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ABSTRACT 
 
Machine learning (ML) algorithms are predictively competitive algorithms with many human-

impact applications. However, the issue of long execution time remains unsolved in the 

literature for high-dimensional spaces. This study proposes combining ML algorithms with an 

efficient methodology known as the barycentric correction procedure (BCP) to address this 

issue. This study uses synthetic data and an educational dataset from a private university to 

show the benefits of the proposed method. It was found that this combination provides 

significant benefits related to time in synthetic and real data without losing accuracy when the 

number of instances and dimensions increases. Additionally, for high-dimensional spaces, it 

was proved that BCP and linear support vector classification (LinearSVC), after an estimated 

feature map for the gaussian radial basis function (RBF) kernel, were unfeasible in terms of 
computational time and accuracy. 
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1. INTRODUCTION 
 

Artificial neural networks and machine learning models have assumed paramount significance in 

numerous applications that profoundly affect human activities. These methodologies have gained 
prominence due to their exceptional predictive accuracy [1-6]. Neuronal networks, now named 

deep learning, re-emerged after 2010 due to massive improvements in computer resources, some 

innovations, and successful applications [7]. Support vector machines and gradient boosting stand 
as pillars in the field of machine learning [8-11]. 

 

Deep learning has emerged as a cornerstone for tackling intricate tasks such as object recognition, 

speech recognition, and the development of autonomous vehicles [12]. Support vector machines 
have demonstrated their efficacy in domains like computer security, image categorization, and 

the extraction and recognition of soft biometrics [13]. Meanwhile, gradient boosting has found 

resounding success in a wide array of sectors, including finance [14] education [15], and the 
cryptocurrency realm [16], among countless others. 

 

In addition to their remarkable accuracy and proven success in various applications, Support 

Vector Machines (SVM) are renowned for their ability to construct intricate decision boundaries, 
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even when dealing with datasets featuring only a limited number of features [17]. One 
compelling theoretical aspect that distinguishes SVM from other algorithms is its convex 

objective function, guaranteeing the discovery of the optimal solution consistently [18]. 

Additionally, SVM possesses the unique characteristic of architecture self-determination, 

eliminating the need for prior definition. 
 

Turning to the Gradient Boosting algorithm, as discussed in the work of [19], tree-based 

ensemble methods, like gradient boosting, offer interpretable outcomes with minimal data 
preprocessing requirements. The boosting family of algorithms has consistently ranked among 

the most accurate classifiers across a wide range of datasets [20]. Despite its sensitivity to noise 

and outliers, particularly in smaller datasets, it consistently exhibits lower testing error rates [20]. 
 

There is no denying the paramount importance, efficiency, and success stories associated with 

algorithms like neural networks, support vector machines, and gradient boosting, even when 

dealing with small databases. However, it is crucial to acknowledge that despite their many 
merits, all three methods face their share of challenges. 

 

Deep learning, which employs backpropagation (BP), has encountered criticism due to certain 
theoretical limitations. BP does not offer a guarantee of reaching the absolute minimum [21], and 

the necessity to predefine the model's architecture poses a significant hurdle. As noted by [17], 

neural networks are highly sensitive to parameter choices, and in the case of large networks, they 
incur substantial memory usage and slow training and testing times. 

 

Support vector machines, on the other hand, have faced a potential impediment to widespread 

adoption in the form of execution time and memory requirements. Handling SVM on datasets 
exceeding 100,000 entries or more can prove challenging, particularly concerning runtime and 

memory consumption [17]. 

 
Meanwhile, gradient boosting is not immune to computational challenges. High memory 

consumption, slower evaluation speeds, and time-intensive processes become evident when 

dealing with considerably large ensembles [22]. 

 
The primary objective of this study is to address the challenge of extensive execution times when 

dealing with large datasets in the context of methodologies such as support vector machines, 

neural networks, and gradient boosting. While substantial progress has been made in addressing 
this issue in the past, it remains a pressing concern, particularly given the ever-expanding volume 

of data generated by industry and scientific endeavors. 

 
To tackle this challenge, we propose leveraging a previously introduced approach that involves 

the initialization of these algorithms with a barycentric correction procedure (BCP). This 

procedure aims to identify a subset of instances refined within the training set to enhance the 

execution of the above-mentioned algorithms. BCP is grounded in geometric principles initially 
proposed by [23], offering faster convergence than the Perceptron in linear cases [23]. 

