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ABSTRACT 
 
In response to the increasing threat of DDoS (Distributed Denial of Service) attacks, this 

project investigates fortifying defenses against such malicious invasions. The project 

incorporates a user-friendly UI featuring two buttons: one for uploading captured traffic files 

and another for analysis to classify whether it’s a DDoS attack. The background of the problem 

aspires to a robust and adaptive DDoS detection system to ensure the continuity of online 

services [14]. To resolve this, the project proposes an automated DDoS attack detection 

mechanism powered by Machine Learning and Artificial Intelligence. The application involves 

two pivotal experiments: the first assesses model accuracy, highlighting the Decision Tree as 

the most promising, while the second focuses on preventing overfitting during training, and the 

Random Forest Classifier stands out to this one [15]. The challenges encountered were 

mitigated through techniques like early stopping and regularization. The model’s application 
across various scenarios showcased its potential for effective real-time DDoS detection. 
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1. INTRODUCTION 

 

 
 

Figure 1. DDoS attack 
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A DDoS(Distributed Denial of Service) attack is a malicious attempt to disturb the normal traffic 
of a targeted server or network by overwhelming the target or its surrounding infrastructure with 

a flood of Internet traffic [1]. 

In cybersecurity, we think of the CIA triad in terms of types of attacks:  

 Confidentiality: Is my information secret?  
 Integrity: Is my information accurate and trustworthy?  

 Availability: Can I get my information when and where I need it[2]? 

 
Unlike other types of attacks, attackers do not use DDoS to breach your security perimeter. 

Instead, DDoS attacks primarily target the availability aspect of the CIA triad. DDoS attacks aim 

to exhaust a server or network with a massive volume of traffic, leading to a sudden surge in 
requests. Consequently, legitimate users are unable to access the targeted services, causing 

service downtime. The disruptive nature of DDoS attacks has the potential to inflict significant 

financial losses on businesses, especially those that heavily rely on uninterrupted online 

availability. Industries such as e-commerce websites and online services are particularly 
susceptible to these attacks, given their independence on continuous accessibility for sustaining 

operations. It makes them prime targets for malicious hackers seeking to exploit vulnerabilities in 

the digital world. As a result, organizations must invest in robust DDoS mitigation strategies to 
protect their online infrastructure. 

 

In 2018, GitHub, a popular platform for software developers, experienced one of the largest 
DDoS attacks in history. Attackers overwhelmed the servers with a massive flood of traffic and 

caused intermittent outages. While GitHub quickly mitigated the attack, it disrupted the 

availability of its code repository services, impacting billions of developers around the world [3]. 

 
The initial methodology focuses on data preprocessing and traditional machine learning models 

to detect cybersecurity threats. It struggles with dimensionality reduction, therefore it potentially 

loses critical information. In response, my project enhances this model by incorporating a broader 
list of algorithms, and I focus on fine-tuning and expanding preprocessing measures as I aim for a 

more nuanced detection capability.  The second approach leverages the flexibility of Software 

Defined Networking (SDN) to counteract DDoS threats. However, its reliance on conventional 

detection methods may lead to delays and false positives. My enhancement involves advanced 
hyperparameter optimization and evaluating models with extensive metrics, which aim for 

prompt and accurate threat detection in a dynamic network environment. This final methodology 

employs multiple linear regression on a benchmark dataset for threat prediction, based on their 
assumption of linear relationships. My project seeks to outperform this by exploring models that 

can analyze complex, nonlinear interactions. By doing so, it can deliver a robust and versatile 

detection system. Also, it transcends the linear confines of the previous approach. 
 

By harnessing Kaggle’s DDoS datasets, we could take advantage of Machine Learning to 

produce a comprehensive DDoS detection model and deploy it to forestall any potential DDoS 

threat factor. The detector is responsible for monitoring incoming network traffic and responding 
to that traffic with the corresponding prediction for DDoS. If a server manager is hired to 

organize and recognize malicious requests instead of using Artificial Intelligence, the human 

errors of omitting can be devastating. On the other hand, hackers in other countries use the time 
difference to launch DDoS attacks on servers in the early hours of the morning, when people are 

already resting. At this time, the server is very vulnerable due to insufficient awareness. On the 

contrary, Artificial Intelligence can easily address human instinctive issues. 
 

