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ABSTRACT

We  present  a  supervised  learning  approach  for  automatic  extraction  of  keyphrases  from  single 
documents. Our solution uses simple to compute statistical and positional features of candidate phrases 
and  does  not  rely  on  any  external  knowledge  base  or  on  pre-trained  language  models  or  word 
embeddings. The ranking component of our proposed solution is a fairly lightweight ensemble model. 
Evaluation on benchmark datasets shows that our approach achieves significantly higher accuracy than 
several  state-of-the-art  baseline  models,  including  all  deep  learning-based  unsupervised  models 
compared with, and is competitive with some supervised deep learning-based models too. Despite the 
supervised nature of our solution, the fact that does not rely on any corpus of “golden” keywords or any 
external knowledge corpus means that our solution bears the advantages of unsupervised solutions to a 
fair extent.
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1. INTRODUCTION

Keyphrase prediction is the process of finding a small set of phrases that best represent the main 
text content of a document. It plays an important role in search and information retrieval by 
providing  a  convenient  way  to  index,  classify,  organize  and  summarize  documents  [1,  2].  
Keyphrases can either be “present keyphrases” that occur as such in the document, or “absent  
keyphrases” that do not match any word sequence in the text but represent a topic term or a  
concept  discussed  in  the  document  [3].  In  this  paper,  we  tackle  the  problem of  automatic 
selection  of  a  good  set  of  “present”  keyphrases,  a  task  often  referred  to  as  AKE or  PKE 
(automatic/present keyphrase extraction), or simply as keyphrase extraction.

The recent years have witnessed a shift towards using deep learning (DL) to solve keyphrase 
extraction,  often  by  posing  it  as  a  variant  of  keyword  generation  (predicting  “absent” 
keyphrases) task [3]. Various studies [2, 3] report that DL-based extraction methods outperform 
traditional unsupervised methods on accuracy metrics. Yet, while the indispensability of DL 
methods for high quality keyphrase generation is evident, their optimality for purely keyphrase 
extraction tasks is debatable. Not all applications needing keyword extraction will benefit from 
say a 0.05 increase in F1-score coming at the high cost of LLMs. Some well-known non-DL 
supervised solutions for AKE do achieve accuracy levels close to those of DL-based techniques,  
but these solutions are implicitly domain-specific in their applicability.

In this  paper,  we devise  a  lightweight  supervised machine learning approach for  automatic 
keyphrase  extraction  based  predominantly  on  simple  to  compute  statistical  and  positional  
features. Unlike prior known non-DL approaches that reach similar accuracy levels, our method 
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does not depend on any knowledge base (barring phrase frequency corpus created from training 
set),  be  it  semantic  relationship  knowledge  graphs,  pre-computed  topic  models  or  word 
embeddings or a corpus of “golden” keywords (a.k.a. seed keywords or core keywords). This 
makes our approach fairly domain agnostic and capable of generalizing better for documents 
pertaining to a wider spectrum of subjects/domains. We evaluate our model on widely used 
benchmark datasets. Our model surpasses the accuracy of several benchmark models, including 
some deep learning models on the two benchmark datasets we used for evaluation. In one these 
datasets, our model’s accuracy is quite close to the levels achieved by an LLM-based solution.

2. RELATED WORK

Automatic keyphrase extraction methods are broadly classified into two types — unsupervised 
and supervised. In unsupervised methods, AKE is treated as a ranking problem. Since there is  
no access to annotated data in these methods, candidate ranking is done using scores computed 
heuristically. Unsupervised methods are further classified into statistical methods and graph-
based methods based on the types of features used to compute the scores. Statistical approaches,  
for  e.g.  TF-IDF  [4]  and  YAKE  [5],  use  statistical  features  such  as  word  frequencies  and 
cooccurrence counts. In contrast, graph-based approaches (e.g., TextRank [6]) construct a graph 
representation of text, such as with words serving as nodes and their co-occurrences as edges. 
Thereafter, a node ranking algorithm (e.g., PageRank) is used to sort words/phrases, and return 
the top k candidate keyphrases.

