

David C. Wyld et al. (Eds): AIBD, MLSC, ACSTY, NATP, CCCIoT, SVC, SOFE, ITCSS -2024

pp. 153-167, 2024. CS & IT - CSCP 2024 DOI: 10.5121/csit.2024.140412

AN INTELLIGENT DDOS DETECTION SYSTEM

TO RECOGNIZE AND PREVENT DDOS

ATTACKS USING ARTIFICIAL INTELLIGENCE

AND MACHINE LEARNING

Xiangfeiyang Li1, Jonathan Thamrun2

1Fairmont Prep Academy, 2200 W Sequoia Ave, Anaheim, CA 92801

2Computer Science Department, California State Polytechnic University,

Pomona, CA 91768

ABSTRACT

In response to the increasing threat of DDoS (Distributed Denial of Service) attacks, this

project investigates fortifying defenses against such malicious invasions. The project

incorporates a user-friendly UI featuring two buttons: one for uploading captured traffic files

and another for analysis to classify whether it’s a DDoS attack. The background of the problem

aspires to a robust and adaptive DDoS detection system to ensure the continuity of online

services [14]. To resolve this, the project proposes an automated DDoS attack detection

mechanism powered by Machine Learning and Artificial Intelligence. The application involves

two pivotal experiments: the first assesses model accuracy, highlighting the Decision Tree as

the most promising, while the second focuses on preventing overfitting during training, and the

Random Forest Classifier stands out to this one [15]. The challenges encountered were

mitigated through techniques like early stopping and regularization. The model’s application
across various scenarios showcased its potential for effective real-time DDoS detection.

KEYWORDS

DDoS Attack, Detection System, Artificial Intelligence, Recognization & Prevention

1. INTRODUCTION

Figure 1. DDoS attack

https://airccse.org/csit/V14N04.html
https://airccse.org/csit/V14N04.html
https://doi.org/10.5121/csit.2024.140412

154 Computer Science & Information Technology (CS & IT)

A DDoS(Distributed Denial of Service) attack is a malicious attempt to disturb the normal traffic
of a targeted server or network by overwhelming the target or its surrounding infrastructure with

a flood of Internet traffic [1].

In cybersecurity, we think of the CIA triad in terms of types of attacks:

 Confidentiality: Is my information secret?
 Integrity: Is my information accurate and trustworthy?

 Availability: Can I get my information when and where I need it[2]?

Unlike other types of attacks, attackers do not use DDoS to breach your security perimeter.

Instead, DDoS attacks primarily target the availability aspect of the CIA triad. DDoS attacks aim

to exhaust a server or network with a massive volume of traffic, leading to a sudden surge in
requests. Consequently, legitimate users are unable to access the targeted services, causing

service downtime. The disruptive nature of DDoS attacks has the potential to inflict significant

financial losses on businesses, especially those that heavily rely on uninterrupted online

availability. Industries such as e-commerce websites and online services are particularly
susceptible to these attacks, given their independence on continuous accessibility for sustaining

operations. It makes them prime targets for malicious hackers seeking to exploit vulnerabilities in

the digital world. As a result, organizations must invest in robust DDoS mitigation strategies to
protect their online infrastructure.

In 2018, GitHub, a popular platform for software developers, experienced one of the largest
DDoS attacks in history. Attackers overwhelmed the servers with a massive flood of traffic and

caused intermittent outages. While GitHub quickly mitigated the attack, it disrupted the

availability of its code repository services, impacting billions of developers around the world [3].