Additionally, the second effective method to fortify network security is to activate a Web 

Application Firewall (WAF). A Web Application Firewall serves as a proactive defense 

mechanism by “sanitizing” incoming traffic and filtering out malicious requests before they even 
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reach the targeted server. By implementing a WAF, organizations can significantly reduce the 
risk of DDoS disruptions. WAF acts as a shield that deflects malicious traffic and allows traffic 

from legitimate users. 

 

However, they have limitations when compared to ML methods. Firewalls operate based on 
predefined static rules and signatures. It makes them effective at blocking known attack patterns 

but less adaptive to evolving attacking threats. They also generate more false positives, block 

legitimate traffic, and struggle to detect complicated and dynamic DDoS attacks. 
 

In two distinct experiments, we targeted to evaluate the accuracy metric of our 5 ML algorithms 

using the 20% test dataset and tried to mitigate the potential risk of overfitting. In the first 
experiment, we evaluated the performance of Logistic Regression, KNN, SVM, Decision Tree, 

and Random Forest. We trained and validated them with the same 80% of the dataset (using the 

same random state). The separated test dataset is used to assess their performance. Notably, the 

Decision Tree classifier consistently stood out with the best accuracy. Reasonably, its high 
accuracy could be attributed to its ability to adeptly capture complex patterns within the dataset. 

In the second part of the experiment, we shifted our attention to avoid overfitting, as several signs 

of this critical concern were displayed while evaluating the model. By implementing overfitting-
killer techniques such as cross-validation, regularization, ROC AUC, and early stopping, we 

aimed to decrease overfitting. As a result, the Random Forest classifier, with some 

hyperparameter tuning, delineated the highest reduction in overfitting, ultimately enhancing its 
ability to generalize effectively to unseen data and showcase increased accuracy when it is 

implemented in real-time. These meaningful experiments portrayed the strengths and weaknesses 

of various models and pointed out the importance of overfitting mitigation strategies. 

 

2. CHALLENGES 
 

In order to build the project, a few challenges have been identified as follows. 

 

2.1. The Model Architecture 
 

AI models can be laborious to train for several reasons. One major challenge is the complexity of 
the model architecture, which can contain millions of parameters. As a result, they consume a 

vast amount of time and significant computational power to train. In addition to that, tuning these 

models requires meticulous multiple parameters tuning to ensure the models perform well. 

Confronting issues like overfitting and finding the proper balance between bias and variance can 
also drastically increase the training difficulty and period. Even with these efforts, the model 

could still possibly be onerous to converge to our expectations, leading to a series of experiments 

and refinement. 
 

2.2. Dataset 
 

Raw dataset usually contains errors and inconsistencies that are required to be identified 

and improved, due to the significance of ensuring high-quality data before the training 

processes. Subsequently, different data types such as text, number, categoricals, etc. often 

require different preprocessing techniques, making it challenging to create a uniform 

dataset. I could use Pipelines that contain a considerable amount of data preprocessor, 

allowing me to reduce the code complexity while still maintaining efficiency. 

Additionally, some datasets possess certain classes having significantly fewer samples 

than others. We should consider it given that imbalanced datasets can affect models' 

ability to predict underrepresented classes.  
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2.3. The Realm of Data Visualization 
 

My third challenge involves the realm of data visualization, wherein we strive to adeptly harness 

the power of various types of plots. This involves discerning the unique strengths of each plot and 
using them to our maximum advantage. Furthermore, we’re confronted with the intricate task of 

selecting between a bar graph and a pie graph, weighing the merits and appropriateness of each 

option within the context of our data representation goals. To effectively address the challenge of 
data visualization, I need to start by gaining a comprehensive understanding of my data and the 

narrative I intend to communicate. I must analyze the distinct characteristics, connections, and 

key takeaways from the data. Once I have established this groundwork, I can then carefully select 

the appropriate type of visualization.  