In supervised methods, a classifier is trained on documents annotated with keyphrases and this 
classifier is used on new documents to determine whether a candidate phrase is a keyphrase or 
not. One of the first keyphrase extraction methods, KEA [7], trains a Naive Bayes classifier  
with TF-IDF score and the first occurrence position used as features of a candidate phrase.

Both supervised and unsupervised methods may use external knowledge for candidate selection 
and ranking. For e.g, Maui [8], a supervised method, computes a keyphraseness feature based 
on how often a candidate phrase appears as a keyphrase in the training corpus (Note: this is not 
to be confused with document frequency (DF) of a phrase in the training corpus; DF does not 
need knowledge of whether or not the phrase is a keyphrase in the training corpus). KeyCluster 
[9], an unsupervised method, uses Wikipedia data to compute term relatedness.

In the recent years, deep learning has become the preferred mechanism for keyphrase prediction 
solutions. These solutions can be meant either solely for keyphrase extraction (e.g., EmbedRank 
[10], UKERank [11]) or for absent/abstractive keyphrase generation too (e.g., CopyRNN [12]).

3. OUR APPROACH

In this and the next section, we describe our novel keyphrase extraction method. The method 
consists of three main steps:

(1) Extract candidate phrases from the document text based on part-of-speech sequences

(2) Compute features for every candidate phrase

(3) Rank the candidate phrases using either a partial ranking model or a classification model that 
uses the features from step 2. The model gives a score for every candidate phrase and we select 
the top k keyphrases, where k is the desired number of keyphrases to be selected from every  
single input document.
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3.1. Problem Formulation

We frame keyphrase selection from candidate phrases as a problem of partial ranking. We want 
to find a scoring function  such that given an input document  with |  | distinct candidate𝓕 𝓓 𝓟  
phrases  = {𝓟 𝓹 1 , 𝓹 2 , …, 𝓹 |  |𝓟 }, the function  :    is such that (𝓕 𝓟 ↦ ℝ 𝓕 𝓹 i) ≥ (𝓕 𝓹 j)  ⇔ 𝟏𝓚𝓓 (𝓹 I) 
≥ 𝟏𝓚𝓓 (𝓹 j) where 𝟏𝓚𝓓 (.) is the indicator function with 𝓚  𝓓 being the “ideal” set of keyphrases for 
document  . In other words, if a phrase 𝓓 𝓹 a gets a higher score than phrase 𝓹 b then 𝓹 a must be 
equally or more “ideal” compared to 𝓹 b , i.e. it cannot be the case that 𝓹 a is not an “ideal” 
keyphrase than 𝓹 b whereas is. Or more simply put, ideal keyphrases should not get a lower score 
than any non-keyphrase. 𝓚𝓓 is of course not known a priori (except when the document belongs 
to the training set) — inferring 𝓚𝓓 is the goal of our model. During the training phase we use 
labelled  datasets  wherein  keyphrases  assigned  manually  (by  authors,  reviewers,  or  expert  
readers)  to  each  document  are  known;  we  treat  those  as  the  ideal  keyphrases  for  the  
corresponding documents and this forms a basis of our supervised learning solution.

We solve the ranking problem in two ways: (1) using the LTR (Learning to Rank) technique, (2) 
training a binary classifier. In approach (1), a ranking model is learnt by treating the training  
data has having valued ranks — true keyphrases are assigned rank value 1 while all  other  
candidate phrases are assigned rank value 0.  During prediction, the scores predicted by the  
ranking model are used to sort the candidate phrases and select the top k. In approach (2), we 
directly train a binary classifier; during prediction, the positive class’s probability score in the  
classifier’s output is treated as the ranking score.

3.2. Features

We describe below the features we compute for each candidate phrase and pass as inputs to the 
model.

