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ABSTRACT 
 
Pneumonia, a lung inflammation and consolidation disorder, poses diagnostic challenges 

necessitating accurate detection. This paper introduces an innovative automated approach 

using segmented lung morphology and texture attributes from Chest X-ray (CXR) images. 

Unlike conventional methods analyzing the entire CXR, our focus narrows to segmented 

lung regions. Discriminative ranking of extracted features enhances the categorization of 
CXR images into pneumonia and normal cases. Diverse machine learning classifiers are 

evaluated, yielding a compelling 86\% accuracy—validating our method's efficacy in 

distinguishing pneumonia from normal cases. This study offers a robust and efficient 

diagnostic avenue for improved pneumonia differentiation. 
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1. INTRODUCTION 
 

Pneumonia is a common respiratory infection that causes inflammation of the air sacs in one or 

both lungs. The survival rate for pneumonia can vary depending on factors such as patient age, 
overall health, as well as the severity of the infection [23, 34]. Common symptoms of pneumonia 

include cough, fever, chest pain, and difficulty breathing. Early diagnosis of pneumonia is 

important to prevent potential complications and improve survival rates. Treatment for 

pneumonia usually involves antibiotics to clear the infection and supportive care to manage 
symptoms such as fever and cough. In severe cases, hospitalization may be necessary to provide 

more intensive treatment and support [23, 34, 5, 3, 2]. X-ray imaging is the most common 

diagnostic tool for the inspection of any inflammation or fluid in the lungs. The X-ray images of 
pneumonia patients normally show an increased density of the lungs, either in a lobar or diffuse 

pattern, due to inflammation and fluid buildup. In some cases, this may appear as a” ground-

glass” appearance or a consolidation of lung tissue. White patches in the chest X-ray are normally 
an indication of the infection. In contrast, healthy X-ray images show clear lungs without any 

signs of inflammation or fluid accumulation, see Figure 1. 

https://airccse.org/csit/V14N01.html
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One of the primary difficulties radiologists encounter during pneumonia diagnosis is the high 
variability in the appearance of pneumonia in X-ray images. Pneumonia can present in various 

patterns, densities, and sizes, making it challenging to develop standard diagnostic criteria. 

Moreover, various confounding factors such as suboptimal imaging conditions and overlapping 

structures such as blood vessels and underlying lung structures can further complicate the 
diagnosis process. Another significant challenge in pneumonia diagnosis from X-ray images is 

the subjective interpretation of the radiologists. Interpretation of the images can vary depending 

on individual experience, knowledge, and expectations of the radiologists. The differing opinions 
of radiologists can lead to delayed or inaccurate diagnoses, impacting patient outcomes [25]. 

Automated detection of pneumonia could improve the diagnosis process, reduce the time and 

effort required by radiologists and provide consistent results. Moreover, the automated methods 
can generalize to wide variations within the X-ray images. Hence, provides a more reliable and 

accurate outcome [46]. 

 

Several approaches have been proposed for chest X-ray classification. Yee et al.[51] investigated 
three models for pneumonia detection on chest x-ray images: Inception V3 [43, 52], CNN, and 

SVM. The SVM model outperformed the others, boasting an impressive 93.1% accuracy. 

Mathew et al.[24], used the Histogram of Oriented Gradients (HOG) to classify and detect 
COVID-19 cases from chest X-rays using three classification algorithms: SVM, KNN, and RF. 

The results demonstrated that SVM had maximum accuracy. 

 

 
 

Figure. 1. Two chest x-ray images for (a) Normal case, and (b) Pneumonia [21, 2]. 

 

of 98.12%. Chandra et al.[7], used multilayer perceptron, random forests, and logistic regression 
using a publicly available dataset named Chest X-ray14 [1] to classify X-rays as either normal or 

pneumonia. The logistic regression classifier achieved the highest accuracy of 95% on the test 

set. Mamlook et al.[4], experimented with RF, KNN, DT, Xgboost, Adaboost and CNN for the 
classification of chest X-ray images as normal or abnormal. They illustrated that the deep 

learning model outperforms the other machine learning techniques. The CNN model achieved the 

highest accuracy of 98.46%. Hussain et al. [18] extracted several morphological and textural 

features to classify chest X-ray images into COVID-19, bacterial pneumonia, viral pneumonia 
and normal. They compared several conventional machine learning methods for the best 

classification accuracy. 