 

3. SOLUTION 
 

My main components are 

1. AI components 
This part consists of machine learning models that have been trained to identify DDoS attacks 

using patterns and features found in network traffic data. These models include Random Forest, 

Support Vector Machine (SVM), and K-Nearest Neighbors (KNN). The detecting process is 

based on these core models. 

2. Tkinter app 
The goal of the Tkinter-based user interface (UI) is to offer a front end that is easy to use for 
engaging with the DDoS detection system. Users can initiate the DDoS detection procedure, 

upload traffic data files, and check the outcomes. The outcome is both printed in the application 

and saved to a text file containing details. 

3. Flask web application 
The system's backend, the Flask web application, manages requests from web users. This flask 
web application serves as an alternative to the Tkinter app. You can either upload the capture file, 

but also manually enter each data entry. The supplied traffic data is then analyzed, predictions are 

made, and the results are sent back to the front end for presentation by the Flask application using 
the pre-trained AI models. 

 

The user either opens the Tkinter application or the Flask web application to upload a traffic data 

file or manually enters the data for the web application only. The back end then starts the DDoS 
detection procedure after the UI program sends a request to the bank end, acting as a bridge 

between the AI components and the user interface. The trained AI models are used within the 

application to examine the uploaded traffic statistics. Next, based on these AI models' predictions, 
one can determine whether the traffic data shows signs of a DDoS attack. The application 

receives the generated prediction results and displays them to the user. Users can take appropriate 

action in response to the detected threat and make well-informed decisions thanks to this intuitive 

interface. 
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Figure 2. Overview of the solution 

 

The key purpose of having an AI model is that it has the role of detecting abnormal traffic. We 
have tested out popular ML models such as KNN. KNN is an ML algorithm that assigns a label 

to a data point based on the majority class of its k closest (usually measured by Euclidean 

Distance) neighbors in the feature space, making it particularly useful for pattern recognition and 
similarity-based predictions. Its ability to classify instances based on their similarity to all data 

points makes it very suitable for a DDoS detection system. However, it follows proper 

hyperparameter tuning and determination of the value K for achieving highly accurate results. 
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Figure 3. Screenshot of code 1 

 

This snippet of Python code conducts a machine learning experiment/hyperparameter tuning to 

determine how the number of neighbors (k) affects model performance and find the best k value 
featuring the kNN classifier. It does this by importing the k-Nearest Neighbors (kNN) classifier 

from scikit-learn. It then initializes lists of k values to hold metrics for accuracy, cross-validation 

scores, and Area Under the Curve (AUC). The code fits the kNN model, makes predictions on the 

test set, then computes the AUC based on prediction probabilities, and runs cross-validation on 
the training data to determine the mean accuracy for each k value. Both AUC and cross-

validation scores provide huge amounts of information on whether the model is overfitting. 

Subplots that show these measures as bar charts are then used to illustrate the results, giving a 
clear visual depiction of how the model's accuracy, cross-validation score, and AUC are impacted 

by the choice of k. Each chart includes annotated performance metrics, enhancing interpretability. 

The plt.show() function is called at the end to display the generated plots. The best 
hyperparameter is then selected for any future kNN model. Similarly, 2 other hyperparameter 

tunings were done for SVC and Random Forest. A list of hyperparameters were tested and the 

best among them would be used. 

 
The Tkinter app uses Python's built-in Tkinter library to generate a graphical user interface (GUI) 

that users can use to communicate with the DDoS detection system. This part doesn't depend on 

sophisticated ideas or specialized services like neural networks or natural language processing. 
Rather, it acts as the UI/UX frontend that makes user interactions easier. Users can upload traffic 

data files, initiate DDoS detection, and see the generated predictions. This UI system serves as a 

bridge between the user and the program's core functionality, which allows users to start and stop 

DDoS detection tasks without having to directly deal with the machine learning models or 
backend processes. It improves accessibility and usability. 
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Figure 4. DDOS attack main page 

 

 

 
 

Figure 5. Screenshot of code 2 

 
The Python code in question is a component of a Tkinter-built GUI application that analyzes 

network traffic and categorizes it as malicious or benign. After the user has uploaded the capture 

file, the complete_analysis function stops and hides the uploading progress bar, a UI component. 
It starts counters for both malicious and benign traffic, updating these counts and creating a 

comprehensive text summary by repeatedly running over the predictions using a loop. 