The initial methodology focuses on data preprocessing and traditional machine learning models

to detect cybersecurity threats. It struggles with dimensionality reduction, therefore it potentially

loses critical information. In response, my project enhances this model by incorporating a broader
list of algorithms, and I focus on fine-tuning and expanding preprocessing measures as I aim for a

more nuanced detection capability. The second approach leverages the flexibility of Software

Defined Networking (SDN) to counteract DDoS threats. However, its reliance on conventional

detection methods may lead to delays and false positives. My enhancement involves advanced
hyperparameter optimization and evaluating models with extensive metrics, which aim for

prompt and accurate threat detection in a dynamic network environment. This final methodology

employs multiple linear regression on a benchmark dataset for threat prediction, based on their
assumption of linear relationships. My project seeks to outperform this by exploring models that

can analyze complex, nonlinear interactions. By doing so, it can deliver a robust and versatile

detection system. Also, it transcends the linear confines of the previous approach.

By harnessing Kaggle’s DDoS datasets, we could take advantage of Machine Learning to

produce a comprehensive DDoS detection model and deploy it to forestall any potential DDoS

threat factor. The detector is responsible for monitoring incoming network traffic and responding
to that traffic with the corresponding prediction for DDoS. If a server manager is hired to

organize and recognize malicious requests instead of using Artificial Intelligence, the human

errors of omitting can be devastating. On the other hand, hackers in other countries use the time
difference to launch DDoS attacks on servers in the early hours of the morning, when people are

already resting. At this time, the server is very vulnerable due to insufficient awareness. On the

contrary, Artificial Intelligence can easily address human instinctive issues.

Additionally, the second effective method to fortify network security is to activate a Web

Application Firewall (WAF). A Web Application Firewall serves as a proactive defense

mechanism by “sanitizing” incoming traffic and filtering out malicious requests before they even

Computer Science & Information Technology (CS & IT) 155

reach the targeted server. By implementing a WAF, organizations can significantly reduce the
risk of DDoS disruptions. WAF acts as a shield that deflects malicious traffic and allows traffic

from legitimate users.

However, they have limitations when compared to ML methods. Firewalls operate based on
predefined static rules and signatures. It makes them effective at blocking known attack patterns

but less adaptive to evolving attacking threats. They also generate more false positives, block

legitimate traffic, and struggle to detect complicated and dynamic DDoS attacks.

In two distinct experiments, we targeted to evaluate the accuracy metric of our 5 ML algorithms

using the 20% test dataset and tried to mitigate the potential risk of overfitting. In the first
experiment, we evaluated the performance of Logistic Regression, KNN, SVM, Decision Tree,

and Random Forest. We trained and validated them with the same 80% of the dataset (using the

same random state). The separated test dataset is used to assess their performance. Notably, the

Decision Tree classifier consistently stood out with the best accuracy. Reasonably, its high
accuracy could be attributed to its ability to adeptly capture complex patterns within the dataset.

In the second part of the experiment, we shifted our attention to avoid overfitting, as several signs

of this critical concern were displayed while evaluating the model. By implementing overfitting-
killer techniques such as cross-validation, regularization, ROC AUC, and early stopping, we

aimed to decrease overfitting. As a result, the Random Forest classifier, with some

hyperparameter tuning, delineated the highest reduction in overfitting, ultimately enhancing its
ability to generalize effectively to unseen data and showcase increased accuracy when it is

implemented in real-time. These meaningful experiments portrayed the strengths and weaknesses

of various models and pointed out the importance of overfitting mitigation strategies.

2. CHALLENGES

In order to build the project, a few challenges have been identified as follows.

2.1. The Model Architecture

AI models can be laborious to train for several reasons. One major challenge is the complexity of
the model architecture, which can contain millions of parameters. As a result, they consume a

vast amount of time and significant computational power to train. In addition to that, tuning these

models requires meticulous multiple parameters tuning to ensure the models perform well.

Confronting issues like overfitting and finding the proper balance between bias and variance can
also drastically increase the training difficulty and period. Even with these efforts, the model

could still possibly be onerous to converge to our expectations, leading to a series of experiments

and refinement.

2.2. Dataset

Raw dataset usually contains errors and inconsistencies that are required to be identified

and improved, due to the significance of ensuring high-quality data before the training

processes. Subsequently, different data types such as text, number, categoricals, etc. often

require different preprocessing techniques, making it challenging to create a uniform

dataset. I could use Pipelines that contain a considerable amount of data preprocessor,

allowing me to reduce the code complexity while still maintaining efficiency.