3.2.1. Statistical features

These  features  represent  various  distributional  properties  of  a  phrase  in  the  context  of  the 
document  where  it  appears  and/or  with  respect  to  the  collection  of  documents  seen  in  the  
training set. A noteworthy and distinguishing aspect of our work is that unlike other known 
approaches using statistical features, we do not use TF-IDF as a feature. We decouple term 
frequency from document frequency for reasons that are elaborated on in Appendix; we believe 
that this decoupling enables our model to achieve a higher accuracy than what it would have  
had TF-IDF been used instead. Our formulation of document frequency too differs slightly from 
conventional definitions of document frequency in TF-IDF.

Phrase count: The number of times a candidate phrase appears in the document. This feature is 
motivated by the empirical observation that phrases that occur just once or twice in a document  
are less likely to be central to the main topics or entities of the content. Keyphrases usually  
occur multiple times in the document, though not necessarily having to be among say the top 5 
most frequent phrases. Very high frequency phrases may turn out to be non-keyphrases (for e.g., 
“legal process” can be a very frequent term in legal documents but would generally not be  
considered a keyphrase of that document), but this depends a lot on the content and presentation 
of a document. It is the responsibility of our model to infer the relationship between frequency  
and the likelihood of a phrase being a keyphrase.

Document frequency (max-scaled): The scaled document frequency of a candidate phrase is 
computed as:
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DFS ( pD )=
|{d ∈T : pD ∈ d }|

max
q ∈d ' , d ' ∈T

|{d ∈T :q∈ d }|

where 𝑝𝐷 is a candidate phrase for an input document  and  is the set of documents in the𝐷 𝑇  
training set. This feature is driven by the widely observed trend that terms that appear in a very  
high proportion of documents are often too generic to be a keyphrase. For e.g., “related work” 
and “references” are seen in most research papers and these terms are seldom keyphrases. Note 
that  we do  not  follow the  convention  of  applying  logarithmic  transformation  after  scaling;  
instead we let the model implicitly learn the optimal transformation.

Suffix phrase frequency: This feature is based on the fact that a basal noun phrase may be used 
with different prefix adjectives in different sentences within a document. Currently we consider 
only  the  last  2  words  of  a  phrase  as  the  suffix.  For  example,  in  an  article  having  “graph  
colouring” as its main topic, the phrase may occur as a complete (without adjectives) noun  
phrase in a few sentences whereas in other sentences it may appear as a part of a larger noun 
phrases like “conventional graph colouring” and “approximate graph colouring”. Longer N-
grams (i.e. larger values of N) generally have a lower frequency than shorter ones. Knowing 
that the 3-gram “approximate graph colouring” has a suffix that appears quite frequently within  
the document despite the 3-gram itself occurring just once or twice in a document could boost  
the prospects of that 3-gram being a good keyphrase candidate. Note: For 1-gram and 2-gram 
phrases, this feature defaults to the full phrase’s frequency.

Suffix  phrase  document  frequency: This  is  the  document  frequency  (scaled  variant) 
counterpart of the suffix phrase frequency, analogous to how the earlier mentioned document 
frequency  feature  complements  term  frequency.  With  reference  to  the  previous  example, 
“approximate graph colouring”, this feature conveys the number of documents (from training 
corpus) in which the 2-gram suffix, i.e. “graph colouring” occurs.

Suffix phrase average per-doc frequency: The average number of times the 2-gram suffix 𝑝𝑠 

of a given candidate phrase  occurs as a complete phrase in training documents where 𝑝 𝑝𝑠 

appears at least once, i.e.

∑
d ∈T

TermFreq ( ps , d )

|{d ∈T : ps ∈ d }|

where  denotes the training set documents, and 𝑇 TermFreq( , ) is the term frequency (number𝑞 𝑑  
of  occurrences)  of  phrase   in  document  .  The  idea  behind  this  feature  is  that  phrases𝑞 𝑑  
occurring more frequently in the current document than in other documents may tend to have a 
higher chance of being keyphrases for the current document.

