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Abstract. The Internet of Things (IoT) has emerged as the next big technologi-
cal revolution in recent years with the potential to transform every sphere of human
life. As devices, applications, and communication networks become increasingly con-
nected and integrated, security and privacy concerns in IoT are growing at an alarm-
ing rate as well. While existing research has largely focused on centralized systems
to detect security attacks, these systems do not scale well with the rapid growth of
IoT devices and pose a single-point of failure risk. Furthermore, since data is exten-
sively dispersed across huge networks of connected devices, decentralized computing
is critical. Federated learning (FL) systems in the recent times has gained popularity
as the distributed machine learning model that enables IoT edge devices to collabo-
ratively train models in a decentralized manner while ensuring that data on a user’s
device stays private without the contents or details of that data ever leaving that
device. In this paper, we propose a federated learning based intrusion detection sys-
tem using LSTM Autoencoder. The proposed technique allows IoT devices to train
a global model without revealing their private data, enabling the training model
to grow in size while protecting each participants local data. We conduct extensive
experiments using the BoT-IoT data set and demonstrate that our solution can not
only effectively improve IoT security against unknown attacks but also ensure users
data privacy.

Keywords: Internet of Things, security, Intrusion Detection system, Federated
learning, Deep embedded clustering

1 Introduction

The rapid proliferation of Internet of Things (IoT) devices has ushered in a new
era of connectivity and convenience [1]. However, this interconnected ecosystem
also introduces a myriad of security challenges that pose significant threats to the
integrity and privacy of IoT-enabled systems. The inherent characteristics of IoT,
such as the diverse nature of devices, resource constraints, and the vast scale of
deployments, create a fertile ground for potential security vulnerabilities. Tradi-
tional security measures, designed for conventional computing environments, often
fall short in addressing the unique challenges presented by the IoT paradigm.
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In response to these challenges, intrusion detection emerges as a critical com-
ponent in fortifying the security posture of IoT ecosystems. By enhancing the de-
tection and mitigation of security breaches, organizations can not only protect
sensitive data but also ensure the uninterrupted functionality of IoT applications.
Traditional intrusion detection methods often struggle to adapt to the dynamic
and heterogeneous nature of IoT environments. Machine learning, with its ability
to discern patterns and anomalies, presents a promising approach to augment the
security posture of IoT deployments. ML models, trained on diverse datasets, can
learn to distinguish normal from malicious behavior, enabling more accurate and
proactive threat detection [2].

Deep learning (DL), a subset of ML characterized by neural networks with mul-
tiple layers, offers enhanced capabilities for feature extraction and representation
learning. Existing research discusses how deep learning algorithms can be tailored
to the intricacies of IoT traffic patterns, enabling the identification of subtle and
complex security anomalies. The integration of ML and DL in intrusion detection
for IoT is not without challenges, including the scarcity of labeled datasets and
the resource constraints of IoT devices. Moreover, the usage of third-party servers
for machine learning training may compromise data privacy, as the training data
contain sensitive personal information such as the patient’s demographic info, and
might lead to data breaches [1]. It is thus critical to create novel methodologies to
implement efficient and privacy-enriched IoT networks and applications.

Federated learning (FL) is emerging as a valuable approach in addressing the
challenges associated with intrusion detection in Internet of Things (IoT) envi-
ronments. Federated learning allows models to be trained collaboratively without
exposing raw data, as only model updates, in the form of gradients, are shared be-
tween devices and the central server. This preserves the confidentiality of individual
device data while still allowing the model to learn global patterns and trends. Fed-
erated learning provides resilience to heterogeneity in IoT by allowing devices to
contribute to the learning process based on their capabilities. Since federated learn-
ing only transmits model updates, the amount of data exchanged is reduced. This
is particularly advantageous in IoT environments where bandwidth constraints and
latency issues may be prevalent.

In this paper, we propose a federated learning-based intrusion detection system
that relies on the deep embedded clustering model based on LSTM autoencoder
and clustering layer. The suggested method enables IoT devices to train a global
model without disclosing their private data, allowing the training model to expand
in size while protecting each participant’s local data.