Additionally, some datasets possess certain classes having significantly fewer samples

than others. We should consider it given that imbalanced datasets can affect models'

ability to predict underrepresented classes.

156 Computer Science & Information Technology (CS & IT)

2.3. The Realm of Data Visualization

My third challenge involves the realm of data visualization, wherein we strive to adeptly harness

the power of various types of plots. This involves discerning the unique strengths of each plot and
using them to our maximum advantage. Furthermore, we’re confronted with the intricate task of

selecting between a bar graph and a pie graph, weighing the merits and appropriateness of each

option within the context of our data representation goals. To effectively address the challenge of
data visualization, I need to start by gaining a comprehensive understanding of my data and the

narrative I intend to communicate. I must analyze the distinct characteristics, connections, and

key takeaways from the data. Once I have established this groundwork, I can then carefully select

the appropriate type of visualization.

3. SOLUTION

My main components are

1. AI components
This part consists of machine learning models that have been trained to identify DDoS attacks

using patterns and features found in network traffic data. These models include Random Forest,

Support Vector Machine (SVM), and K-Nearest Neighbors (KNN). The detecting process is

based on these core models.

2. Tkinter app
The goal of the Tkinter-based user interface (UI) is to offer a front end that is easy to use for
engaging with the DDoS detection system. Users can initiate the DDoS detection procedure,

upload traffic data files, and check the outcomes. The outcome is both printed in the application

and saved to a text file containing details.

3. Flask web application
The system's backend, the Flask web application, manages requests from web users. This flask
web application serves as an alternative to the Tkinter app. You can either upload the capture file,

but also manually enter each data entry. The supplied traffic data is then analyzed, predictions are

made, and the results are sent back to the front end for presentation by the Flask application using
the pre-trained AI models.

The user either opens the Tkinter application or the Flask web application to upload a traffic data

file or manually enters the data for the web application only. The back end then starts the DDoS
detection procedure after the UI program sends a request to the bank end, acting as a bridge

between the AI components and the user interface. The trained AI models are used within the

application to examine the uploaded traffic statistics. Next, based on these AI models' predictions,
one can determine whether the traffic data shows signs of a DDoS attack. The application

receives the generated prediction results and displays them to the user. Users can take appropriate

action in response to the detected threat and make well-informed decisions thanks to this intuitive

interface.

Computer Science & Information Technology (CS & IT) 157

Figure 2. Overview of the solution

The key purpose of having an AI model is that it has the role of detecting abnormal traffic. We
have tested out popular ML models such as KNN. KNN is an ML algorithm that assigns a label

to a data point based on the majority class of its k closest (usually measured by Euclidean

Distance) neighbors in the feature space, making it particularly useful for pattern recognition and
similarity-based predictions. Its ability to classify instances based on their similarity to all data

points makes it very suitable for a DDoS detection system. However, it follows proper

hyperparameter tuning and determination of the value K for achieving highly accurate results.

158 Computer Science & Information Technology (CS & IT)

Figure 3. Screenshot of code 1

This snippet of Python code conducts a machine learning experiment/hyperparameter tuning to

determine how the number of neighbors (k) affects model performance and find the best k value
featuring the kNN classifier. It does this by importing the k-Nearest Neighbors (kNN) classifier

from scikit-learn. It then initializes lists of k values to hold metrics for accuracy, cross-validation

scores, and Area Under the Curve (AUC). The code fits the kNN model, makes predictions on the

test set, then computes the AUC based on prediction probabilities, and runs cross-validation on
the training data to determine the mean accuracy for each k value. Both AUC and cross-

validation scores provide huge amounts of information on whether the model is overfitting.