Word combination likelihood: Given a phrase  = 𝑝 𝑤1 𝑤2 … 𝑤n where 𝑤1, 𝑤2, …, 𝑤n are the 
component words (unigrams), this feature is computed as:

where 𝑓pref(𝑤i) denotes the document frequency (max-scaled) of 𝑤i as a suffix, i.e. indicative of 
the number of documents from the training corpus where  i appears as the prefix (first word)𝑤  
of some phrase, and 𝑓suff(𝑤i) analogously represents the number of documents where 𝑤i appears 
as  the  suffix  (last  word)  of  some  phrase.  This  feature  serves  as  a  rough  estimate  of  the 
likelihood of a multigram phrase occurring by random chance combination of its component 
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words. Multigrams generally have lower frequencies than unigrams. The geometric mean-based 
estimate is an effort to make the model more robust to the such scale differences in frequencies 
and also to help it learn how the difference between random chance likelihood and the actual  
document frequency of a candidate phrase influences the choice of keyphrases.

3.2.2. Positional and other features

First occurrence index: Index of first occurrence of a given phrase in the list of all candidate 
phrases extracted from the document, scaled down and rounded down. We chose this feature  
because the benchmark datasets are comprised of documents that are academic papers or reports 
which have a summary or abstract section at the beginning, followed by an introduction-like 
section. In such structured document, the position of first occurrence of a phrase bears a strong  
correlation with the likelihood of it being a keyphrase. Many documents were found to have at 
least one or two keyphrases taken from the abstract. To avoid overfitting, we divide the index 
by a constant (set to 25 in our experiments) and round down the result to nearest integer.

N-gram size: Number of words in a given phrase. Used since long (more than 4 words in case 
of benchmark data) phrases are rarely seen in manually assigned keyphrases, and among short  
phrases too, there could be a preference for say 2-grams over 3-grams or vice-versa.

3.3. Implementation Details

We use the SpaCy library [13] for the candidate phrase extraction. We select only noun phrases 
consisting of no more than one adjective followed by one or more nouns; our prior analysis of 
multiple benchmark datasets showed that most keyphrases are noun phrases of the mentioned 
type. Noun phrases containing more than one adjective prefix are trimmed to retain just one  
adjective immediately before the noun(s) in the phrase. Unlike other algorithms for AKE, we do 
not perform stemming on the phrases; instead we lemmatize the base noun in the noun phrase to 
convert plural form to singular form. During the training phase, the extracted phrases are first 
aggregated  across  documents  and  written  to  a  phrase  document  frequency  corpus  that  is 
subsequently used for model training and well as for prediction for new documents.

Since the datasets we used to train and evaluate our model contained only academic papers,  
though from various subjects, during the candidate extraction step we chose to skip text present 
in  “References”  and  “Acknowledgements”  sections.  This  was  done  with  the  intention  of 
reducing noise  in  the data,  as  we anticipated present  keyphrases  to  be present  in  the main  
content of the document. To our surprise, during model evaluation we found a few articles 
where some keyphrases were concentrated in the references section. However, we decided to 
treat these as exceptional cases and chose not to change the exclusion logic. Except for this 
simple  exclusion  logic,  we  do  not  use  the  section  type  anywhere.  We want  our  model  to 
generalize well across document types — having additional filtering logic or features based on 
section types would work against such generalization ability.

As mentioned earlier,  we try  two approaches  to  rank candidates.  We train  an XGBRanker 
(gradient  boosting based ranker,  [14])  model  for  direct  ranking method and XGBClassifier 
(gradient  boosting based classifier,  [14])  for  classification-based method.  In both cases,  the 
training label is binary valued with 1 indicating that the candidate phrase is a keyphrase for that 
document and 0 indicating otherwise, The XGBRanker model expects the training set to specify 
a grouping of rows based on the “query” to which those rows pertains, the idea being that when 
the ranker is trained, it must compare only objects that would actually compete with one another 
for getting ranked. Since candidate phrases are to be ranked within the scope of the single  
document to which all of them belong, this is easily achieved by setting the “qid” column (see 
XGBRanker documentation) to the unique id of the document as per the dataset.
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4. EVALUATION