 

We hypothesize that by working with a training set comprising fewer but more strategically 
selected instances, we can significantly reduce both the time and memory requirements while 

preserving high levels of accuracy. 

 

2. METHOD 
 
This section shall present the conceptual framework of the proposal, which initiates with the 

application of the BCP algorithm. It will discuss the hypothesis about reducing time and expound 
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on the basics of BCP; subsequently, the subsection dedicated to experiments will provide the 
process for synthetic data generation. We will elucidate the experiments encompassing both 

synthetic and real datasets. The real dataset employed in our study comprises educational 

information with features that impact graduates and educational institutions. 

 

2.1. Proposal 
 
The proposal is exemplified in Figure 1. The algorithm consists of the following three steps:  

 Run BCP on the complete data set and generate an approximate hyperplane to the 

solution. 

 Extract a subset of cases close to the hyperplane generated by BCP. 

 Run SVM, gradient boosting (GB), or neuronal networks on the reduced set.  

 

 

 

Figure 1. Stages of the Proposal that combines BCP and SVM. Left: Run BCP; Center: Extract the 
subset; Right: Run SVM in the reduced set. 

 
Since the algorithms will be executed on a smaller data set, lower memory requirements are 
hypothesized. Furthermore, we hypothesize that in higher dimensional cases, BCP will guide the 

algorithms with a reduction in execution time. 

 

2.2. Barycentric Correction Procedure 
 

The barycentric Correction Procedure used in step 1 of the proposal was stated in [23]. BCP 
depends on calculating separate weights and a threshold. The training is done by an iterative 

correction of the weights of the barycenters allowing to minimize the number of misclassified 

values. The algorithm defines a hyperplane 𝑤𝑡𝑥 + 𝜃dividing the input space into two classes. 

First, let us define 𝐼1 = 1, . . , 𝑁1,and 𝐼0 = 1, . . , 𝑁0, where 𝑁0 is the number of negative cases, and 

𝑁1 is the number of positive cases. The following weighted averageare the barycenters of the 
classes defined by [23], 

 

   𝑏1 =
∑ 𝛼𝑖𝑥𝑖𝑖∈𝐼1

∑ 𝛼𝑖𝑖∈𝐼1

, 𝑏1 =
∑ 𝜇𝑖𝑥𝑖𝑖∈𝐼0

∑ 𝜇𝑖𝑖∈𝐼0

                                                    (1) 

 

where 𝛼𝑖 and 𝜇𝑖  are weighting coefficient vectors of size 𝑁1  and 𝑁0, respectively.   

The weight vector w is a vector difference 𝑤 =  𝑏1  −  𝑏0. The bias term, 𝜃, is computed with, 

 

                                                                      𝜃 =
max 𝛾1 + 𝑚𝑖𝑛 𝛾0

2
                                                       (2)   

 

where 𝛾(𝑥)  =  −𝑤𝑥, 𝛾1 = {𝛾(𝑥𝑖)|𝑥𝑖 ∈ positive class} and 𝛾0 = {𝛾(𝑥𝑖)|𝑥𝑖 ∈ negative class}. 

The barycentric correction is calculated using the modification in the weighting coefficients. 
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                                                         𝛼𝑛𝑒𝑤 =  𝛼𝑜𝑙𝑑 +  𝛽,    µ𝑛𝑒𝑤 =  µ𝑜𝑙𝑑  +  𝜆                                       (3) 
 

where 𝛽 =  𝑚𝑖𝑛{1, 𝑚𝑎𝑥[30, 𝑁1/𝑁0]} and 𝜆 =  𝑚𝑖𝑛{1, 𝑚𝑎𝑥[30, 𝑁0/𝑁1]}, [24]. In some cases, 

BCP was shown to be 70,000 faster than a perceptron [24]. 

 

2.3. Experiments 
 

The proposal is validated in synthetic samples with different features and instances and in a 
dataset of educational information property of a university. The experiments were conducted with 

the default resources of Colab, the free and serverless Jupyter Notebook that executes Python 

code [25]. 
 