Subplots that show these measures as bar charts are then used to illustrate the results, giving a
clear visual depiction of how the model's accuracy, cross-validation score, and AUC are impacted

by the choice of k. Each chart includes annotated performance metrics, enhancing interpretability.

The plt.show() function is called at the end to display the generated plots. The best
hyperparameter is then selected for any future kNN model. Similarly, 2 other hyperparameter

tunings were done for SVC and Random Forest. A list of hyperparameters were tested and the

best among them would be used.

The Tkinter app uses Python's built-in Tkinter library to generate a graphical user interface (GUI)

that users can use to communicate with the DDoS detection system. This part doesn't depend on

sophisticated ideas or specialized services like neural networks or natural language processing.
Rather, it acts as the UI/UX frontend that makes user interactions easier. Users can upload traffic

data files, initiate DDoS detection, and see the generated predictions. This UI system serves as a

bridge between the user and the program's core functionality, which allows users to start and stop

DDoS detection tasks without having to directly deal with the machine learning models or
backend processes. It improves accessibility and usability.

Computer Science & Information Technology (CS & IT) 159

Figure 4. DDOS attack main page

Figure 5. Screenshot of code 2

The Python code in question is a component of a Tkinter-built GUI application that analyzes

network traffic and categorizes it as malicious or benign. After the user has uploaded the capture

file, the complete_analysis function stops and hides the uploading progress bar, a UI component.
It starts counters for both malicious and benign traffic, updating these counts and creating a

comprehensive text summary by repeatedly running over the predictions using a loop.

Furthermore, through the use of a label widget, this summary is shown in the GUI. The function

then makes sure there is a directory called "details" and writes the packet's detailed summary and
each of the individual predictions to a file in this directory using a naming scheme that is derived

from the file that was initially chosen. In the end, the function modifies the GUI by providing the

160 Computer Science & Information Technology (CS & IT)

path to the details file and adjusting the layout to possibly allow for new operations, such as
selecting a new file or initiating a fresh analysis.

The Flask web application uses Bootstrap for CSS layout design and SQL for user login

capabilities. Logging in securely and accessing the DDoS detection system is made possible by
SQL managing user authentication. To create a front end that is both visually appealing and

responsive, Bootstrap is utilized in the creation of the graphical layout and user interface. It

guarantees the functionality, aesthetics, and usability of the user's interactions with the system.
Finally, users can both upload traffic data files and manually enter the data to initiate DDoS

detection and see the generated predictions. Similar to the Tkinter app, it improves accessibility

and usability.

Figure 6. DDoS detector page

Computer Science & Information Technology (CS & IT) 161

Figure 7. Screenshot of code 3

The code snippets are from the Flask application that shows two separate POST request

processing functions, each with a different purpose. The first function, /detect_file, is dedicated to
file handling; it first authenticates the user, then it searches for a file in the request and, if one is

discovered, the function saves to the server temporarily and processes it with the pre-trained ML

model. When the ML model has results ready, the web server presents the user with the results.

The application's use in processing network traffic data manually is indicated by the second
function, /detect_form, which deals with the extraction and type conversion of network-related

data from a submitted form. From the screenshots of the UI, detect_form serves as an alternative

to the detect_file function — it can be used if the user doesn’t have a capture file but some data at
hand. The form includes various metrics, like packet and byte counts and transfer rates, which are

crucial for network analysis.

4. EXPERIMENT

4.1. Experiment 1

Before integrating our detector into applications, it’s crucial to assess its accuracy through testing.

Among the five prospective models at hand, we need to identify the optimal one. Conducting

accuracy experiments, coupled with hyperparameter tuning, allows us to gauge the precision of

162 Computer Science & Information Technology (CS & IT)

each model. This selection process is vital as it showcases the models’ capacity to perform
accurate classifications effectively.

