResNet152 

ResNeXt50-4 

MobileNetV2 

2.40 

17.17 

AdaIN[14] ResNet26 

WRN-40-2 

ResNet8 

WRN-16-2 

4.63 

3.19 

FN[15] ResNet110 

ResNet56 

ResNet56 

ResNet20 

2.0 

3.15 

Proposed method LeNet (customized) LeNet (customized) 1.0 

 

2.3. Distillation and Data Augmentation 
 

New studies are done to study the impact of data augmentation when using knowledge 

distillation. Das et al. [16] did an empirical analysis of the impact of data augmentation on 
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knowledge distillation and proposed a class-discrimination metric to quantitatively measure the 

performances of different data augmentation methods. Wang et al. [17] try to respond to the 

question. What makes a “good” data augmentation in knowledge distillation? They suggest that a 

good DA scheme should reduce the covariance of the teacher-student cross-entropy. They 

presented a practical metric, the stddev of teacher’s mean probability (T. stddev).  

 

2.4. Contribution 
 

While knowledge distillation has been extensively explored with a single teacher, applying this 

approach with multiple monoclass teachers of equivalent sizes to the student is a novel direction. 

This paper aims to investigate the efficacy of offline-logits based distillation using multiple 

monoclass teachers. The choice of proposing an offline-logits based distillation is made because 

it allows easier implementation and less dependence to network architecture. The hypothesize is 

that this approach could lead to more accurate and robust student models for multiclass 

classification tasks while being applicable using low/medium computational resources. The 

analysis of the proposed method mixed with data augmentation methods provides good insight on 

the potential performance gains that can provide this new approach. 

 

3. PROPOSED METHOD 
 

In this part, different aspects of the proposed distillation method are presented starting from the 

motivation and contextualization to the implementation and finishing by the experimental 

objectives.  

 

3.1. Motivation and Contextualization 
 

The proposed method is a multi-monoclass-teacher offline distillation method based only on the 

output logits. The typical multiclass distillation paradigm consists in doing the distillation 

training using high-ends GPUs, typically in the Cloud using a large pre-trained multiclass teacher 

and then transfer the trained student model in the edge. In this paradigm the Cloud is considered 

to be a distant server which has large computing and storage resources. The proposed distillation 

method presented in this paper consider a different paradigm. The paradigm considered consists 

in realising the distillation training directly in the Edge infrastructure by using multiple pre-

trained monoclass teachers of sizes similar to the student network. In this paradigm the Cloud is 

mainly used as external storage space, therefore large computing resources can be available, but 

they are not needed. In both paradigms the edge computing resources are considered to be low to 

medium computational resources, typicaly not high end GPU such as Nvidia A100. Finally, in 

both paradigms the connection between Cloud and Edge infrastructure can be considered either 

stable or fluctuating. The  

Figure 1 depict both paradigms. 
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Figure 1. Approach contextualization. On the left, typical multiclass distillation paradigm using a large 

multiclass teacher network to train a student network and then deploy the trained student in the edge. On 

the right, the proposed monoclass distillation paradigm that enable the distillation directly on the edge by 

using multiple monoclass teacher network of sizes equivalent to the student network.  

 

3.2. Model Architecture 
 

The architecture of the student network and the monoclass teacher networks are considered 

identical except for the output of the monoclass teacher networks, which has 2 outputs instead of 

n. The 2 classes output correspond either to the class to be predicted or to "other". 

 

3.3. Training Process 
 

The labels of the database need adapted for each monoclass teacher network to replace all the 

non-main class labels by “other”. The database used for teacher networks and student network 

training are considered the same. The student can also be trained only from a subset of the same 

dataset. The training of the teacher network can be realised either in the Cloud or in the Edge 

depending on personal needs. The multiple monoclass teachers are considered distributed on 

multiple resources to perform the training in parallel, therefore leveraging the global 

computational capacity present in the Edge. The student network is then trained using both the 

ground truth of the database and the aggregated outputs of the different monoclass teacher 

networks by following the aggregation method proposed. 

  

3.4. Aggregation Method  
 

The proposed aggregation method proposed in  

Figure 2 to aggregates the main class logits of the n teacher networks to recreate a n logits vector 

corresponding to each class of the database. The aggregated vector is used to distill the 

knowledge acquired by the teacher networks by calculating the loss (cost function) of distillation 
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between the logits of the teachers and the logits of the student. The distillation loss used is MSE 

(Mean Squared Error) and the ground truth loss is Cross Entropy. 