The contributions of this paper are as follows. First, we propose an LSTM-
Autoencoder-clustering model that can identify attacks in IoT attacks under the
centralized environment. Second, we prove that our clustering model can run in
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federated learning setting and achieve high performance. Thirdly, we compare our
result with other models and demonstrate the effectiveness of our solution.

2 Related Work

In the last few years, research on developing intrusion detection systems (IDS) for
securing Internet of Things is gaining increased attention. In this section, we will
discuss some of the existing approaches in this field of research.

2.1 Centralized Intrusion Detection

Centralized IDS assume the presence of a central server to analyze data and identify
threats. In [2], authors presented a new method based on the Long Short Term
Memory (LSTM) autoencoder and the One-class Support Vector Machine (OC-
SVM) to detect anomaly-based intrusions in an unbalanced dataset by training the
models with only samples of normal classes. They evaluated their method on InSDN
dataset and achieved accuracy of 0.90% with precision and recall value close to 93%.
Zong et al. [3], developed a deep Autoencoding Gaussian Mixture Model (DAGMM)
for unsupervised anomaly detection. DAGMM optimizes the parameters of the deep
autoencoder and the mixture model concurrently, using a separate estimate network
to speed up the mixture model parameter learning. koroniotis et al. [4] observed
SVM, RNN and LSTM-RNN model on the Bot-IoT dataset with all 46 features as
well as the top 10 features.Their results indicate that the SVM classifier required the
most training time when all features were used, but had the highest accuracy and
recall rates. In [5] a C5 classifier and a One Class Support Vector Machine classifier
are combined to form a Hybrid Intrusion Detection System (HIDS). This method
integrates signature-based IDS for detection of well-known attacks with a behavioral
IDS for detection of zero-day attacks. They evaluate their model on 13 features of
Bot-Iot dataset with the highest accuracy of 99.97% from the combination of both
signature-based and behavioral IDS.

Even though these models have been used successfully for IDS, they usually
require a central server to process the data collected from all network users. How-
ever, a single-point IDS server may compromise data privacy. Due to the dispersal
of data across various sources and the high cost of obtaining data at a central node,
a centralized IDS may not always be practical in an IoT environment.

2.2 Federated Learning based Intrusion Detection

Federated learning, first proposed by Google, as a collaborative machine learning
method that train models locally on each client device and aggregate only model
parameters on a central server. This method ensures that the data stays on client
device and remain private. Recent research in federated learning-based intrusion
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detection systems demonstrates promising advancements in addressing the unique
challenges posed by IoT environments [6].

In [7], the authors propose DIoT, an autonomous self-learning system based
on FL for identifying IoT devices compromised with Mirai malware in the IoT
of SOHO network. DIoT is composed of a security gateway and IoT security ser-
vices. A security gateway, which monitors the network for suspicious activity, is
integrated with the anomaly detection component. IoT security services keep track
of device-specific anomaly detection models and aggregate model weights updates
from IoT devices in a central repository. The device-specific anomaly detection gets
existing anomaly detection models from the repository and allows network traffic
monitoring when new devices are added to the IoT network. According to the eval-
uation findings, false alarms are minimized in the detection of attacks. However,
the method was confined to Mirai attack types and did not include the construction
of a deep learning framework in FL domain.

Liu et al. [8] integrate federated learning with deep anomaly detection, in which
a convolutional neural network model with long short term memory is developed
to improve detection accuracy. The gradient compression is also used in this FL
to reduce communication costs and improve communication quality. Zhao et al.
[9] developed MT-DNN-FL, which is a multi-task deep neural network in federated
learning that can handle network anomaly detection, VPN (Tor) traffic recognition,
and traffic classification tasks all at the same time.

FedAGRU, a FL-based Attention Gated Recurrent Unit, is proposed in [10].
FedAGRU is a federated averaging method that has been improved to detect poi-
soning attacks and minimize contributing updates for a highly efficient global model
with low communication costs. Chen et al. [10] suggest a FL-based method specif-
ically for wireless intrusion detection (WID) using the awid dataset.