We evaluate our model on two benchmark datasets of English documents — SemEval2010, 
Krapivin. Table 1 presents a statistical overview of each dataset. We use F1-score as the metric  
with which to compare our model with benchmark models. More specifically, we compute the 
F1 scores achieved when the top 5 and top 10 keyphrases as per the model are selected (i.e.,  
F1@5 and F1@10). The results are shown in Table 2. We did not run experiments to evaluate 
the benchmark models. Instead, we present the F1-scores as reported by the original papers of 
those models or by the survey papers we referenced [2, 3].

Table 1. Overview of the datasets (#Doc: number of documents, Avg. KP: average number of 
keyphrases per document, Absent KP%: percentage of absent keyphrases)

Dataset #Doc Avg. words per doc Avg. KP per doc Absent KP%
Krapivin 2304 8040 6.34 15.3%
SemEval2010 244 8332 16.47 11.3%

Table 2. Performance of our model compared with some well-known benchmark models. Some 
scores are left blank for some benchmark models due to unavailability of complete evaluation 

results for those in referenced papers

Krapivin SemEval2010
Model Nature of the model F1@5 F1@10 F1@5 F1@10
TF-IDF Unsupervised 0.115 0.140 0.161 0.167
TextRank Unsupervised; graph-based 0.148 0.139 0.168 0.183
ExpandRank Unsupervised; graph-based 0.096 0.136 0.135 0.163
Maui Supervised 0.249 0.216 0.178 0.172
WINGNUS Supervised - - 0.205 0.247
EmbedRank Unsupervised; Deep learning-based 0.131 0.138 0.108 0.105
AutoKeyGen Unsupervised; Deep learning-based 

(Seq2Seq)
0.171 0.155 0.187 0.240

UKERank Unsupervised; Deep learning-based 
(BERT)

- - 0.180 0.254

CopyRNN Supervised; Deep learning-based 0.302 0.252 0.291 0.296
CatSeq Supervised; LLM-based 0.307 0.274 0.302 0.306
KeyBART Supervised; LLM-based 0.292 - 0.274 -
XGBRanking 
using NDCG 
(our model)

Supervised 0.211 0.225 0.185 0.269

XGBRanking 
using MAP 
(our model)

Supervised 0.213 0.228 0.186 0.268

XGBClassif 
(our model)

Supervised 0.245 0.255 0.171 0.258

For the direct ranking variant of our model (denoted by “XGBRanking” in Table 2), we try two 
subvariants that differ based on the objective function used when training the ranker — one 
version of the model uses Maximum Average Precision (MAP) while the other uses Normalized 
Discounted  Cumulative  Gain  (NDCG).  Our  classifier-based  ranking  method  is  denoted  by 
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“XGBClassif” in Table 2. In this method, the probability score associated with the positive class 
in XGBClassifier’s prediction output is used as the score with which to rank the candidates.

Overall, we don’t see a significant difference in terms of accuracy between the XGBClassifier-
based  method  and  the  XGBRanker-based  method,  though  the  former  performs  better  on 
Krapivin  dataset  and  the  latter  performs  better  on  SemEval2010  dataset.  With  respect  to 
XGBRanker,  using  MAP as  the  objective  function  leads  to  a  slightly  better  accuracy  than 
NDCG.

