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ABSTRACT 
 
In this paper, an algorithm is developed for the robot to take odometry combined with LiDAR 

(Light Detection and Ranging) input to perform localization and 3D mapping inside a swiftlet 

house model. The position of the walls in the swiftlet’s house for calibrating LiDAR data is 

obtained beforehand and the robot system would superimpose the LiDAR map and swiftlet’s 

nest to the provided global swiftlet house map. The LiDAR is able to generate a 2D map from 

point clouds with its 360-degree scan angle. Additionally, it is mounted to a 1 DOF arm for 

height variation thanks to a Stepper motor to achieve a 3D map from 2D layers. Swiftlet’s nests 

are detected by differentiating their distinctive shape from the planar concrete wall, recorded by 
the robot, and monitored until they are harvested. When the robot is powered up, it can localize 

itself in the global map as long as the calibrating wall is in view in one scan. We evaluate the 

robot’s functionality in the swiftlet’s cell model with swiftlet’s nest scanned. We propose a bird 

nest-oriented Simultaneous Localization and Mapping (SLAM) system that builds a map of 

birds’ nests on wood frames of swiftlet houses. The robot system takes 3D point clouds 

reconstructed by a feature-based SLAM system and creates a map of the nests on the house 

frame. Nests are detected through segmentation and shape estimation. Experiments show that 

the system has reproduced the shape and size of the nests with high accuracy. 

 

KEYWORDS 
 
Intelligent Systems, Recognition, Lidar, Bird’s nest, Monitoring system, SLAM, identified system 

 

1. INTRODUCTION 
 

Many centuries ago, the Vietnamese used edible bird's nest as a delicacy and a precious gift from 
nature because of its high nutrition. Therefore, the industry of harvesting swiftlet’s edible bird 

nest (SEBN) blossoms, especially in Khanh Hoa province. The harvesting of bird's nests process 

in the past was quite a dangerous and strenuous job because the swiftlets built their nests on the 
cliffs in the sea. Thus, the harvester needs professional and skillful technique on the staging 

fields. However competent the harvesters are, the job still poses many life-threatening risks. A 

few decades ago, most of the harvested bird's nests were exported because of the high cost, yet in 

the last 10 years, Vietnamese have started to use the products. When the demand is greater, the 
price of bird's nest is high, the trend of building bird's nest houses is deployed throughout the 

localities in Vietnam, especially the coastal provinces. Currently, all over Vietnam, many 

provinces and cities have built the swiftlet bird houses to adapt to this trend. After they finish 
their nests, they will be harvested. These houses are specially designed and built in accordance 
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with the biological and behavioral requirements of the swiftlets. For example, in Vietnam, the 
swiftlet bird (Aerodramus fuciphagus germani) lives and nests in natural island caves. In recent 

years, there has been a subspecies of domestic swiftlet (Aerodramus fuciphagus amechanus, 

Aerodramus fuciphagus vestitus) living and nesting in the sea, housed with an increasing number 

of flocks. The dimensions of a bird nest vary, but normally, they are from 100 to 200-meter 
square with three to five floors. Because the houses resemble swiftlet’s natural living, which is 

‘coastal’ caves, the space only has small holes for birds to fly in and out, so the air in this space is 

rancid due to bird droppings and poor ventilation, which deters the willingness for nest 
harvesting. When collecting bird's nest, the harvester will often give priority to harvesting the 

bird's nest than throwing out the eggs or the nestlings. The harvesting edible swiftlet bird nest 

industry had been relying on the labor-intensive method of human monitoring and plucking the 
bird’s nest adhered to the house’s wall. This method involves restricting the interaction between 

humans and the indoor environment so as to keep the odor inside as natural as possible. 

Therefore, entrance to the house only happens in some season, and keeping track of each nest 

inside is restrained. Based on this difficulty, we developed a robot system that monitors the in-
house swiftlet’s nest and labels them following their development, which provides both assurance 

in customer when buying the products and higher value commodity. With the above 

characteristics, it is beneficial to develop an autonomous robot for harvesting and labeling the 
EBN. Information about the cave’s structure of natural swiftlets which man-made swiftlet 

farming tries to mimic is given in [1]. In particular, the bird’s nest is in dimly light condition, 

sometimes in total darkness. Moreover, swiftlet’s waste grants the cave the notorious smell of 
foul ammonia. These conditions are not ideal and safe for the nest extraction by human labor, 

which leads to robotics solution. The issues of authentication technique are also mentioned in the 

article, including DNA analysis, proteomics analysis, glycan profiling, and physical examination. 