 

 
 

Figure 2. Main class logits aggregation using the monoclass teacher outputs followed by the calculation 

of the distillation loss in parallel with the calculation of the ground truth loss 

 

3.5. Experimental Objectives  
 

The objective of the experiments is to determine if the idea of combining multiple monoclass 

teacher networks can effectively improve the learning of a student network while having student 

and teacher network architectures of restricted and similar sizes. 

 

4. EXPERIMENTATIONS AND RESULTS 
 

The proposed distillation method has been rigorously evaluated using a combination of data 

augmentation techniques, namely random crop, random horizontal flip, and mixup, with varying 

amount of training data. This evaluation process is essential to validate the effectiveness of the 

distillation approach in the context of enhanced training data with different numbers of data. By 

incorporating these augmentation methods into the evaluation, the model's performance can be 

thoroughly tested under a variety of conditions, including different image perspectives, 

orientations, and blended samples. This comprehensive evaluation not only ensures that the 

distillation process can effectively transfer knowledge from the teacher models to the student 

model but also verifies that the benefits of data augmentation, such as improved generalization 

and robustness, are retained throughout the training process. The results of this evaluation 

demonstrate the practical utility of the proposed distillation method in enhancing the performance 

of machine learning models. 

 

First, the experimentation configuration is described. A baseline with data augmentation and 

without distillation is evaluated. The proposed distillation method is evaluated using different 
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combination of data augmentation with various number of training data and compared to the 

baseline and a classical multiclass based distillation. Finally, the experiment results are analyzed.  

 

4.1. Experiments Configuration 
 

The training of the multiclass/monoclass teacher networks and the student network are carried out 

with a batch size of 96 images out of 100 epochs with the CIFAR10 database which includes 

images belonging to 10 different classes divided into 50,000 images of training and 10,000 test 

images.  

 

During the experiment, the teacher networks are first trained with all the training and using the 

three data augmentation methods, random crop, random horizontal flip and mixup. The teachers 

are then distilled on the student network using different combination of the three data 

augmentation methods. The Adam optimizer is used with a learning rate of 0.001. The student 

trainings are performed using between 1 and 5000 images per class (which is the maximum 

number of training data). For each data point presented in the experiment, the trainings are 

performed three times to get an average of the max Top-1 test accuracy obtained for different 

number of images per class. The Top-1 accuracy is the standard measure of accuracy, requires the 

model's highest-probability prediction to precisely match the expected answer. The tests are 

performed on a computer with an i7-9700 CPU, 32GB of RAM and an Nvidia Quadro P5000 

16GB graphics card. 

 

The architectures used during the tests are LeNet type custom architectures. The architecture of 

the student network (51,880 parameters) and the single-class teacher networks (51,752 

parameters) are identical except for the output of the monoclass teacher networks, which has 2 

outputs instead of 10. The 2 classes output correspond either to the class to be predicted or to 

"other". The architecture of the multiclass network has the same depth as the student network but 

is however much wider (4,187,018 parameters). The Table 3 describe the multiclass teacher 

architecture. The Table 4 describe the student architecture. 

 
Table 3. Multiclass teacher architecture 

 
Layer Feature Map Size Kernel Size 

Input image 3 32x32 - 

Convolution 32 32x32 3x3 

ReLU 32 32x32 - 

MaxPooling 32 16x16 2x2 

Batchnorm 32 16x16 - 

Convolution 128 16x16 3x3 

ReLU 128 16x16 - 

MaxPooling 128 8x8 2x2 

Batchnorm 128 8x8 - 

Fully connected - 500 - 

ReLU - 500 - 

Fully connected - 100 - 

ReLU - 100 - 

Fully connected - 10 - 
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Table 4. Student architecture 

 
Layer Feature Map Size Kernel Size 

Input image 3 32x32 - 

Convolution 12 32x32 3x3 

ReLU 12 32x32 - 

MaxPooling 12 16x16 2x2 

Batchnorm 12 16x16 - 

Convolution 25 16x16 3x3 

ReLU 25 16x16 - 

MaxPooling 25 8x8 2x2 

Batchnorm 25 8x8 - 

Fully connected - 30 - 

ReLU - 30 - 

Fully connected - 15 - 

ReLU - 15 - 

Fully connected - 10 - 

 

4.2. Baseline without Distillation 
 

First, the baseline of the student network trained using different data augmentation methods 

without distillation is evaluated by training it using all the different combination of data 

augmentation methods between random crop, random horizontal flip and mixup.   

 

 
 

Figure 3. Max test accuracy obtained by the student network for different data augmentation combination 

and different number of images per class used during training without distillation 
 

The  
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Figure 3 shows that the combination, random crop + random horizontal flip lead to the overall 

best accuracy for different number of training data. This baseline without distillation is used in 

the next evaluations. 