We proved the proposal with linear separable and non-linear separable synthetic data. Linearly 

and non-linear separable synthetic samples were generated with different numbers of instances 
(n) and various dimensions or features (p). 

 
Linear separable synthetic data procedure 

 First, generate n samples of p features, 𝑋 =  [𝑥1, … , 𝑥𝑛], with random samples from a 

standard normal distribution. 

 Compute the weighting vector of dimension (1, 𝑝), 𝛽, with random samples from a 

standard normal distribution. 

 Calculate𝑧, the matrix product of 𝛽 and 𝑋, 𝑧 =  𝛽𝑋. 

 Last, when 𝑧 <  0 corresponds to class -1 and class 1 was defined when 𝑧 >  0. 

 

The left side of Figure 2 shows an example in two dimensions and 5,000 instances. The red 
points represent one population, and the blue points represent another. 

 

 
Figure 2. Synthetic data 

Nonlinearly separable case data 

1. First, generate n samples of p features, 𝑋 =  [𝑥1, . . . , 𝑥𝑛], with random samples from a 

standard normal distribution. 

2. From the previous inputs, generate inputs in a higher dimensional space 𝑥∗. 
3. Calculate the weighting vector of dimension (1, 𝑝), 𝛽, with random samples from a 

standard normal distribution. 

4. Finally, generate classes for each sample as follows: 𝑦𝑖  =  −1 if 𝑥∗𝑇𝛽 < 0 and 𝑦𝑖  =  1 

if 𝑥∗𝑇𝛽 > 0. 
 

We used a polynomial of degree p to generate inputs in a high dimensional space. The data set is 

linearly separable in the transformed inputs but not necessarily in the original 𝑥′𝑠. For example, 
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if p = 2 and we transform the 𝑥 as 𝑥∗ =  (𝑥1, 𝑥2, 𝑥3, 𝑥4), then generating labels as described 

above would generate linearly separable data if 𝛽2  =  0 since 𝑥𝑖
𝑇𝛽 = 𝑥𝑖1𝛽 + 𝑥𝑖2𝛽. 

 

The right side of Figure 2 shows the linear non-separable synthetic data generated in two 

dimensions and 5,000 instances following the last algorithm. 
 

2.4. Real Data 
 
Finally, the proposal was validated with real educational data property of on university. The 

University, on the 80th anniversary, surveyed the alumni to know their social and economic 

impact. The QS Intelligence Unit Team and researchers from the University approached the 
descriptive analysis from this survey, and the University owns a report [26]. For this study, the 

University provided the dataset without personal identification. The questionnaire contains more 

than 50 questions, almost all of multiple options. For this specific study, we do not want to know 

the associated input features with the output target; we want only to predict the following output 
features: 

 

Satisfaction If an alumni would study again at the University. 
Salary If the alumni have a salary bigger or not than the median. 

CEO If an alumni have a management CEO position. 

 
The input features include the following and more: age, gender, school, campus, level of 

education, current address, region of birth, parent’s education, parent’s occupation, working 

hours, years of working abroad, life satisfaction, income satisfaction, evaluations in social 

intelligence, self-knowledge management, communication. The total number of features after 
dummies were created for nominal features is 104, and the number of instances is 25,359. 

 

3. RESULTS 
 

3.1. Kernel approximation 
 

The synthetic data used for the experiments in this section was created with the algorithms 
presented in the method section with d = 3 and 10 dimensions. As a reference, the left side of 

Figure 2 shows the case of d = 3 in two dimensions. 

 
Previously, studies have examined an estimated feature map for the Gaussian radial basis 

function (RBF) kernel, revealing that the approximate feature map results in significant speed 

improvements with minimal impact on classification accuracy [27]. The approximate feature map 

of RBF also proves effective with BCP in low-dimensional space. 
 