Furthermore, through the use of a label widget, this summary is shown in the GUI. The function 

then makes sure there is a directory called "details" and writes the packet's detailed summary and 
each of the individual predictions to a file in this directory using a naming scheme that is derived 

from the file that was initially chosen. In the end, the function modifies the GUI by providing the 
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path to the details file and adjusting the layout to possibly allow for new operations, such as 
selecting a new file or initiating a fresh analysis. 

 

The Flask web application uses Bootstrap for CSS layout design and SQL for user login 

capabilities. Logging in securely and accessing the DDoS detection system is made possible by 
SQL managing user authentication. To create a front end that is both visually appealing and 

responsive, Bootstrap is utilized in the creation of the graphical layout and user interface. It 

guarantees the functionality, aesthetics, and usability of the user's interactions with the system. 
Finally, users can both upload traffic data files and manually enter the data to initiate DDoS 

detection and see the generated predictions. Similar to the Tkinter app, it improves accessibility 

and usability.  
 

 

 
 

Figure 6. DDoS detector page 
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Figure 7. Screenshot of code 3 

 

The code snippets are from the Flask application that shows two separate POST request 

processing functions, each with a different purpose. The first function, /detect_file, is dedicated to 
file handling; it first authenticates the user, then it searches for a file in the request and, if one is 

discovered, the function saves to the server temporarily and processes it with the pre-trained ML 

model. When the ML model has results ready, the web server presents the user with the results. 

The application's use in processing network traffic data manually is indicated by the second 
function, /detect_form, which deals with the extraction and type conversion of network-related 

data from a submitted form. From the screenshots of the UI, detect_form serves as an alternative 

to the detect_file function — it can be used if the user doesn’t have a capture file but some data at 
hand. The form includes various metrics, like packet and byte counts and transfer rates, which are 

crucial for network analysis. 

 

4. EXPERIMENT 
 

4.1. Experiment 1 
 
Before integrating our detector into applications, it’s crucial to assess its accuracy through testing. 

Among the five prospective models at hand, we need to identify the optimal one. Conducting 

accuracy experiments, coupled with hyperparameter tuning, allows us to gauge the precision of 
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each model. This selection process is vital as it showcases the models’ capacity to perform 
accurate classifications effectively. 

 

In our meticulous evaluation process, we analyze the accuracy performance of five distinct 

models using the test dataset. For each model, a comprehensive set of hyperparameters is 
methodically fine-tuned, aiming to attain optimal accuracy outcomes. This detailed exploration of 

hyperparameter configurations provides valuable insights into their influence on the model’s 

accuracy. Utilizing the carefully collected accuracy results, we generate informative 
visualizations that vividly illustrate the accuracy trends exhibited by each model. These visual 

representations serve as a powerful tool to intuitively comprehend the nuances in performance. 

By systematically contrasting and comparing the peak accuracy achieved by each model, we can 
confidently determine the most suitable model for our application’s requirements. This rigorous 

evaluation approach ensures the selected model possesses the necessary accuracy and robustness 

for successful integration into real-world scenarios, where reliable performance is significant. 