In order to discover malicious devices in industrial control systems, Wang et al.
[11] offer an anomaly detection approach based on a composite auto encoder model,
in which anomalies are identified based on error distribution. In [12], they present
a Smart Manufacturing architecture that makes use of FL for anomaly detection.
Their proposed architecture has three main components: Factory sites, which are
controlled by edge servers for collecting anomalies, edge device that receives sensor
data and performs anomaly detection and global unit processing, cloud server,
to aggregate data from various edge devices. Saharkhizan et al. [13] proposed a
deep neural network intrusion detection system using six layers of LSTM. The
model’s efficiency is confirmed by the evaluation results, however, it is confined to a
centralized form of ML. The Federated Averaging (FedAVG) method was developed
in [14], which combines local SGD (stochastic gradient descent) on each client with
model averaging on a server. Model averaging is similar to dropout training in that
it creates an average model based on the common parameters of various clients.
The major restriction in the federated learning scenario is communication cost.

4                                          Computer Science & Information Technology (CS & IT)



Fig. 1. Proposed Federated learning architecture

When compared to synchronous stochastic gradient descent, the FedAVG method
requires 10-100 times the amount of communication cycles.

The authors of [15] utilized convolutional neural networks and LSTM to detect
abnormalities in times series data collected by industrial IoT (IIoT) sensors. FL
is implemented using the deep learning frameworks, and a gradient compression
approach is suggested to increase communication efficiency. In this work, our goal
is to develop more efficient and scalable federated learning algorithms tailored for
the constraints of IoT environments.

3 Proposed Federated learning based IDS

In this section we describe our proposed Federated learning based intrusion detec-
tion model for Internet of Things. We discuss the system architecture and the design
elements of our local and global model as well as each network element along with
its interactions. Figure 1 depicts the architecture of our proposed framework with i
number of clients, a shared model, and a central FL server entity. The subsequent
sections contain design specifics for each component of the proposed architecture.

3.1 Server

The central entity, the FL server, is mainly responsible for the coordination among
FL clients to train the global model. First, it initializes the pre-training weights
and sets the global model hyper-parameters. These weights and parameters are
then sent to a set of selected clients for training purposes. Once clients return
the trained weights, the global aggregation strategy, FedAVG [14] which simply
aggregates the weights from each client equally, is applied. This process is repeated
until the desired accuracy is achieved. Finally, the server transfers optimum model
weights to all other clients in the network.
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Fig. 2. Deep embedded clustering model

3.2 Client

IoT devices are generally low-resource devices with limited capability for computing
machine learning models. On the other hand, due to the heterogeneous nature of
IoT devices, we execute the training model on a device in the same network to avoid
the complexity of implementing ML applications on them. These clients monitor
the traffic of the IoT devices within the same network and apply pre-processing
techniques, described in Section 4.2, to prepare the data for the local training on
the client. After running a specific number of local rounds, only model weights are
transferred to the server for aggregation process.

3.3 Federated learning Model

In this research, we combine the benefits of federated learning with deep embedded
clustering. Deep embedded clustering (DEC) is a machine learning paradigm that
combines deep learning with clustering [16, 17]. The main idea is to learn a deep
representation of the input data such that it facilitates effective clustering in the
embedded space. This is typically achieved by incorporating a clustering objective
into the training of a deep neural network. Earlier research shows that deep em-
bedded learning model performs well in federated learning settings specially where
data is highly non-iid [18].

We design and develop our IDS for IoT using federated learning combined with
deep embedded clustering model. IoT Devices in the federated learning setting
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use deep embedded clustering to learn representations of their local data that are
suitable for intrusion detection. The clustering layer in the deep embedded clus-
tering model help devices identify normal and anomalous patterns in their local
data. Aggregated model updates from all devices contribute to the improvement
of the global intrusion detection model, making it robust and adaptive to diverse
IoT environments. Our solution works by clustering the clients’ data in an unsu-
pervised manner in two phases. First, model parameters are pre-trained by a deep
autoencoder model, and second, a clustering layer is applied to optimize the learned
encoding into the cluster assignment. We implement the autoencoder part of the
DEC model based on the LSTM autoencoder(AE) followed by the clustering layer.
Figure 2 presents the overall model consisting of one LSTM layer, two Dense layers,
and a Dropout layer.