 
Deep-learning algorithms have been widely used for chest X-ray image classification. For 

instance, Ibrahim et al. [19], compared several deep learning models for the classification of 

COVID-19, pneumonia, and lung cancer from a combination of chest X-ray and Computed 
Tomography (CT) images. Four architectures were considered: VGG followed by CNN, ResNet 
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followed by Gated Recurrent Unit (GRU), ResNet, and ResNet followed by Bidirectional GRU 
(Bi-GRU) [12]. They found that VGG19 + CNN model performs better than the other three 

suggested models [29]. Chouhan et al. [9], adopted transfer learning by extracting features using 

the ImageNet-trained AlexNet [36, 49], Dense Convolutional Network (DenseNet121) [17], 

Inception V3 [43, 52] GoogLeNet [42], and ResNet18 [15, 40] architectures. An ensemble model 
consisting of all five pre-trained models outperformed all other models. The ensemble model 

achieved 96.4% accuracy and 99.62% recall on unseen data from the Guangzhou Women and 

Children’s Medical Center dataset [21]. Kundu et al.[22], devolved a weighted average ensemble 
of three convolutional neural network models, GoogLeNet [42], ResNet [15], and DenseNet [17] 

to classify chest X-rays into pneumonia vs normal. Using a five-fold cross-validation scheme, 

they evaluated the proposed method on two publicly available pneumonia X-ray datasets, 
provided by Kermany et al. [21] and the Radiological Society of North America (RSNA) [50], 

respectively. They obtained 98.81% and 86.85% accuracy rates on the Kermany and RSNA 

datasets, respectively. Mun et al.[30] trained several deep learning models: Xception [8], 

DenseNet, ResNet [15], InceptionResNetV2 [41], and VGG16 [45]. The models were trained 
using the Guangzhou Women and Children’s Medical Centre dataset [2]. The result of the 

majority voting achieved an accuracy of 97.56% and 99.14% on train and test datasets, 

respectively. 
 

The literature predominantly employs two classification methodologies: deep learning-based and 

hand-crafted-based approaches. While deep learning techniques are powerful in image 
classification tasks, their applicability is constrained due to their requisites of substantial datasets 

and considerable computational resources. This may limit the scalability and accessibility of the 

models for some users or scenarios [16, 47]. For the hand-crafted-based classifiers, the literature 

has a common drawback in which the features are extracted from the entire X-ray images. 
Therefore, irrelevant parts may be involved during feature calculations, such as the neck, 

shoulder, and abdomen. Extracting features from unrelated body parts may cause noisy data and 

incorrect feature representation. 
 

In this work, we aim to overcome the limitations by extracting features solely from the 
segmented lungs. This approach will ensure that only the left and right lungs are considered 

during feature calculation while ignoring the irrelevant parts within the X-ray image. In addition, 
morphological and textural features are analysed to find the most representative features for the 

classification of pneumonia and normal X-ray images. 

 
The literature predominantly employs two classification methodologies: deep learning-based and 

hand-crafted-based approaches. While deep learning techniques are powerful in image 

classification tasks, their applicability is constrained due to their requisites of substantial datasets 
and considerable computational resources. This may limit the scalability and accessibility of the 

models for some users or scenarios [16,47]. For the hand-crafted-based classifiers, the literature 

has a common drawback in which the features are extracted from the entire X-ray images. 

Therefore, irrelevant parts may be involved during feature calculations, such as the neck, 
shoulder, and abdomen. Extracting features from unrelated body parts may cause noisy data and 

incorrect feature representation.  

 
In this work, we aim to overcome the aforementioned limitations by extracting features solely 

from the segmented lungs. This approach will ensure that only the left and right lungs are 

considered during feature calculation while ignoring the irrelevant parts within the X-ray image. 
In addition, morphological and textural features are analysed to find the most representative 

features for the classification of pneumonia and normal X-ray images. 