In our meticulous evaluation process, we analyze the accuracy performance of five distinct

models using the test dataset. For each model, a comprehensive set of hyperparameters is
methodically fine-tuned, aiming to attain optimal accuracy outcomes. This detailed exploration of

hyperparameter configurations provides valuable insights into their influence on the model’s

accuracy. Utilizing the carefully collected accuracy results, we generate informative
visualizations that vividly illustrate the accuracy trends exhibited by each model. These visual

representations serve as a powerful tool to intuitively comprehend the nuances in performance.

By systematically contrasting and comparing the peak accuracy achieved by each model, we can
confidently determine the most suitable model for our application’s requirements. This rigorous

evaluation approach ensures the selected model possesses the necessary accuracy and robustness

for successful integration into real-world scenarios, where reliable performance is significant.

Figure 8. Figure of experiment 1

From the above visualization, we can calculate:
 Mean

 72.6 — Logistic Regression

Computer Science & Information Technology (CS & IT) 163

 95.7 — KNN
 78.7 — SVM

 99.9 — Decision Tree

 99.5 — Random Forest

 Median
 72.6 — Logistic Regression

 95.2 — KNN

 84.7 — SVM
 99.9 — Decision Tree

 99.5 — Random Forest

 Min
 72.4 — Logistic Regression

 94.3 — KNN

 52.2 — SVM

 99.9 — Decision Tree
 99.4 — Random Forest

 Max

 72.7 — Logistic Regression
 97.9 — KNN

 92.0 — SVM

 99.9 — Decision Tree
 99.5 — Random Forest

Indeed, the Decision Tree model’s exceptional performance, boasting an impressive accuracy of

99.9%, stands out prominently. The subsequent success of the Random Forest classifier aligns

with expectations given the underlying capabilities of decision trees. Decision trees possess a
distinct advantage when dealing with a mix of categorical and numerical data. Their innate ability

to navigate both data types efficiently without extensive preprocessing enhances their versatility

in handling diverse datasets. Moreover, decision trees are well-regarded for their proficiency in
uncovering nonlinear relationships. This attribute proves invaluable when dealing with intricate

interactions within the data. This capacity eliminates the necessity for convoluted mathematical

transformations. However, it’s vital to acknowledge that decision trees are susceptible to

overfitting. Their tendency to create overly complex models that capture noise in the data can
lead to decreased generalization performance. To counteract this, strategies like pruning, limiting

tree depth, or employing ensemble techniques like Random Forests can help mitigate overfitting

risks.

4.2. Experiment 2

Upon the conclusion of the accuracy assessment phase, it becomes evident that our models show

signs of overfitting. If a model cannot generalize well to new data, then it will not be able to

perform the classification or prediction tasks that it was intended for[4]. This prompts us to assess
a more comprehensive evaluation to address this concern.

To achieve this, we will employ a combination of cross-validation and AUC (Area Under the
Curve) analysis. By combining cross-validation and AUC, we could gain a comprehensive

understanding of the model's performance in different scenarios. This assessment allows us to

address the overfitting concerns and make informed decisions to ensure optimal model selection.

Cross-validation provides a robust methodology to gauge the models' generalization capabilities.
We could gain insights into how well the models perform across diverse data slices by

partitioning the dataset into subsets. This process enables us to identify potential disparities in

performance and ensures that the models can generalize effectively beyond the training data [5].
Additionally, the AUC metric plays a significant role in assessing a model's ability to

164 Computer Science & Information Technology (CS & IT)

discriminate between different classes. We could gauge how well the models distinguish between
positive and negative instances across various threshold levels. This analysis aids in selecting an

appropriate threshold that balances precision and recall.