However, there is still no common method for quality control. Therefore, an authentication 
process is also at risk. Additionally, [2] proved that the economic incentives from EBN swallow 

bird nest [Fig. 1] production can encourage sustainable policies and behaviors of natural 

resources. Figure 1 also displays the general half cup or quarter sphere shape of an EBN that is 
shown in our scanned cross section. 

 

  
 

Figure 1. Raw and cleansed EBN respectively [22]. 

 

In [3], the author argues that dead reckoning utilizing wheel odometry combined with IMU 
through Kalman filter can decrease localization error; however, the error is still unbounded. 

Study [4] adds that IMU unit is often incorporated with the odometry data to minimize the 

unsystematic errors, and other navigation methods are incorporated to minimize the systematic 
error by comparing the expected position of odometry data with the said navigation method. 

Therefore, the robot merges dead reckoning with SLAM from fiducial marker mapping to bound 

the error mentioned. [4] provides a review of different techniques to localize the robot in an 
environment. The Active-beacons method makes use of triangulation calculation from three or 
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more transmitters that provide known location data to interpolate the interested object location. 
Generally, the localizing accuracy drops when the robot is further away from the landmark than 

the ‘appropriate’ distance. Additionally, the robot must have its starting position in the global 

coordinate in order to perceive the estimated location of the landmarks; otherwise, it needs to 

perform a relocating process. The scan matching method is used in [5] by assuming that between 
consecutive scans, a large overlap will occur, and a rigid transformation can be performed by 

matching those overlaps. Accordingly, ICP (Iterative Closes Point) is utilized to minimize the 

squared error after implementing translation and rotation of the point cloud. Generally, object 
detection from 3D LiDAR falls into two pipelines: localizing location of interest then classifying 

the object as in [6], [7] or localizing and identifying at the same time [8]. The paper summarizes a 

range of point-based geometry segmentation and projection-based incorporating deep learning 
method. Weiss et al. [7] utilizes RANSAC algorithm to extract ground-plane from 3D point cloud 

and applies Kalman filter from the robot’s velocity data to ensure a good ground-plane model. 

The purpose is to remove the point cloud not related to plants and perform plant detection 

algorithms for autonomous agricultural robots. The plant is detected by clustering closed points 
into one object and comparing the clustered bounding box to expected bounding box to determine 

the probability of the clustering object being a plant. plane features will be extracted from the 3D 

point cloud data first by RANSAC algorithm as landmarks for future reference. However, 
RANSAC works on random sampling of three points in the point cloud and determining inlier 

points by comparing the distance of other points to the candidate plane against a threshold. As a 

result, constructing a well-suited plane can improve the computing time and resources [24]. 
While [9] also clustering the data point, it uses Fuzzy logic to classify the LiDAR data to 

different Fuzzy centers. Then, points are segmented to lines by simple regression and weight 

least-square estimation. 3D LiDAR is also used in [10] to reconstruct a 2D virtual plane for 

localization task. The paper calculates the normal estimation for each point in the rolling window 
and uses the least square plane fitting to classify the points. Reference [11] compares existing 

SLAM systems implemented in ROS for both LiDAR based system (Hector SLAM, GMapping, 

and Cartographer) and camera-based system (PTAM, SVO, DPP-TAM, LSD SLAM, ORB 
SLAM, and DSO for monocular camera; ZEDfu, RTAB map, ORB SLAM, and S-PTAM for 

stereo camera). Hector SLAM and Cartographer are found to have high accuracy in map building 

and localizing with Absolute Trajectory Error (ATE) at 24 mm; meanwhile, the best result for 

Visual SLAM is RTAB with 163 mm ATE, but the more stable system is ORB SLAM (stereo) 
with 190 mm ATE. GMapping evolves largely from particle-filtering algorithm, and Hector 

SLAM bases greatly on scan-matching method [12]. RP Lidar is used in [13] to test the mapping 

functionality of three known environments, which are the corridor, the research lab, and the 
robotic lab. The system works with the SDK kit already developed by the Robopeak company to 

scan the local map. The results show that certain small angles are not detected due to limited scan 

angle, and further filtering such as smooth and median need to be applied for better map 
matching. Explaining for the noises introduced, [14] points out that the design of a ranging 

LiDAR needs to calibrate against the hardware’s voltage and current uncertainty. Moreover, the 

variance  of statistical error in distance can be lowered to  by averaging that of n 

samples taken. 
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If n.∆T ≫ Tfil and ∆T ≪ Tfil, where ∆T is sampling time and Tfil is low-pass filter time constant. 