 
. 
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2. MATERIALS AND METHODS 
 
The proposed methodology encompasses four distinctive stages, outlined as follows: 

 

1. Applying a Pre-trained Deep Learning Model: A pre-trained deep learning model was 

employed as the first step to facilitate lung segmentation, thereby affecting the extraction 
of pulmonary structures from the chest X-ray images. 

2. Extraction of Morphological and Texture Features: In the subsequent stage, 

morphological and textural features were systematically extracted from both the left and 
right lung components within each individual X-ray image. 

3. Feature Relevance Selection: The third phase entailed a meticulous process of feature 

selection, guided by a battery of statistical tests, to identify and retain the most relevant 

attributes. 
4. Evaluation of Machine Learning Classifiers: The fourth stage involved a comprehensive 

evaluation of multiple machine learning classifiers using the chosen feature sets, with the 

overarching objective of attaining the highest achievable classification score. 
 

Finally, we validate the clinical significance of the selected features. 

 
The four stages are depicted in Figure 2. 
 

 
 

Figure. 2. Proposed framework. 

 

2.1. Dataset 
 

Chest X-ray images (anterior-to-posterior) were selected from retrospective cohorts of one to 
five-year-old paediatric patients at the Guangzhou Women and Children’s Medical Centre, 

Guangzhou [21]. The dataset is divided into two subsets for each class (Normal/Pneumonia). 

There are 2797 X-ray images of the same size, 256×256. There are 1565 images for the normal 
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class and 1232 for the pneumonia class. All chest X-ray imaging was performed as part of routine 
clinical care for the patients. For the analysis of chest X-ray images, all chest radiographs were 

screened for quality control by removing any scans that were of poor quality or unreadable. The 

image diagnoses were then graded by two expert physicians [2]. 
 

2.2. Image Segmentation 
 
We employed a pretrained U-Net model for image segmentation to extract the lungs out of the X-

ray image [33]. Weights for the pre-trained model were used to separate the segmented regions 

into left and right lungs. Since our dataset is interior- to posterior, we labelled the segmented 
regions as left lung and right lung, see Figure 3. 

 

 
 

Figure. 3. Lung segmentation. (a) original image, (b) segmented lungs (c) segmented mask and 
lung labels. 

 

2.3. Feature Extraction 
 

Two types of features were extracted: morphological and texture features. 
 

2.3.1.  Morphological features of the lung encompass the structural characteristics of the 

lung. We extract the following morphological features for each segmented region: area, 

perimeter, eccentricity, convex area, bounding box area, extent, solidity, orientation, 
major axis length, and minor axis length. 

 

2.3.2. Textural features related to pixel intensities and can be utilized to quantify changes in 
lung tissue density. This is useful in diagnosing conditions like consolidation in 

pneumonia X-ray images. The texture features were extracted using the GLCM 

techniques which measure how often pairs of pixels with specific grey levels, distances, 
and orientations occur in the image [14, 48]. The extracted GLCM features for both the 

left and right lungs are contrast, energy, homogeneity, correlation, dissimilarity, and 

Angular Second Moment (ASM). 
  
The total number of features extracted per segmented lung is 16. Therefore, 32 features are 

computed for each X-ray image. 

 

2.4. Features Selection 
 
We employed two statistical methods for feature selection: ANOVA [11] and Recursive Feature 

Elimination (RFE) [10]. ANOVA utilises the F-test to assess variance between two groups, 
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specifically normal and pneumonia cases [26, 44]. The feature exhibiting the highest F-statistic is 
considered relevant for predicting the target variable, as illustrated by the following equation. 
 

       F=                                         (1) 

 

Where  is the mean of ith group, ni is the number of samples in the ith group.  is the mean of all 

samples in the dataset, K is the number of groups,   is the ith feature of the jth group. Table 3.1 

shows the features with their scores according to each feature selection method. The Recursive 

Feature Elimination (RFE) method is designed to systematically reduce the feature set by 

iteratively assessing smaller subsets of features. You can find the features along with their 
corresponding scores for each feature selection method in Table 1. 