Figure 9. Figure of experiment 2

Thanks to our meticulous cross-validation and AUC assessment, we've successfully identified

and excluded models exhibiting signs of severe overfitting. This step is instrumental in ensuring

Computer Science & Information Technology (CS & IT) 165

that the chosen models possess the capability to perform effectively in real-world scenarios,
where variations are common. A notable observation emerges from the assessments: models that

display impressive accuracy during conventional evaluations experience degradation when

confronted with changes. This underscores the significance of assessing model robustness beyond

accuracy metrics. However, certain models such as KNN, decision trees, and random forests
demonstrate excellent performance across the cross-validation and AUC evaluations. Among

them, decision trees stand out, carrying the highest cross-validation accuracy, while random

forests exhibit an exceptional AUC score of 1.0, despite having slightly lower cross-validation
accuracy compared to decision trees. The decision to choose the random forest model as our final

selection is well-founded. As an ensemble of multiple decision trees, random forests capitalize on

the strength of individual trees while mitigating their weaknesses. This combination yields a
model that excels in both accuracy and robustness, making it the optimal choice for deployment

in real-world scenarios.

5. RELATED WORK

The proposed methodology involves 3 main components. First, data preprocessing involves

handling noises, missing values, and transforming classes. The second component applies

machine learning models using Scikit and Spark libraries for both regular and big data
approaches. Finally, evaluation metrics are used to compare their results. Their solution’s

effectiveness depends on the choice of models and their hyperparameters. Limitations include

potential information loss during PCA, since not all features may be equally important. The

solution may not consider more advanced techniques and complex patterns. It might also
overlook dynamic behaviors/changes that could affect attack detection. My project extended the

scope of preprocessing and exploring a wider range of machine learning models. My project

enhances the solution by incorporating additional preprocessing steps, such as deploying logistic
regression, SVM, KNN, sequential neural networks, decision trees, and random forests, along

with their hyperparameter tuning [6][7].

The methodology/solution proposed in the text focuses on addressing the challenges posed by

Distributed Denial of Service (DDoS) attacks in the context of Software-Defined Networking

(SDN). DDoS attacks are a serious threat to network security due to their potential to disrupt

services and cause significant economic losses. The authors suggest leveraging the advantages of
SDN, such as deep packet analysis and flexible traffic policy management, to enhance DDoS

attack detection. The paper discusses various DDoS attack detection methods used in traditional

network architectures, which include traffic characteristic-based detection and traffic anomaly-
based detection. These methods involve creating characteristics databases, traffic modeling, and

analysis of abnormal flow patterns. However, these methods can be complex, lack timely

detection, or exhibit high false positive rates. The effectiveness of this solution lies in its

utilization of SDN’s capabilities for deep packet analysis, flexible traffic management, and quick
response to policy changes. Again, my project goes beyond the focus on SVM in the research.

My project also includes hyperparameter tuning for each machine learning model and

comprehensive metrics evaluation.

If my project implements real-time detection, it could provide quicker responses to emerging

DDoS threats [8][9][10].

The proposed methodology involves designing a machine learning model based on multiple

linear regression (MLR) analysis and creating data visualization through residual plots. Their

primary purpose is to apply MLR to the CICDS 2017 dataset, a benchmark dataset commonly
used in research. Their process includes feature selection using the Information Gain (IG)

approach. The chosen features are then subjected to MLR analysis. The effectiveness of this

166 Computer Science & Information Technology (CS & IT)

solution depends on the quality/accuracy of how well these linear regression models are trained.
However, this solution has its limitations. MLR assumes a linear relationship between data points.

That means, if the relationship is nonlinear, the model’s performance might be strongly affected.

Additionally, the effectiveness of the IG relies on the assumption that the chosen features are the

most relevant to our target variable. Last but not least, the solution’s performance is also
contingent on the quality of the CICDS 2017 dataset. On the contrary, my project investigates

techniques that handle nonlinear relationships between features and the target variables. Models

such as SVM (hyperplane), KNN (based on distance), and decision trees/random forests have a
strong ability to distinguish complex nonlinear variable interactions [11].