LSTM autoencoder (AE) is a type of unsupervised neural network that uses
back propagation to generate output vectors that are similar to the inputs. It com-
presses the input data into a lower-dimensional space before reconstructing the
original data from that representation. To learn the nonlinear representation of the
data, it employs a nonlinear activation function and multiple layers. The LSTM
AE is made up of an encoder component fw(.) and a decoder component gw

′(.).
The objective of our LSTM AE is to minimize the mean squared error (MSE) be-
tween input (x) and output (x′) where x′ = gw(fw(x)). The reconstruction loss is
measured by Equation 1.

Lr =
1

n

n∑
i=1

∥Gω′(Fω(xi))− xi∥2 (1)

where Lr represents the reconstruction loss, n is the number of records and Xi

is the ith input.
The clustering layer is coupled to the embedding layer and converts the learned

representation (zi) of the input traffic data (xi) into soft labels. This layer iter-
atively fine-tunes and minimizes the Kullback–Leibler (KL) divergence between
the distribution of soft labels and a predetermined target distribution as shown in
Equation 2.

Lc = KL(P ||Q) =
∑
i

∑
j

pijlog
pij
qij

(2)

where qij denotes the similarity of the embedded points zi, and cluster center
µj formulated in Equation 3.

qij =

∑
j
1 + ||zi − µj ||2

1 + ||zi − µj ||2
(3)

The target distribution pij is calculated based on Equation 4.
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pij =

q2ij/
∑
i
qij∑

j
(q2ij/

∑
i
qij)

(4)

The goal of the entire model is to minimize a loss function (L) that is the
weighted sum of the reconstruction and clustering losses (Lr, Lc) as presented in
Equation 5.

L = αLr + γLc (5)

So, if we consider α = 1 and γ = 0, we will get the same result as the LSTM
AE, and if we choose α = 0 and γ = 1, we will get clusters corresponding to random
weights. In this paper, we report the results of α = 1 while varying γ.

4 Experimental Setup

In this section we describe our experimental environment, hyper-parameter settings,
and dataset used to implement our proposed solution. we trained our model 2.40
GHz Quad Core Intel Core i7 CPU with 4 threads and 8 GB RAM and used Python
3.6 on Anaconda Jupyter for development. We implemented our federated learning
framework using Flower architecture [19]. Table 1 shows the hyper-parameters used
in our simulation setting.

Table 1. Simulation Setting

parameters Values

optimizer Adam
learning rate 0.0001
batch size 64
epochs 1000

activation function Tanh, Relu
γ 1

timesteps 1
features 23

clustering loss kld
Autoencoder loss MSE
Number of clients 10

4.1 Dataset

In this study, we use Bot-IoT data set to evaluate the proposed intrusion detection
system. Bot-IoT dataset includes both normal and attack traffic from IoT devices,
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collected via Nod-Red with 72,000,000 records. Various attack classifications, such
as DoS, DDoS, and Reconnaissance are included in the IoT-Bot. The attacks come
from both internal and external networks to simulate real-world attack scenarios. It
contains the most variance in features compared to the other IoT device data sets
with 46 features such as Transaction state, Traffic category and duration. In all of
our experiments, we split the data 80% for training and 20% for testing, yielding
1,048,576 training and 733,705 testing records.

4.2 Pre-processing

In this paper, we only focus on binary classification of the intrusion detection system
other than classifying the attack types. Anomaly traffic data refers to observations
that belong to any attack class. The initial step is to pre-process data for later
training purpose. We follow below stages to prepare our data:

– The resulting dataset includes device information such as source and destination
IP addresses, Source MAC, Destination MAC and etc. We delete these features
as these data would be specific to each device and might result in over-fitting
of our model. The final processed dataset contains 35 features.

– We apply normalization on data to make them lie between 0 and 1 range.
– To transform the labeled string to numerical values, we employ one-hot encod-

ing. Binary classification of 1 and 0 is used to demonstrate malicious and normal
traffic respectively.

5 Evaluation Metrics

In this section we describe the evaluation metrics used to assess the performance of
our proposed model. The clustering accuracy, precision and recall used to compare
our model effectiveness with previous work. In addition, we used unsupervised met-
rics to observe our model NMI (normalized mutual information) and ARI (Adjusted
Randomized Index).