The studies in [15] compares 3D map obtained with A1 LiDAR to that with KINECT V2., which 
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shows that LiDAR data lose some consistent features due to its angular resolution. [16] faces the 
same problem of data fluctuations when obtaining 3D data from the 2D A1 LiDAR by adjusting 

the mirror’s angle mounted in front of the LiDAR. Many of the previous studies have 

investigated the object detection problem from LiDAR data by employing deep learning model 

due to the blossom in image-based field in recent years. Moreover, vision-based method 
decreases accuracy in dim light condition and requires more calculation resources compared to 

LiDAR method. However, the major scenery tested are road, railway, tunnel, and forest [17], and 

popular dataset such as KITTI, ApolloScape, and H3D concentrates on traffic scenes for 
autonomous driving task. Therefore, datasets and models for other industry-concentrated tasks 

such as monitoring swiftlet’s EBN has not been developed robustly and extensively. Since 

swiftlet’s EBN is relatively small and built in confined space, the accuracy of EBN’s map is 
important. Furthermore, the environment in the EBN harvesting room has less features than most 

of the complex datasets that are at hand, so computational resources can be lessened comparing 

to applying available application LiDAR SLAM algorithms. Furthermore, most SLAM 

algorithms are developed with the assumption that the map is unfamiliar to the robot; however, 
most indoor EBN houses are simple enough to construct one, which makes using those 

algorithms redundant. This study aims to develop a reliable system of detecting and monitoring 

swiftlet’s EBN development. This system can register the position and the approximate size of 
the nest in order to alleviate the farmers’ work and provide data for EBN’s development research. 

Furthermore, by tracking the origin of the EBN, the nest’s value can be multiplied, and in turn 

improves farmers’ income. Moreover, the system can be incorporated with a harvesting operation 
that will be presented in another research. Additionally, because of the extensive amount of point 

clouds that the LiDAR will gather, utilizing cloud computing network [18] is also a promising 

prospect of future application. Furthermore, reinforcement learning [19] to detect the position of 

bird’s nest can be applied in this scenario considering the repetitiveness of the task and nest’s 
simple geometry. This paper is divided into four parts. Previous studies are first reviewed to 

briefly provide recent technology and technique in LiDAR data object detection and robot 

localization, drawbacks of low-cost RPLidar A1M8 are also catered. Secondly, the robot’s 
manipulator is presented to show how the data is obtained. Then, LiDAR data acquisition and 

nest detection pipelines are described in the third part. Finally, localizing mechanism in the 

farming house is demonstrated. 

 

2. HARDWARE DESIGN 
 

2.1. Lidar Supportive Hand 
 
The best time to perform monitoring EBN is around 9 am to 3 pm because the swiftlets are 

hunting their prey. Moreover, evaluation and getting rid of harmful substances in the house 

should occur during this time. Famers need to refrain from nest harvesting when the bird is at 
rest. To not damage the nests, they have to spray water around the nest before harvesting. Then, 

they can use a thin knife to pick the nest. The key in choosing harvesting time and cleaning 

farming house is to not make the birds confused and help them rebuild the nest. The mobile 
platform of robot is designed with 2 degrees of freedom including: a translational degree and a 

rotational degree around the z-axis as shown in Figure 2 to move in the flat floor and avoid 

obstacles. The structure of the mobile platform is based on the differential drive. The mobile 

platform is small but heavy to balance with the manipulators mounted above. The harvesting 
manipulator will be illustrated in another study. The LiDAR supportive sub-manipulator is 

framed to the mobile platform and able to collapse or expand on itself in order to fit with the 

height of the swiftlet’s nests. The upholding structure of LiDAR needs to be designed such that 
the LiDAR does not vibrate while moving with the mobile platform. Moreover, the position of 

this supportive hand is also affected by the main computer’s position on the mobile platform and 
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the length of the USB cable that connects the sensor to the computer. Additionally, this hand has 
a [motor type], which will feed its rotational angle with respect to its origin to the system, 

installed at the [middle] of the robot small hand. Therefore, z-value (height) of the 2D point 

clouds data can be simply calculated. 