 

4.3. Distillation without Data Augmentation 
 

The proposed distillation method is evaluated without the use of data augmentation. The 

results are depicted in the  

Figure 4. The distillation using monoclass teachers or one large multiclass teacher alone gives 

lower accuracy than a training using data augmentation. 

 

 
 

Figure 4. Max test accuracy obtained by the student network without data augmentation for the monoclass 

distillation and multiclass distillation. 

 

4.4. Distillation Using Data Augmentation 
 

The proposed distillation method is evaluated firstly using one data augmentation method at a 

time. The results for the random crop, random horizontal flip and mixup are respectively depicted 

in  

Figure 5,  

Figure 6 and  

Figure 7. 
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Figure 5. Max test accuracy obtained by the student network using the random crop data augmentation for 

the monoclass distillation and multiclass distillation. 

 
 

Figure 6. Max test accuracy obtained by the student network using the random horizontal flip data 

augmentation for the monoclass distillation and multiclass distillation. 
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Figure 7. Max test accuracy obtained by the student network using the mixup data augmentation for the 

monoclass distillation and multiclass distillation. 

 

From these three data augmentation methods the one that seems to give the best results when 

used alone is random crop then random horizontal flip and finally mixup. 

 

Then the different combinations of data augmentations have been evaluated. The  

Figure 8 depict the results obtained using random crop + random horizontal flip and 

distillation. The  

Figure 9 depict the results obtained using random crop + mixup and distillation. The  

Figure 10 depict the results obtained using random horizontal flip + mixup and distillation. 

Finally, the  

Figure 11 depict the results obtained using random crop + random horizontal flip + mixup and 

distillation. 

 
 

Figure 8. Max test accuracy obtained by the student network using the random crop + random horizontal 

flip data augmentations for the monoclass distillation and multiclass distillations. 
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Figure 9. Max test accuracy obtained by the student network using the random crop + mixup data 

augmentations for the monoclass distillation and multiclass distillations. 

 
 

Figure 10. Max test accuracy obtained by the student network using the random horizontal flip + mixup 

data augmentations for the monoclass distillation and multiclass distillations. 
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Figure 11. Max test accuracy obtained by the student network using the random crop + random horizontal 

flip + mixup data augmentations for the monoclass distillation and multiclass distillations. 

 

The results show that the use of random crop and random horizontal flip during the training is the 

combination that gives the overall best results (blue curve over red curve). The use of other 

combinations of data augmentation lead to overall worst result than the baseline (blue curve 

under red curve). This means that the use these combinations of data augmentation associated 

with distillation does not bring any gain compared to a training performed only with data 

augmentation. 

 

 

 

4.5. Results Analysis 
 

The choice of the data augmentation methods used during the training can impact significatively 

the max test accuracy obtained during the training. The combination of random crop and random 

horizontal flip is the one that lead to the best results. The use of the others combination of data 

augmentation seems to decrease the accuracy gain compared to training performed only with data 

augmentation. 

 

The accuracy gain provided by the proposed method is higher when a lower number of data is 

used for training. This could be explained by the fact that higher number of data gives more 

information to the student network which reduce the benefits of the added knowledge given by 

the distillation. The proposed method seems to provide a more consistent accuracy gain 

compared to regular knowledge distillation based on multiclass teacher. 

 

The computational complexity of the different networks used in the experiments can be expressed 

by the number of multiplications and additions (multi-adds) required to perform the inference as 

well as its memory usage. The student network inference requires 1071631 multi-adds and 

233472 bytes of memory. One monoclass teacher inference requires 1071503 multi-adds and 

232960 byte of memory. The multiclass teacher inference requires 14502298 multi-adds and 

17165824 bytes of memory. The monoclass teachers require 13.53 times less multi-adds 

operations than the multiclass teacher and 73.69 times less memory during inference.   
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5. CONCLUSIONS 
 

This article present an offline-logits based distillation method that uses multiple monoclass 

teachers of sizes equivalent to the student network. The key advantage of the proposed method is 

its ability to perform offline knowledge distillation on multiple small computational resources 

which suit the Edge context very well. It eliminates the need for high-performance external 

computing resources to train or infer on a large multiclass teacher. By employing the proposed 

method, edge infrastructures can benefit from enhanced network precision without relying on 

resource-intensive cloud-based computations. 

 

Through testing on the CIFAR10 database, the method presented outperforms regular knowledge 

distillation based on multiclass teacher. The method also gives more consistent accuracy gain 

when considering different number of training data and different data augmentation methods.   

 

Moving forward, the future perspectives revolve around reducing the database requirements for 

training monoclass networks. This is crucial to accommodate the limited storage capacities 

typically found in Edge infrastructure. 
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