However, BCP or linear support vector classification (LinearSVC) after the RBF kernelfeature 

mapapproximation (RBFsampler) is far for outperform the exact SVM evaluations in accuracy. 
Several experiments were implemented with synthetic nonlinear separable data in ten 

dimensions, with the maximum number of components (possible with the computational 

resources) in the approximation (around 4,000) and with different iterations. Table 1 shows the 

average performance observed in various experiments versus the machine learning algorithms. 
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Table 1. Accuracy of the kernel approximation 

 

 10 features 

n RbfSampler + 
BCP 

RbfSampler+ 
LinearSVC 

SVM NNK GB 

5e + 04 67 67 97 93 88 

1e + 05 66 66 98 94 89 
 

RbfSampler + BCP: BCP after the RBF kernel feature map approximation, RbfSampler + LinearSVC: 

linear support vector classification after the RBF kernel feature map approximation, SVM: support vector 

machine, NNK: neuronal networks, GB: gradient boosting. 

 

As indicated by the findings presented in Table 1, surpassing the performance of precise SVM 

evaluations through kernel approximations proves unfeasible in terms of computational time and 
accuracy. Consequently, an alternative course of action must be pursued for more than ten 

features. The subsequent two sections elucidate the outcomes of the proposed approach when 

applied to synthetic and real data. 

 

3.2. Synthetic Data 
 

Linear separable case 

 

Table 2 shows the outcomes of the proposal with linear separable synthetic data versus the result 

of SVM, neuronal networks, and gradient boosting in several instances and 10 and 20 
dimensions. The left side of Figure 1 shows the first two steps of the algorithm in a two-

dimensional linearly separable case. The separating equation with the BCP is indicated in orange, 

and the green dots indicate the reduced set to which SVM is applied. The third step of the 
algorithm is depicted on the right side of Figure 1, the highlighted points on the black dotted lines 

indicate the support vectors, and the solid line represents the hyperplane generated by SVM on 

the reduced set. 
 

Table 2. Linear separable experiments 

 10 features 

n  BCP BCP + 

SVM 

SVM 

Lineal 

BCP + 

NNK 

NNK BCP + 

GB 

GB 

5e + 04 Time 3 s 4 s 4 s 25 s 17 s 1 s 1 s 

 Accuracy 100 100 100 100 100 97 97 

1e + 05 Time 10 s 7 s 14 s 21 s 56 s 2 s 2 s 

 Accuracy 100 100 100 100 100 98 98 

5e + 05 Time 28 s 123 s 264 s 94 s 183 s 5 s 7 s 

 Accuracy 100 100 100 100 100 98 98 

 20 features 

5e + 04 Time 26 s 7 s 6 s 27 s 22 s 2 s 2 s 

 Accuracy 100 100 100 100 100 94 94 

1e + 05 Time 60 s 11 s 26 s 33 s 60 s 4 s 3 s 

 Accuracy 100 100 100 100 100 95 95 

5e + 05 Time 376 s 216 s 492 s 81 s 167 s 8 s 9 s 

 Accuracy 100 100 100 100 100 96 96 
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BCP + SVM: Proposal that combines BCP and SVM, BCP + NNK: Proposal that combines BCP and NNK and BCP + GB:Proposal 

that combines BCP and GB. 

 

The advantages in the linearly separable case are in terms of memory and time. When the number 

of instances is 500,000, and the number of features is ten or more, our proposal is far faster than 
SVM, neuronal networks, and gradient boosting alone. In fact, the proposal is faster than SVM 

and neuronal networks since there are 100,000 instances and more than ten features; see Table 2. 

Additionally, in memory, for example, when the number of dimensions is 20, and the number of 

instances is 15 million, it is impossible to run SVM using the default memory resources of 
Google Colab; however, with the proposal, it is possible to run the algorithm in this case. 

 

Nonlinear separable experiments  

 

Table 3 shows the outcomes of the proposal with nonlinear separable synthetic data versus the 

result of SVM, neuronal networks, and gradient boosting in several instances. The synthetic data 

used for the experiments in this section was created with the algorithms presented in the method 
section with d = 3 and 10 or 20 dimensions. 