 

2.2. Robot Working Environment 
 
The indispensable stage of the swiftlet EBN harvesting technique is constructing the farming 

house. Swiftlets are undomesticated animal living in natural cave, so the manmade farming house 

needs to mimic their natural habitats so that the swiftlet does not feel threatened. The height of 

the house is usually at least 2 meters in a cool area. Also, a skylight is needed to imitate the 
cave’s atmosphere. The rule of thumb is that the number of floors is bigger than two since one 

floor is too low to fly for the bird, which leads to lower rate of failure in luring the bird into the 

house. 
 

Mobile 

platform

Lidar

 
 

Figure 2. Robot working environment model. 

 

Additionally, the temperature and humidity of such a house is often maintained constant which is 
not suitable for the swiftlet. We built a swiftlet house model to imitate the actual operating 

environment of the robot, which is the nesting room. Our model is  110 centimeters in length and 

50 centimeters in width. The whole structure is also elevated two meters in height by four steel 
poles, and the cells are made of wood to provide the actual characteristic along with the height of 

the bird house. Furthermore, the bird nests are randomly attached to the wooden cells. 

Accordingly, the robot will start at an arbitrary location outside this model and perform 
localization to narrow down the working environment and the model orientation. After 

understanding the surroundings information, it will execute a series of autonomous tasks of 

labeling and harvesting SEBN. 
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3. SOFTWARE DESIGN 
 

3.1. Data Acquisition 
 

LiDAR SLAM (Simultaneous Localization and Mapping) depends on the use of LiDAR sensors 
to capture detailed 2D or 3D point cloud data of the environment. Our LiDAR model is called 

A1M8 manufactured by the RPLidar which is only capable of sampling 2D data at 360 degrees. 

We position the sensors horizontally on the structure to provide a comprehensive view of the 
surroundings without adding a tilt function for simplicity. However, the LiDAR is mounted on 

the collapsed-expanded apparatus to reach a desired height and effectively capture all bird’s 

nests. We use the rplidar library provided in Python programming language to decode the LiDAR 

data from the serial COM port, which comprises three columns of values: light intensity from the 
object, distance between the object and the LiDAR, and the angle between the vector distance 

and the original axis which is reestablished each time the LiDAR is powered. The data is 

converted from UART standard to Serial COM by the provided UART to USB module provided 
by the manufacturer. The LiDAR sensor is moved with the robot as well as lowered or lifted by 

the structure, so we need to synchronize the data acquisition from LiDAR and 200 PR encoder to 

ensure correct alignment of the taken point clouds. After this step, we decrease the computational 

cost by down sampling with voxelization and cleaning the captured point cloud data by removing 
outliers with statistical calculations. Voxelization basically includes two steps: dividing the space 

into uniform voxel -a 3D pixel- to include the data points and averaging all points in a voxel. The 

statistical outlier removal ensures the quality of the data by calculating the average distance 
between a point to its specified neighbor points for all points. Then, each point will be 

determined inlier or outlier by comparing its neighbor average distance to the sum of average 

distance and alterable standard deviation. 
 

3.2. Error Compensation 
 
Because the speed of light is always constant, the distance between the LiDAR and the object can 

be estimated as formula: 

 

 

When the LiDAR performs a 360-degree scan, there will be systematic and statistic errors in the 
captured distance (rcap) introduced to the system, which will distort the real distance value (rreal). 

The statistic error (stat), according to [20], is often assumed to normally distribute with variance 

 and mean . Thus, we can estimate as below. 

real cap statr r  
 

(3) 

 
 

Figure 3. The statistic distance error changes with the true distance [21]. 
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where  is the calibration function to compensate for systematic error. The  depends on rcap, so 

we can write  as a0 + a1rcap + a2r
2
cap +...+ anr

n
cap. Taking various measures for rreal from 150 mm 

to 4000 mm,  can be described by a 3rd order polynomial function. Additionally, stat, which 

depends on rreal, is provided by the LiDAR manufacturer’s datasheet. Generally,   2.0mm for 

rreal   2530 mm and stat  4.0mm for rreal  4070 mm. This information is important in setting 
the parameters for line segmentation in the next part. After determining the function of α, we test 

the data on another batch of curved objects. The error falls into acceptable range, which is ± 4 

mm (Fig.3). 