It can be seen that all our model variants outperform the accuracy levels of all unsupervised  
benchmark  models,  including  all  unsupervised  deep  learning-based  models.  In  fact,  when 
considering only F1@10 scores, our model is competitive with CopyRNN, a supervised DL-
based keyphrase generation model, and with CatSeq, an LLM-based model. The F1@10 score 
of our XGBClassifier model variant betters that  of CopyRNN on Krapivin dataset  while in  
SemEval2010 dataset, the score is less than CopyRNN’s by only 0.038. Admittedly, the F1@5 
scores  of  our  model  are  significantly  lower  than  those  of  supervised  DL  models  on 
SemEval2010  dataset.  This  may  be  related  to  the  fact  that  the  average  number  of  present 
keyphrases per document in SemEval2010 dataset is about 14 whereas is it only 5 in case of 
Krapivin dataset.  Our model perhaps has a higher level of confusion in selecting the top 5 
candidates  but  performs  better  as  the  selection  size  increases  with  most  of  the  true  top  5 
keyphrases making their way to the top 10 selected by the model. A more plausible explanation 
is the higher level of subjectivity and inconsistency seen in the choice of true keywords in 
SemEval2010 dataset. For example, document J-10 in that dataset has two 1-gram keyphrases in 
the  truth  set,  namely  “rating”  and  “correlation”,  having  TF-IDF  scores  225.84  and  8.705 
respectively.  But  the  document  also  contains  candidate  keywords  “cleanliness”  and 
“tripadvisor” having TF-IDF scores 35.75 and 42.9 respectively, i.e. significantly higher than 
the score of “correlation”. And these two words also occur earlier in the document than the first  
occurrence of “correlation”. Yet, neither of these two candidate keywords are present in the true 
keyphrase list for J-10. In a few other documents in SemEval2010, we see a more consistent  
correlation between the term frequency and/or first occurrence on one hand and the likelihood 
of the phrase being a true keyphrase. In contrast, in most documents in Krapivin dataset, the  
choice of true keyphrases bears a more consistent correlation with our features, i.e. there is less  
noise due to subjectivity in keyphrase selection. This obviously makes its easier for the model to 
learn patterns undelying the choice of keyphrases in Krapivin dataset.

Another  observation  that  might  raise  questions  is  that  Maui  and  WINGNUS,  two  non-DL 
supervised models, achieve F1@5 scores very close to or marginally better than those of our 
model.  However,  this can be explained by the fact  that  those models make use of external 
knowledge corpora that boost their ability to perform specifically well on scholarly articles that  
constitute the two benchmark datasets. Maui [8] relies on a corpus of “golden” keywords for its 
keyphraseness feature, in effect remembering previously seen keyphrases and thereby getting a 
strong external hint on what phrases are more likely to be selected as keyphrases again. This 
will severely impede the model’s ability to perform well on documents whose main topics are 
very  different  from  those  seen  in  the  training  set.  Besides,  obtaining  a  sufficiently  large 
“golden” keyphrase corpus is impractical when dealing with documents coming from sources 
where  good  quality  annotated  data  is  hard  or  costly,  for  e.g.,  tech  blogs,  news  articles. 
WINGNUS [15] makes use of DBLP, a database containing bibliographic information about 
millions of academic articles and conference papers in the field of computer science. It also uses 
features that are heavily tailor-made for academic articles, such as whether a candidate phrase  
appears in abstract, in references, in introduction section. Thus, WINGNUS too is unlikely to  
perform well  on  documents  that  are  not  scholarly  articles,  or  even  academic  articles  from 
outside the computer science field. In contrast, our model does not rely on any annotated data 
during prediction phase. Though we make use of a phrase document frequency corpus, this 
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corpus, this corpus can be created from non-annotated documents and is also not constrained to 

be created from academic articles. Thus, our model can be expected to generalize better than 

Maui and WINGNUS on new types of documents. 

 

5. CONCLUSION AND FUTURE WORK 

 

We presented a novel keyphrase extraction technique that is advantageous in various angles 

compared to prior work. Our method uses a lightweight ensemble model and yet achieves 

accuracy levels significantly better than most of the benchmark models and quite close to the 

levels achieved by state-of-the-art deep learning based solutions. It does not require any external 

knowledge base or massive annotated data to achieve these accuracy levels; it is therefore not 

domain-specific and is poised to generalize better. It does not need any pre-trained language 

models or embeddings. Another notable benefit is that our model needed to be trained only on the 

small to moderate sized datasets to achieve accuracy levels comparable to those of supervised 

DL-based models. This is in sharp contrast with supervised deep learning models that need much 

larger labelled training sets; CopyRNN [12], for example, was trained using more than 500000 

author-annotated scientific papers. 