 

We inspected the correlation within the computed features as shown in Figure 4. When two 

features dis- play a strong correlation, it suggests the potential for predicting one variable based 
on another. In these instances, the model can effectively utilize just one of the correlated features, 

as the second one doesn’t contribute supplementary information [10]. For instance, Figure 4 

shows a significant positive correlation between the features, such as L_axis_minor_length with 
L_perimeter and L_axis_major_length. In contrast, the there is a negative correlation between the 

features such as L_bbox_area with L_area and L_area_convex, see Figure 4.  

 
In order to further understand the distribution of each selected feature, we plotted each selected 

feature per class, see Figure 5. In Figure 5 (a, b), there is a significant difference between the 

right-axis minor length and left-axis major length between normal and pneumonia classes. In the 

normal class, the median value is greater than the median value of the pneumonia class. In Figure 
5 (C, D), right ASM and left ASM are notably different in the normal and pneumonia classes. In 

the normal class, the median value is less than the median value of the pneumonia class. 

 
The feature selection process started by first selecting the top-ranked features. Subsequently, we 

systematically eliminated any feature displaying a strong correlation with previously chosen 

ones. In parallel, we validated our choices by subjecting the selected features to the ANOVA test. 
Ultimately, the set of features incorporated into our model consisted of those that excelled in both 

ANOVA and RFE analyses while maintaining minimal mutual correlation. These encompassed 

the following features: right-axis minor length, left-axis major length, extent, ASM, eccentricity, 

correlation, and solidity for both the left and right lung datasets. The list of selected features is 
described in Table 2. 
 
Table 1. Lung features from the highest to lowest scores in both the ANOVA test and the RFE method. L and R 

refer to the left and right lungs, respectively. Highly correlated features were not selected. 

 
ANOVA Scores RFE Scores 

L axis minor length 158.59 L energy 17 

L dissimilarity 156.22 L dissimilarity 16 

L homogeneity 147.16 R dissimilarity 15 

R extent 141.51 R asm 14 

L asm 141.48 L homogeneity 13 

L energy 138.10 L asm 12 

R axis major length 120.54 R energy 11 

R bbox area 112.04 L contrast 10 
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R perimeter 107.17 L solidity 9 

L area convex 104.92 R solidity 8 

L bbox area 104.51 L bbox area 7 

L area 102.88 R homogeneity 6 

L perimeter 90.81 R extent 5 

L contrast 90.77 R axis minor length 4 

R orientation 61.97 L perimeter 3 

L axis major length 59.15 R contrast 2 

R eccentricity 53.92 L orientation 1 

R area convex 45.49 L eccentricity 1 

R area 38.55 L axis minor length 1 

L orientation 30.86 L correlation 1 

L correlation 26.63 L extent 1 

R homogeneity 22.55 R area 1 

R asm 19.81 L axis major length 1 

R axis minor length 19.31 L area convex 1 

R dissimilarity 18.63 R area convex 1 

R energy 18.36 R correlation 1 

R correlation 15.24 R orientation 1 

R solidity 12.44 R eccentricity 1 

L extent 11.89 R axis major length 1 

L eccentricity 8.27 R perimeter 1 

L solidity 2.29 R bbox area 1 

R contrast 1.87 L area 1 

 

 

 
 
Figure. 4. Correlation coefficient for the calculated features. Strong negative correlation, strong positive 

correlation and no correlation are highlighted. 

 

2.5. Classification 
 

An imbalanced dataset, characterized by an unequal distribution of class labels, presents a 

common challenge in data analysis. To tackle this issue within our dataset, we adopted a random 
under-sampling technique [27]. This approach yielded a well-balanced dataset comprising 1232 

CXR images for both the normal and pneumonia classes. The number of samples in training and 
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testing sets are shown in Table 3. Following this, we applied a hold-out sampling technique, 
randomly partitioning the dataset into distinct training and test sets for further analysis [20]. 

 

The study utilized supervised learning methodologies to classify data into different groupings. 