 

4. LIDAR SLAM FOR BIRD NEST HARVESTING ROBOT 
 

4.1. Localizing in Swiftlet House 
 
Our robotics solution makes use of 3D SLAM technology to localize inside the farming house 

from point clouds information. Because the map of the house’s frame and house’s wall is already 

available, the localization task can be carried out by matching captured frames to the world map 
and interpolating the sensor’s and object’s absolute coordinates. As such, the ICP (iterative 

closest point) algorithm is utilized. According to the original study of ICP [25], a transformation 

matrix of rotation and translation vector is found to minimize the distance between the source 
points and the target points. After a few first alignments of the map, the encoder is used to 

calculate the position and pose of the LiDAR. Since the length of the cell is 1100 mm or 1.1 m, 

the accumulated systematic error is small. 

 

4.2. The 3D Mapping Swiftlet Nest 

 

Our technique of detecting the swiftlet nest is to estimate the nest as different layers of 
increasingly bigger semicircles, whereas the wood frames are different layers of line. Therefore, 

if we have sufficient point cloud to estimate the radii of those semicircle, we can safely assume 

those points belong to a swiftlet nest. Even though one rectangular cell has quite small area, if the 

LiDAR only scans from a fixed position in the rectangular wood frame, the returned point cloud 
for the nest far from the LiDAR will not be enough for precise shape estimation due to the nest’s 

small size. Moreover, because of the nest’s semi-circular shape, many parts of the cell are hidden.  

As such, the robot will make the scans from multiple positions in the cell so that the point cloud 

affiliated with each nest is densely acceptable. We can estimate the points number  

belonged to the nest in 2D as follow: L(xL, yL) is LiDAR’s coordinate, and the center of a semi-

circular nest O(C, r) is C(xC, yC) with radius r. Distance vector and its magnitude are follows. 

 ,L c L cd CL x x y y   
 

(4) 

2 2

d dd x y 
 

(5) 

Where xd and yd is the horizontal and vertical components of vector . 

The unit for the axis in all the figure below is measured in millimeters. 

 

 

 
 

Figure 4. Nests scanned by the LiDAR from one position. 
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Then, two points of tangency drawn from L to O are shown. 
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Where:  

σ =  and Pnum =  + 1 

 

However, this estimation has disadvantages when one of the tangency points falls outside the 
wall boundary, or other nests are hidden by narrow angle. This study samples 16 model nests, 

which is the average number for the area of our cell, uniformly scattered around the frame. 

Because the position of the robot is known, coordinate transformation and calibration of the point 

cloud from each position can be performed. If the LiDAR only scans from one position, the 
resulted map will be similar to Figure 4 with many hidden spaces due to the semi-circular of the 

nest. The goal is to not leave any hidden angle on the map, so the robot starts scanning after every 

60 mm traveling because the radius of the nest is estimated to be from 30 mm to 70 mm to ensure 
that no blind spots are left. 

 

 
 

Figure 5. The layouts at 3rd and 5th layers. 

 

 
 

Figure 6. Different layers of EBN 2D scanning on wooden frame stacked together. 
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Figure 7. A nest seen up-close. 

 

Figure 5 at third layer only shows 14 semi-circular shapes because the nest is randomly 
distributed in height, so a single 2D layer scan cannot capture all of them, which is why it is 

necessary to scan through the height of the wooden frame. Assumed that the lowest layer of the 

wooden frame is at height z = 0, the robot starts scanning at height z = 10, and each layer is 

separated by 13 mm with 10 layers so that the final layer stops at z = 140. This setup ensures that 
essentially all parts of the nests are picked up because the width of the wooden frame is 150 mm. 

After different layers of the frame are swept through, they are stacked together to form a 

complete 3D map of the cell. The result of the ten layers piled together is illustrated in Figure 6 

where all 16 nests can be noticed at various heights. Due to the inherent noise of the LiDAR, 

each layer is horizontal displaced by some distances, and the map does not show a smooth 

surface of the wall. However, it is still intuitive to recognize the nest’s shape at different locations 
from the map. Figure 7 zooms in a nest and shows the data points corresponding to it, where 

each layer is a cross section of the semi-circular contour. The nest spans at around 850 mm length 

and 350 mm width. Meanwhile, the upper part of the nest is flat and parallel to the wall, so it is 

difficult to be captured by the LiDAR. Additionally, due to the 3D map construction from 2D 
horizontal scan, the wall behind the nests will be hidden. 