 
Table 3. Linear separable experiments 

 10 features 

n  BCP + 

SVM 

SVM 

Lineal 

BCP + 

NNK 

NNK BCP 

+ GB 

GB 

5e + 04 Time 29 s 51 s 48 s 64s 3 s 1 s 

 Accuracy 96 97 92 93 88 88 

1e + 05 Time 118 s 180 s 86s 125 4 s 2 s 

 Accuracy 97 98 93 94 89 89 

5e + 05 Time 2799 s 4170 s 421 s 561 9 s 7 s 

 Accuracy 99 99 94 95 89 89 

 20 features 

5e + 04 Time 77 s 132 s 52 s 63 s 4 s 2 s 

 Accuracy 89 90 81 82 75 75 

1e + 05 Time 320 s 522 111 s 134 s 5 s 3 s 

 Accuracy 93 94 84 85 75 75 

5e + 05 Time 5380 s 8986 s 373 s 621 s 16 s 10 s 

 Accuracy 98 98 86 87 75 75 

 

BCP + SVM: Proposal that combines BCP and SVM, BCP + NNK: Proposal that combines BCP and NNK and BCP + GB:Proposal 

that combines BCP and GB. 

 

Time reduction is the advantage of our proposal with the nonlinearly separable synthetic data. 

When the number of instances is 50,000 or more, our proposal is far faster than SVM alone and 

faster than neuronal networks. However, our proposal needs to improve the time of xgboost 

because this algorithm is very efficient even with millions of data. 
 

It is important to mention that the improvement of time using our proposal is not affecting the 

accuracy. The accuracy in the experiments with linear separable and nonlinear separable 
synthetic data was exceptional in both the proposal and the machine learning algorithm. 
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3.3. Real Data 
 

Table 4 shows the outcomes of the proposal and the machine learning algorithms in three target 

variables from real educational data. Because the three target variables are unbalanced, we 
present accuracy and AUC. 

Table 4. Real data 
 Target: Satisfaction 

n BCP + SVM SVM BCP + NNK NNK BCP + GB GB 

Accuracy 87 86 79 86 87 87 

AUC 70 67 72 74 76 75 

Time 23 s 71 s 45 s 81 s 10 s 9 s 

 Target: CEO 

Accuracy  85 85 88 88 90 91 

AUC 54 54 73 64 77 80 

Time 29 s 62 s 58 s 123 s 19 s 8 s 

 Target: Salary 

Accuracy 72 73 75 77 80 81 

AUC 69 69 74 74 80 80 

Time 90 s 146 93 s 114 s 22 s 10 s 

 

BCP + SVM: Proposal that combines BCP and SVM, BCP + NNK: Proposal that combines BCP and NNK and BCP + GB:Proposal 

that combines BCP and GB. 

 
Time reduction without affecting the metrics was observed between the proposal and SVM for 

the three target variables. There was no advantage found over the gradient boosting xgboost 

algorithm. There is an advantage in the time of our proposal versus neuronal networks, but it 

affected the accuracy and AUC in the target variable of satisfaction. 
 

Additionally, because SVM’s metrics are below the other algorithms, tunning is necessary, 

implying more execution time. In some experiments, we found that we needed approximately six 
hours to implement Bayesian optimization with SVM. However, if our proposal is implemented, 

the time needed is reduced to one hour or less, achieving at least the values in the metrics 

observed in gradient boosting and neuronal networks. 

 

4. CONCLUSIONS 
 

The combination of the BCP and SVM can solve SVM memory and time problems in high-

dimensional linear and nonlinear separable classification problems. The combination of BCP and 
SVM is much faster than SVM alone. These proposal’s SVM improvements were tested with 

synthetic and real data without affecting the accuracy or AUC. Furthermore, combining BCP and 

neuronal networks also helps neuronal networks with time problems in high-dimensional 
classification problems.That improvement of the proposal with neuronal networks is validated 

with synthetic data. 

 

Most of the experiments were conducted with default parameters in the algorithms; however, in 
some experiments, we notice that when we change to kernel poly, the time increases drastically 

using SVM alone, and the proposal helps much more in this case. Also, when tuning is needed, 

which is the case of SVM in experiments with real data, finding the best parameter to achieve at 
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least the same accuracy of neuronal networks implies much time with SVM. However, tunning 
with the combination of BCP and SVM consumes much less time than SVM alone and achieves 

the same accuracy as SVM with tunning. 

 

To conclude, the proposal minimizes the long execution time of neuronal networks and SVM, 
emphasizing that it is SVM that can benefit the most from the proposal. In the general case, we 

can recommend our proposal in high-dimensional training sets with more than 50,000 instances 

and more than 10 features. 
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