We employed various machine learning algorithms, namely Random Forest (RF) [20], Decision 
Trees [37], K-Nearest Neighbours (KNN) [20], and Support Vector Machine (SVM) [37]. A 

weighted average probability ensemble was experimented with three different machine learning 

models: RF, SVM, and KNN. The weighted ensemble method [22] assigns weights to multiple 
models based on their ability to make correct predictions. We compute the performance measures 

for each model (i). Ai = precision(i) , Recall(i), and F1−score(i) of the model’s predictions (x) such 

that i is RF, SVM, and KNN. The  Tanh of these metrics is then summed to derive a weight 
for each model, as shown in equation 2.  

 

 
 

Figure. 5. Boxplot for the most important features. The boxplots (i, h, k and l) were rescaled to allow 

visible distribution of features in each class. 
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Table 2. Brief description for the selected features. [13, 28, 18] 

 
Feature Description 

Axis major length The length of the major axis of the best-fitting ellipse for the lung region. 

Axis minor length The length of the minor axis of the best-fitting ellipse for the lung region. 

Solidity The solidity of a region determines the pixel ratio of a convex hull. 

Extent The ratio of the lung area to the bounding box area. 

Correlation Correlation is a statistical measure of the linear relationship between the grey-

level pairs in an image. 

Eccentricity The eccentricity of an ellipse is the length of its major axis divided by the 

distance between its foci. 

Angular Second 

Moment (ASM) 

ASM measures the uniformity of pixels. 

 
Table 3. Training and validation split. 

 
Hold out Training set (80%) Testing set (20%) Total 

Normal 992 240 1232 

Pneumonia 979 253 1232 

Total 1971 493 2464 

 

The weighted sum of the predicted probabilities for each model gives the ensemble probabilities, 

which are then used to make the final predictions. 

 

 
                         (2) 
 

 

The model weights are thus allocated based on each model’s ability to correctly identify the 

classes in the test data, allowing the ensemble to give more importance to the better-performing 
models. Furthermore, we employed ensemble learning techniques, such as AdaBoost [38], 

Gradient Boosting [6], and Extreme Gradient Boosting (XGBoost) [6]. 

 

2.6. Experiments 
 

Several performance metrics, including accuracy, recall, precision, and F-measure, have been 
used to evaluate the performance of predictive models such as RF, DT, KNN, and SVM. 

Accuracy: The ratio of the total number of correctly classified instances to the total number of 

instances in the test set [20]. 
 

          (3) 

 

 
Precision: It is the percentage between the actual number of true positive instances and the 

overall number of instances labelled as positive [20]. 

 
                 (4) 
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Recall: It is the percentage of true positive instances to the number of instances that belong to the 
positive class [20]. 

 

                     (5) 

 
 

 

F1-measure: The mean of the measures of precision and recall [20].  
 

                   (6) 

 
  

 

Each model executes 10 times and then calculates the average metrics to ensure the consistency 

of the results, Table 4. We tune the parameters for each classifier using hyperparameter tuning 
techniques [32, 16]. Different combinations of hyperparameters were systematically searched and 

evaluated to find the best configuration for each model. The GridSearch[47] was utilized to 

identify the optimal hyperparameters for our models. The performance of each configuration was 
evaluated using the F1 score as the scoring metric. The hyperparameters considered for tuning 

varied for each model and included parameters such as the number of estimators, maximum 

depth, minimum sample split, learning rate, and kernel type. 
 

The highest accuracy achieved by RF is 86% due to having typically robust outliers and the 

ability to manage them in an automated manner [20]. The XGBoost classifier exhibits a 

performance that ranks second and bears a resemblance to the gradient-boosting classifier. This 
could be due to its basis on the gradient boosting framework, which involves the sequential 

addition of new models aimed at fixing errors made by previous models [6]. The Gradient 

Boosting classifier exhibits similarity to RF and XGBoost classifiers in its capability of learning 
complex associations between features and classes [39]. The result of a weighted ensemble was 

affected by the low classification accuracy of the SVM, which is 78%, and KNN is 81%, Figure 

6. 