 

4.3. Swiftlet Nest Detection 
 

The line-segmentation algorithm is adopted from [23] to further automate the monitoring process. 

Essentially, a line is found to best fit an N number of points by minimum root-mean-square error 
(RMSE) regression; however, the average residual of those points with respect to the line is 

compared to a threshold value for line validation. If the line is accepted, which means those 

points belong to the same line segment, each subsequent point’s residual apart from N mentioned 
points will be measured against the expected threshold. If the condition is not met, that particular 

point will be assigned to a new segment. The parameters are chosen as follows: N number of 

initialization point = 4 and threshold value σ = 4 since the statistical error = ±4 mm. 
Nevertheless, some points corresponding to the nest are also grouped into line segments. 

Therefore, a filter based on RANSAC algorithm is applied to the segmented data as follows. For 

every point segmented as lines, a n random number of points are chosen to fit a line, and the 

RMSE is calculated. This loop is repeated until a T threshold number is met. Consequently, the 
fitted line with the minimum RMSE is chosen to be wall line. In this paper, n = 10 and T = 100. 

Ultimately, the obtained line is applied to fit the original data points such that if the difference 

between the predicted value by the line and the actual value of the point is larger than a limit L, 
that point is grouped to the nest category, with L = 10 in this study. Additionally, breakpoint is 

detected when needed to increase the reliability of distinguishing between wall line and nest 

semicircle.  As shown in [24], breakpoints are two points p1(x1, y1) and p2 (x2, y2) satisfying the 

equation (8) below. 
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Where  is LiDAR’s angular resolution and  is arbitrary constant. The data points are first 

organized in the K-D tree data structure and sorted by their nearest neighbor in each layer 

because the line segmentation algorithm determines if the next point belongs to the line’s group 
that its near points reside. Then, the line segmentation is applied to the upper part of the scanned 

layer. From Figure 8, it is easily noticed that some of the points belonging to the nest is also 

mistakenly segment as a line. However, after the filter is applied, the correct line wall is detected, 
depicted as the blue line in Figure 8. Finally, the points corresponding to the nests are extracted 

by the nest extraction algorithm. Nevertheless, some of the nests’ points are lost because the 

algorithm misinterprets them as affiliated with the wall. The nest in the   frame is 
picked to be manually measured in four layers to compare with the LiDAR’s point cloud.  

 

 
 

Figure 8. The best fitted line found by the filter and affiliated nest data points for the top part of the fifth 

layer. 

 

 

 
 

Figure 9. Accuracy of a nest at four different layers. 

 
Figure 9 shows the similarities between the LiDAR’s data points and the truth value of a nest. As 

noticeable from the figure, the estimated radii gradually increase from the first layer to fourth 

layer, roughly from 27.5 mm  to 41.00 mm. Despite frequently being characterized as a semi-
circle, the nest normally has its width larger than its depth, which can be observed in the layers. 

The LiDAR’s points are scattered around due to the statistical error in the LiDAR apparatus and 
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other factors such as environment, nest’s texture, and light reflection from another source. The 
most fitted line is also found for each layer by the regression calculation, and the RMSE is also 

computed based on the predicted value of the regression line and the truth value. The acquired 

standard deviation is approximately 3 mm, which infers that although some nest points are lost 

during the nest extraction process, good size estimation can still be made if enough inlier nest’s 
points are obtained. 

 

5. CONCLUSIONS 
 
There is a short of research for autonomous SEBN monitoring system, although bird’s nest 

farming is common in Asia country [22] such as Vietnam, China, Malaysia, and Indonesia. 

Moreover, improvement on autonomous task for EBN farming largely falls in the field of 

detecting impurity as in [26] or cleaning impurity as in [27]. Therefore, a monitoring system of 
SEBN can be crucial both in increasing nest farming productivity and set a movement in 

automating this side of agriculture. This study demonstrates an automating system in monitoring 

the EBN in man-made farming building. The procedures comprise capturing different layers of 
the building’s cell and creating a 3D point cloud map from the input data. The map is processed 

to eliminate noise and calibrated to adjust against LiDAR’s systematic error. Each layer of the 

map is line segmented, which yields the accurate wall’s line, and the 2D points belonging to the 
nest are extracted. The set of a nest’s points is tested against measured data points. The result 

indicates that the method is efficient in estimating the size and the location of the EBN. Even 

though a circle fitting regression method can be used to estimate the size of each nest’s layer, the 

suggested approach still requires determining the nest’s starting and ending point. Moreover, the 
test is designed solely to evaluate the ability to recognize the bird’s nest and estimate its position, 

but the inference and computation for other task such as harvesting the bird nest is still shallow, 

such as when comparing to service robot in intelligent space in [28]. Future work will find a 
method for fast segmenting the nest’s location and lowering the lost information when 

interpolating the nests’ points from the line wall. 