We use accuracy metric to classify the effectiveness of the proposed machine
learning mode. Accuracy is defined as,

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

where TP refers to true positive, FP refers to false positive, TN is true nega-
tives and FN is false negatives. We also used recall, precision and F1 score to asses
our purposed model performance. Recall measuress how many correct positive pre-
dictions were produced out of all possible positive predictions. Recall is calculated
as,

Recall =
TP

TP + FN
(7)
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We also evaluate precision, which is defined as positive class predictions that
actually belong to the positive class.

Precision =
TP

TP + FN
(8)

F1-Measure generates a single score that accounts for both precision and recall
mean in a single number and defined as,

F1 = 2.
P recision . recall

Precision+Recall
(9)

6 Results

In this section we present the experimental results of our proposed framework.
The model clustering quality assessed by calculating clustering accuracy (ACC),
Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI). The pre-
cision, recall, NMI and ARI are all shown in Table 2 for different number of nodes.
It is clear that NMI and ARI are both high, indicating that our model performs
with high accuracy.

Table 2. The accuracy, precision, recall, NMI, and ARI of our approach on the Bot-IoT dataset
with varying number of client are compared. This is the result for a global server round of 20 and
client local epochs of 4 with γ = 5.

No. of Clients Accuracy Precision Recall NMI ARI

10 99.99 99.99 1 84 88

In Bot-IoT dataset, the distribution of normal data versus attack data is less
than 1%. As a result, we employ a random sampling technique for attack traffic. To
balance the dataset, we first extract all 9,490 normal traffic records and then ran-
domly select the attack traffics from each file. Figure 3 depicts the final distribution
result for the training and testing datasets.

We evaluate our model performance by changing the γ variant. Figure 4 shows
the interaction between γ and the two clustering metrics, NMI and ARI. We found
that when γ = 0, the clustering is random with NMI and ARI less than 20%. By
increasing γ = 1 both NMI and ARI improved up to 84% and 88% respectively.
This shows that our system achieved the highest clustering performance at γ = 3 on
the full-feature Bot-IoT dataset. We compare the training Accuracy and NMI when
the clustering and reconstruction losses are both taken into account and observed
the result by changing the γ value from 0 to 10. We observe that when γ = 0,
the model works solely based on only LSTM AE without any optimization by KL
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Fig. 3. Distribution of attack and normal traffic (attack=1 , Normal=0) for balanced dataset

Fig. 4. Interactions between γ, NMI, ARI and Accuracy

divergence. At this stage the accuracy is 43%, However by increasing γ, training
accuracy, test accuracy, NMI and ARI are improving and reaching to 91%.

Table 3 provides a performance comparison of our approach with other state-
of-art studies. In particular, we compare our federated learning IDS using LSTM-
Autoencoder with existing centralized IDS systems and federated learning based
systems. We evaluate different machine learning techniques including SVM, LSTM,
KNN, NB. Results show that in comparison to these current techniques, our pro-
posed model using LSTM-AEC in federated setting achieved higher accuracy with
limited number of clients, demonstrating the effectiveness of our solution.
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Table 3. Performance Comparison of Proposed Model with Existing Research

Author Type Approach Accuracy

SVM 99.98
koroniotis et al. 2018[4] Centralized RNN 97.90

LSTM 98.05

KNN 84.35
Al-Hawawreh et al. 2021[20] Centralized NB 72.98

LR 88.09
DPE TIDD 99.42

NONE Sampling 94.74
Weinger et al. 2020[21] FL - 5 nodes RAND 94.65

SMOTE 91.97
ADASYN TIDD 87.91

Our Approach FL - 10 nodes LSTM-AEC 99.998

7 Conclusion

In this study, we introduced a novel approach to intrusion detection in IoT environ-
ments by combining the power of federated learning and deep embedded clustering.
The proposed model harnesses the decentralized nature of federated learning to
train robust intrusion detection models on resource-constrained IoT devices while
preserving user privacy. Specifically, we implemented our model using LSTM-AEC.
Simulation results indicate that the proposed solution enhances the model’s abil-
ity to discern complex patterns within local data, facilitating accurate detection of
both known and novel intrusion scenarios.

Further research is warranted to explore scalability issues and optimize the
model for even more resource-constrained IoT devices. Additionally, real-world de-
ployment and validation of the proposed federated learning deep clustering model
using LSTM-AEC will be crucial to assess its effectiveness in diverse IoT environ-
ments.
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