 
Table 4. Performance results of the predictive models 

 

Classifier Class 
Average 

Precision 

Average 

Recall 

Average 

F1-score 

Average 

Accuracy 

DT Normal 

Pneumonia 

71 

81 

82 

69 

69 

75 

75 

AdaBoost Normal 

Pneumonia 

72 

78 

77 

73 

75 

75 

75 

SVM Normal 

Pneumonia 

75 

82 

81 

76 

78 

79 

78 

KNN Normal 

Pneumonia 

75 

91 

92 

72 

82 

80 

81 

Weighted average Normal 

Pneumonia 

88 

79 

74 

91 

80 

85 

83 

Gradient Boosting Normal 

Pneumonia 

81 
88 

88 
81 

84 
85 

85 

XGBoost Normal 

Pneumonia 

82 

88 

87 

83 

84 

85 

85 

RF Normal 

Pneumonia 

83 

89 

89 

84 

86 

86 

86 
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Figure. 6. Comparison of metrics for classifiers RF, KNN, SVM, Weighted ensemble, XGboost gradient 

boosting and Adaboost. 

 

3. DISCUSSION 
 

In this section, we inspect the selected features and their clinical interpretation using chest X-ray 

images. We noticed that the entire lung in pneumonia cases is smaller than that of healthy cases. 
For instance, the left-lung minor-axis length was one of the highest score features in the feature 

selection stage (score 195 using the ANOVA test). The box-blot Figure 5 (A) shows that the 

median for pneumonia cases is lower than the healthy cases. This observation refers to the loss of 
the normal borders between thoracic structures in the affected lungs, which appear as white spots 

on the X-ray images [39, 35], see Figure 7 (a,b). Similarly, the left-lung major-axis length). The 

box-blot 5 (B) shows that there is a significant difference in the median value in pneumonia cases 

compared to healthy cases. Figure 7 (c,d) shows sample images of pneumonia and healthy cases. 
lung tissue in the left. 

 

 
 

Figure. 7. Sample results for the Normal/Pneumonia classification with the top selected features 

highlighted. (a,b) left lung minor axis, (c,d) Right lung major axis, (c,d) Right lung Angular second 

moment. 
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Another example is the ASM (score 141 ANOVA test). The homogeneity of the grey level 
distribution in the image is represented by the angular second moment. When an image has 

excellent homogeneity or when its pixels are substantially similar, the angular second moment is 

high [28]. This is reflected in the values computed for pneumonia and healthy lungs, Figure 7 

(c,d). The affected lungs have lower ASM compared to healthy lungs. This is due to the high 
density developed in the affected lungs due to the inflammatory exudate and pus replacing the air 

in the alveoli. This causes a high casting of shadow compared to the healthy lungs where the X-

ray casts less of a shadow. Therefore, the distribution of gray levels in affected lungs is much less 
than the healthy lungs due to more uniformity of the gray levels. 

 

4. CONCLUSIONS 
 

Our research aimed to leverage the power of machine learning techniques and statistical analysis 
to enhance the accuracy of chest X-ray image classification, explicitly distinguishing between 

normal and pneumonia cases. The U-Net architecture was utilized for image segmentation and 

applied statistical analysis to identify discriminative features in chest X-ray images. Additionally, 
popular machine learning algorithms were employed for classification and ensemble learning 

techniques to improve predictive performance further. The highest accuracy is 86%, achieved by 

the RF algorithm, closely followed by XGBoost, with an accuracy of 85%. These outcomes 
indicate our approach’s effectiveness in distinguishing between normal and pneumonia CXR 

images. Nevertheless, it is important to acknowledge certain limitations. Our study focuses solely 

on normal and pneumonia cases and did not include other lung pathologies. In future work, we 

aim to experiment with an alternative dataset to enhance our outcomes and validate our findings. 
Other possible future work could be conducting an experimental deep learning analysis and 

comparing the outcomes with the traditional classification results. Other future work might 

consider expanding the scope to encompass a broader range of lung abnormalities for a more 
comprehensive diagnostic framework. 
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