 

ACKNOWLEDGMENT 
 

This research is funded by University of Economics Ho Chi Minh City – UEH, Vietnam. 
 

REFERENCES 
 
[1]  L. S. Chua and S. N. Zukefli, "A comprehensive review of edible bird nests and swiftlet farming," J 

Integr Med, vol. XIV, no. 6, pp. 415-416, 2016.  

[2] Y. Ito, K. Matsumoto, A. Usup and Y. Yamamoto, "A sustainable way of agriculturla livelihood: 

edible bird's nests in Indonesia," Taylor & Francis Group and Science Press, 2021. 

[3] M. Wrock, "Automatic Trajectory Generation for Mobile-Manipulators Using 3D LiDAR Scans of 

Unknown Surfaces," PhD Thesis, Dept. of Mechanical Eng., Ontario Tech Univ., Oshawa, Canada, 

2019. 

[4] J. Borenstein, H. R. Everett, L. Feng and D. Wehe, "Mobile Robot Positioning - Sensors and 

Techniques," Journal of Robotics System, vol. 14, pp. 231-249, 1997.  

[5] V. Sood, "A 3D Data Acquisition Cart with Applications to Warehouse Automation," 2017. 

[6] H. Dong, C.-Y. Weng, C. Guo, H. Yu and I.-M. Chen, "Real-Time Avoidance Strategy of Dynamic 

Obstacles via Half Model-Free Detection and Tracking With 2D Lidar for Mobile Robots," 
IEEE/ASME Transactions on Mechatronics, vol. 26, no. 4, pp. 2215-2225, 2021.  

[7] U. Weiss and P. Biber, "Plant detection and mapping for agricultural robots using a 3D LIDAR 

sensor," Robotics and Autonomous Systems, vol. 59, pp. 265-273, 2011.  

[8] Y. Wu, Y. Wang, S. Zhang and H. Ogai, "Deep 3D Object Detection Networks Using LiDAR Data: 

A Review," IEEE Sensors Journal, vol. XXI, no. 2, pp. 1152-1171, 15 January 2021.  



108                                          Computer Science & Information Technology (CS & IT) 

[9] X. Yuan, C.-X. Zhao and Z.-M. Tang, "Lidar Scan-Matching for Mobile Robot Localization," 

Information Technology Journal (IJT), vol. IX, no. 1, pp. 27-33, 2010.  

[10] Z. J. Chong, B. Qin, T. Bandyopadhyay, M. H. Ang, E. Frazzoli and D. Rus, "Synthetic 2D LIDAR 

for precise vehicle localization in 3D urban environment," in 2013 IEEE International Conference on 

Robotics and Automation, Karlsruhe, 2013.  
[11] M. Filipenko and I. Afanasyev, "Comparison of Various SLAM Systems for Mobile Robot in an 

Indoor Environment," in 2018 International Conference on Intelligent Systems (IS), 2018.  

[12] Z. Xuexi, L. Guokun, F. Genping, X. Dongliang and L. Shiliu, "SLAM Algorithm Analysis of Mobile 

Robot Based on Lidar," in 2019 Chinese Control Conference (CCC), Guangzhou, China, 2019.  

[13] M. A. Markom, S. A. A. Shukor, A. H. Adom, E. S. M. H. Tan and A. Y. M. Shakaff, "Indoor 

Scanning and Mapping using Mobile Robot and RP Lidar," International Journal of Advances in 

Mechanical & Automobile Engineering (IJAMAE), vol. III, no. 1, pp. 42-47, 2016.  

[14] M. D. Adams, "Lidar design, use, and calibration concepts for correct environmental detection," 

IEEE Transactions on Robotics and Automation, vol. 16, no. 6, pp. 753-761, December 2000.  