 

 

 

 
 

Figure 8. Figure of experiment 1 

 

From the above visualization, we can calculate:  
 Mean  

 72.6 — Logistic Regression 
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 95.7 — KNN 
 78.7 — SVM 

 99.9 — Decision Tree 

 99.5 — Random Forest 

 Median 
 72.6 — Logistic Regression 

 95.2 — KNN 

 84.7 — SVM 
 99.9 — Decision Tree 

 99.5 — Random Forest 

 Min 
 72.4 — Logistic Regression 

 94.3 — KNN 

 52.2 — SVM 

 99.9 — Decision Tree 
 99.4 — Random Forest 

 Max 

 72.7 — Logistic Regression 
 97.9 — KNN 

 92.0 — SVM 

 99.9 — Decision Tree 
 99.5 — Random Forest 

Indeed, the Decision Tree model’s exceptional performance, boasting an impressive accuracy of 

99.9%, stands out prominently. The subsequent success of the Random Forest classifier aligns 

with expectations given the underlying capabilities of decision trees. Decision trees possess a 
distinct advantage when dealing with a mix of categorical and numerical data. Their innate ability 

to navigate both data types efficiently without extensive preprocessing enhances their versatility 

in handling diverse datasets. Moreover, decision trees are well-regarded for their proficiency in 
uncovering nonlinear relationships. This attribute proves invaluable when dealing with intricate 

interactions within the data. This capacity eliminates the necessity for convoluted mathematical 

transformations. However, it’s vital to acknowledge that decision trees are susceptible to 

overfitting. Their tendency to create overly complex models that capture noise in the data can 
lead to decreased generalization performance. To counteract this, strategies like pruning, limiting 

tree depth, or employing ensemble techniques like Random Forests can help mitigate overfitting 

risks. 

 

4.2. Experiment 2 
 
Upon the conclusion of the accuracy assessment phase, it becomes evident that our models show 

signs of overfitting. If a model cannot generalize well to new data, then it will not be able to 

perform the classification or prediction tasks that it was intended for[4]. This prompts us to assess 
a more comprehensive evaluation to address this concern. 

 

To achieve this, we will employ a combination of cross-validation and AUC (Area Under the 
Curve) analysis. By combining cross-validation and AUC, we could gain a comprehensive 

understanding of the model's performance in different scenarios. This assessment allows us to 

address the overfitting concerns and make informed decisions to ensure optimal model selection. 

Cross-validation provides a robust methodology to gauge the models' generalization capabilities. 
We could gain insights into how well the models perform across diverse data slices by 

partitioning the dataset into subsets. This process enables us to identify potential disparities in 

performance and ensures that the models can generalize effectively beyond the training data [5]. 
Additionally, the AUC metric plays a significant role in assessing a model's ability to 
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discriminate between different classes. We could gauge how well the models distinguish between 
positive and negative instances across various threshold levels. This analysis aids in selecting an 

appropriate threshold that balances precision and recall. 

 

 

 
 

Figure 9. Figure of experiment 2 

 

Thanks to our meticulous cross-validation and AUC assessment, we've successfully identified 

and excluded models exhibiting signs of severe overfitting. This step is instrumental in ensuring 
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that the chosen models possess the capability to perform effectively in real-world scenarios, 
where variations are common. A notable observation emerges from the assessments: models that 

display impressive accuracy during conventional evaluations experience degradation when 

confronted with changes. This underscores the significance of assessing model robustness beyond 

accuracy metrics. However, certain models such as KNN, decision trees, and random forests 
demonstrate excellent performance across the cross-validation and AUC evaluations. Among 

them, decision trees stand out, carrying the highest cross-validation accuracy, while random 

forests exhibit an exceptional AUC score of 1.0, despite having slightly lower cross-validation 
accuracy compared to decision trees. The decision to choose the random forest model as our final 

selection is well-founded. As an ensemble of multiple decision trees, random forests capitalize on 

the strength of individual trees while mitigating their weaknesses. This combination yields a 
model that excels in both accuracy and robustness, making it the optimal choice for deployment 

in real-world scenarios. 