6. CONCLUSIONS

One of the limitations of my project was the challenge of capturing real-life data and feeding it
into our model. Real-time capture is crucial for identifying potential threats and responding

promptly. I should ensure a smooth pipeline from data capture to model input to minimize the

overall time. To address this limitation, I could prioritize minimizing the latency in data
processing. Techniques such as stream processing could be considered to guarantee a continuous

flow of real-time data to the model [12]. While minimizing latency was essential, I recognized

the need to strike a balance between speed and accuracy, given there is a tradeoff. Therefore, I
could tune hyperparameters based on time to ensure quick classification while still considering

accuracy. This includes finding and adjusting parameters that influence both accuracy and

prediction speed. Similarly, I could eliminate more features that have relatively less impact on

results. In addition to traditional features, I could introduce metrics that track the frequency and
nature of interactions between IP addresses and the network. These metrics provided me with a

more comprehensive view of network behavior to identify subtle patterns.

In summary, this project presents a robust DDoS attack detection solution. The system achieves

an accurate classification process by intricately combining efficient data preprocessing pipelines

and a spectrum of machine-learning models. The project also provides two UI/UX the users can
choose from, the Tkinter app and the Flask web application [13]. These 2 UI provides a friendly

way of interacting with the ML model.

REFERENCES

[1] Lau, Felix, et al. "Distributed denial of service attacks." Smc 2000 conference proceedings. 2000 ieee

international conference on systems, man and cybernetics.'cybernetics evolving to systems, humans,

organizations, and their complex interactions'(cat. no. 0. Vol. 3. IEEE, 2000.

[2] Rogers, Larry. "What Is a Distributed Denial of Service (DDoS) Attack and What Can I Do About

It?." CERT Carnegie Mellon University (2004).

[3] Zaroo, Puneet. "A survey of DDoS attacks and some DDoS defense mechanisms." Advanced
Information Assurance (CS 626) (2002).

[4] Ying, Xue. "An overview of overfitting and its solutions." Journal of physics: Conference series. Vol.

1168. IOP Publishing, 2019.

[5] Browne, Michael W. "Cross-validation methods." Journal of mathematical psychology 44.1 (2000):

108-132.

[6] Awan, Mazhar Javed, et al. "Real-time DDoS attack detection system using big data approach."

Sustainability 13.19 (2021): 10743.

[7] Lima Filho, Francisco Sales de, et al. "Smart detection: an online approach for DoS/DDoS attack

detection using machine learning." Security and Communication Networks 2019 (2019): 1-15.

[8] Ye, Jin, et al. "A DDoS attack detection method based on SVM in software defined network."

Security and Communication Networks 2018 (2018).

[9] Hoque, Nazrul, Hirak Kashyap, and Dhruba Kumar Bhattacharyya. "Real-time DDoS attack detection
using FPGA." Computer Communications 110 (2017): 48-58.

Computer Science & Information Technology (CS & IT) 167

[10] Xu, Yang, and Yong Liu. "DDoS attack detection under SDN context." IEEE INFOCOM 2016-the

35th annual IEEE international conference on computer communications. IEEE, 2016.

[11] Sambangi, Swathi, and Lakshmeeswari Gondi. "A machine learning approach for ddos (distributed

denial of service) attack detection using multiple linear regression." Proceedings. Vol. 63. No. 1.

MDPI, 2020.
[12] Croushore, Dean. "Frontiers of real-time data analysis." Journal of economic literature 49.1 (2011):

72-100.

[13] JOO, Heon Sik. "A Study on UI/UX and Understanding of Computer Major Students." International

journal of advanced smart convergence 6.4 (2017): 26-32.

[14] Sekar, Vyas, et al. "LADS: Large-scale Automated DDoS Detection System." USENIX Annual

Technical Conference, General Track. 2006.

[15] Pal, Mahesh. "Random forest classifier for remote sensing classification." International journal of

remote sensing 26.1 (2005): 217-222.

© 2024 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

https://airccse.org/

	Abstract
	In response to the increasing threat of DDoS (Distributed Denial of Service) attacks, this project investigates fortifying defenses against such malicious invasions. The project incorporates a user-friendly UI featuring two buttons: one for uploading ...
	Keywords