[15] D. Pozo, K. Jaramillo, D. Ponce, A. Torres and L. Morales, "3D reconstruction technologies for using 

in dangerous environments with lack of light: a comparative analysis," Iberian Journal of Information 

Systems and Technologies (RISTI), p. 507–518, 2019.  
[16] V. K. Sarker, L. Qingqing and T. Westerlund, "3D Perception with Low-cost 2D LIDAR and Edge 

Computing for Enhanced Obstacle Detection," in 2020 IEEE Conference on Industrial Cyberphysical 

Systems (ICPS), Tampere, Finland, 2020.  

[17] E. Che, J. Jung and M. J. Olsen, "Object Recognition, Segmentation, and Classification of Mobile 

Laser Scanning Point Clouds: A State of the Art Review," Sensors, vol. 19, no. 4, p. 810, Feburary 

2019.  

[18] W. Zhu, “Optimizing Distributed Networking with Big Data Scheduling and Cloud Computing,” in 

International Conference on Cloud Computing, Internet of Things, and Computer Applications 

(CICA 2022), Luoyang, China, 2022. 

[19] H. Gu, “Mean-Field Cooperative Multi-agent Reinforcement Learning: Modelling, Theory, and 

Algorithms,” PhD Dissertation, UC Berkeley, 2023.   
[20] P. Nunez, R. Vazquez-Martin, J. C. d. Toro, A. Bandera and F. Sandoval, "Feature extraction from 

laser scan data based on curvature estimation for mobile robotics," in Proceedings 2006 IEEE 

International Conference on Robotics and Automation, 2006. ICRA 2006., Orlando, 2006.  

[21] SLAMTEC Co., "RPLIDAR A1, Low Cost 360 Degree Laser Range Scanner, Introduction and 

Datasheet, " rev. 3.0, pp. 1-19.   

[22] C. Acharya and N. Satheesh, "Edible Bird’s Nest (EBN): Production, Processing, Food and Medicinal 

Importance," AgriCos e-Newsletter, vol. IV, no. 03, pp. 20-25, March 2023.  

[23] M. Peter, S. Jafri and G. Vosselman, "Line Segmentation of Laser Scanner Point Cloud for Indoor 

SLAM Based on a Range of Residuals," ISPRS Annals of Photogrammetry, Remote Sensing & 

Spatial Information Sciences, vol. IV, pp. 363-369, 2017.  

[24] G. Borges and M.-J. Aldon, "Line Extraction in 2D Range Images for Mobile Robotics," Journal of 

Intelligent & Robotic Systems, vol. 40, no. 3, pp. 267-297, 2004.  
[25] L. Yang, Y. Li, X. Li, Z. Meng and H. Luo, "Efficient plane extraction using normal estimation and 

RANSAC from 3D point cloud," Computer Standards & Interfaces, vol. 82, 2022.  

[26] G. K. Li and Y. K. Sam, "Optimization of Lighting Parameter for Edible Bird’s Nest Vision 

Inspection System," Bachelor Dissertation, Dept. of Manufacture Eng. With Management, Univ. 

Sains Malaysia, Malaysia, 2018.  

[27] D. Seenivasan and T. C. Sin, "Optimization of Brushing, Bubble, and Microbubble Techniques Using 

Taguchi Method for Raw Edible Bird Nest Cleaning Purpose," Pertanika J. Sci. & Technol., vol. 45, 

no. 2, pp. 1273 - 1288, 11 March 2022. 

[28] Y. Cui, G. Tian and X. Cheng, “A Task-Oriented Hybrid Cloud Architecture with Deep Cognition 

Mechanism for Intelligent Space,” Computers, Materials & Continua, vol. 76, no. 2, pp. 1385-1408, 

2023. 

 

 

 

 

 



Computer Science & Information Technology (CS & IT)                                   109 

AUTHOR 
 
I am an international student majoring in Electrical Engineering at the 

University of South Florida and have research interests in robotics and 

electronics systems. My academic trajectory aims at higher education and 

becoming a researcher in electronics and computer hardware system. Looking 

forward to leaving more track records in research achievement, I have been 

actively seeking research opportunities to gain as much experience in this 

challenging field. I am enthusiastic about the prospect of engaging with 
researchers, learning from them, and discussing my endeavours on my 

contributing research project.  
 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
© 2024 By AIRCC Publishing Corporation. This article is published under the Creative Commons 

Attribution (CC BY) license. 

https://airccse.org/

	Abstract
	Keywords
	Intelligent Systems, Recognition, Lidar, Bird’s nest, Monitoring system, SLAM, identified system