 

5. RELATED WORK 
 
The proposed methodology involves 3 main components. First, data preprocessing involves 

handling noises, missing values, and transforming classes. The second component applies 

machine learning models using Scikit and Spark libraries for both regular and big data 
approaches. Finally, evaluation metrics are used to compare their results. Their solution’s 

effectiveness depends on the choice of models and their hyperparameters.  Limitations include 

potential information loss during PCA, since not all features may be equally important. The 

solution may not consider more advanced techniques and complex patterns. It might also 
overlook dynamic behaviors/changes that could affect attack detection. My project extended the 

scope of preprocessing and exploring a wider range of machine learning models. My project 

enhances the solution by incorporating additional preprocessing steps, such as deploying logistic 
regression, SVM, KNN, sequential neural networks, decision trees, and random forests, along 

with their hyperparameter tuning [6][7]. 

 
The methodology/solution proposed in the text focuses on addressing the challenges posed by 

Distributed Denial of Service (DDoS) attacks in the context of Software-Defined Networking 

(SDN). DDoS attacks are a serious threat to network security due to their potential to disrupt 

services and cause significant economic losses. The authors suggest leveraging the advantages of 
SDN, such as deep packet analysis and flexible traffic policy management, to enhance DDoS 

attack detection. The paper discusses various DDoS attack detection methods used in traditional 

network architectures, which include traffic characteristic-based detection and traffic anomaly-
based detection. These methods involve creating characteristics databases, traffic modeling, and 

analysis of abnormal flow patterns. However, these methods can be complex, lack timely 

detection, or exhibit high false positive rates. The effectiveness of this solution lies in its 

utilization of SDN’s capabilities for deep packet analysis, flexible traffic management, and quick 
response to policy changes. Again, my project goes beyond the focus on SVM in the research. 

My project also includes hyperparameter tuning for each machine learning model and 

comprehensive metrics evaluation. 
 

If my project implements real-time detection, it could provide quicker responses to emerging 

DDoS threats [8][9][10]. 
 

The proposed methodology involves designing a machine learning model based on multiple 

linear regression (MLR) analysis and creating data visualization through residual plots. Their 

primary purpose is to apply MLR to the CICDS 2017 dataset, a benchmark dataset commonly 
used in research. Their process includes feature selection using the Information Gain (IG) 

approach. The chosen features are then subjected to MLR analysis. The effectiveness of this 



166                                          Computer Science & Information Technology (CS & IT) 

solution depends on the quality/accuracy of how well these linear regression models are trained. 
However, this solution has its limitations. MLR assumes a linear relationship between data points. 

That means, if the relationship is nonlinear, the model’s performance might be strongly affected. 

Additionally, the effectiveness of the IG relies on the assumption that the chosen features are the 

most relevant to our target variable. Last but not least, the solution’s performance is also 
contingent on the quality of the CICDS 2017 dataset. On the contrary, my project investigates 

techniques that handle nonlinear relationships between features and the target variables. Models 

such as SVM (hyperplane), KNN (based on distance), and decision trees/random forests have a 
strong ability to distinguish complex nonlinear variable interactions [11]. 

 

6. CONCLUSIONS 
 

One of the limitations of my project was the challenge of capturing real-life data and feeding it 
into our model. Real-time capture is crucial for identifying potential threats and responding 

promptly. I should ensure a smooth pipeline from data capture to model input to minimize the 

overall time. To address this limitation, I could prioritize minimizing the latency in data 
processing. Techniques such as stream processing could be considered to guarantee a continuous 

flow of real-time data to the model [12]. While minimizing latency was essential, I recognized 

the need to strike a balance between speed and accuracy, given there is a tradeoff. Therefore, I 
could tune hyperparameters based on time to ensure quick classification while still considering 

accuracy. This includes finding and adjusting parameters that influence both accuracy and 

prediction speed. Similarly, I could eliminate more features that have relatively less impact on 

results. In addition to traditional features, I could introduce metrics that track the frequency and 
nature of interactions between IP addresses and the network. These metrics provided me with a 

more comprehensive view of network behavior to identify subtle patterns. 

 
In summary, this project presents a robust DDoS attack detection solution. The system achieves 

an accurate classification process by intricately combining efficient data preprocessing pipelines 

and a spectrum of machine-learning models. The project also provides two UI/UX the users can 
choose from, the Tkinter app and the Flask web application [13]. These 2 UI provides a friendly 

way of interacting with the ML model. 
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