 

Future work would include investigating ways to improve our model’s accuracy through the 

introduction of some more simple features and evaluating our model on more datasets. We will 

also explore the utility of adding lightweight graph-based features, though it may also be noted 

that a few of the already used statistical features such as suffix phrase frequency implicitly 

capture a small number of properties that are more directly derivable as graph-based properties. 
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APPENDIX 

 

A.1. How good is TF-IDF as an indicator of keyphraseness? 

 

Keyphrase selection using TF-IDF (ranking by TF-IDF score and selecting the highest scoring k 

phrases) is almost always included as a baseline when evaluating new keyphrase extraction 

algorithms. This is due to the fact that despite its simplicity, TF-IDF, as well as its extensions 

such as BM25 [16], performs remarkably well in many information retrieval applications such as 

document similarity and query-to-document relevance scoring. However, in the context of 

keyphrase extraction we find that TF-IDF performs rather poorly and somewhat erratically too. 

Figures 1 and 2 show the recall levels achieved on Krapivin and SemEval datasets when using 

TF-IDF score alone for keyphrase selection. For the purpose of illustrating the effect clearly, we 

plot the recall of multigram keyphrases alone (unigrams often have much higher TF-IDF scores 

than mutiwords phrases, so the effect of TF-IDF will be less obvious if we plotted the recall 

considering all keyphrases). 

 

It can be seen from Figure 1 that in Krapivin dataset, TF-IDF barely achieves a recall of more 

than 0.2 even when up to 10 candidate keyphrases are selected for documents having 3 to 5 true 

keyphrases. The recall drops significantly for documents having more than 6 true keyphrases. In 

the SemEval dataset too (Figure 2), the recall barely crosses 0.2 when up to 10 keyphrases are 

selected. The recall is also more erratic in this dataset as it can be observed that the recall levels 

differ a lot between documents having different numbers of “true” (expected) keyphrases. This 

erratic behaviour is more prominent when the number of keyphrases selected is less than 8 

whereas the recall plateaus out at around 0.2. Interestingly, a sharp increase in recall is seen for 

documents having 5 true keyphrases when the number of candidates selected is increased from 6 

to 8, but this is also a reflection of the more subjective and more inconsistent selection criteria 

used for true keyphrases in SemEval dataset. 
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Figure 1.  Recall of multigram keyphrases for Krapivin dataset when TF-IDF is used as the scoring 

function. Multiple plots are used to illustrate the recall for different documents grouped by the number of 

expected (“true”) keyphrases 

 

 
 

Figure 2.  Recall of multigram keyphrases for SemEval2010 dataset when TF-IDF is used as the 

scoring function. Multiple plots are used to illustrate the recall for different documents grouped 

by the number of expected (true) keyphrases 
 

In summary, while TF-IDF has a positive correlation with keyphraseness (i.e. likelihood of a 

candidate phrase being a true keyphrase), the correlation is rather weak. Besides, this statistic 

cannot adapt itself when the underlying selection criteria are based on properties other than term 

and document frequencies of phrases. Thus, there is no strong reason to support the use of TF-

IDF, which in itself is a heuristically derived statistic, as a feature in a classifier. Instead, we 

could let the classifier learn how to balance between term frequency and document frequency in 

the light of other properties of candidate phrases. 

 

 

AUTHORS 

 

Sriraghavendra Ramaswamy works as an Applied Scientist at Amazon. He has around 6 years of 

industrial experience in machine learning and NLP, and over 15 years of experience in software design and 

engineering 

276                                          Computer Science & Information Technology (CS & IT)

© 2024 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

https://airccse.org/
https://example.com
https://airccse.org/



