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Abstract. In this research, we present an innovative, parameter-efficient model that utilizes the
attention U-Net architecture for the automatic detection and eradication of non-speech vocal
sounds, specifically breath sounds, in vocal recordings. This task is of paramount importance in
the field of sound engineering, despite being relatively under-explored. The conventional manual
process for detecting and eliminating these sounds requires significant expertise and is extremely
time-intensive. Existing automated detection and removal methods often fall short in terms of
efficiency and precision. Our proposed model addresses these limitations by offering a stream-
lined process and superior accuracy, achieved through the application of advanced deep learning
techniques. A unique dataset, derived from Device and Produced Speech (DAPS), was employed
for this purpose. The training phase of the model emphasizes a log spectrogram and integrates
an early stopping mechanism to prevent overfitting. Our model not only conserves precious time
for sound engineers but also enhances the quality and consistency of audio production. This con-
stitutes a significant breakthrough, as evidenced by its comparative efficiency, necessitating only
1.9M parameters and a training duration of 3.2 hours - markedly less than the top-performing
models in this domain. The model is capable of generating identical outputs as previous models
with drastically improved precision, making it an optimal choice.

Keywords: attention u-net architecture, non-speech vocal sounds, parameter-efficient model, au-
dio quality, deep learning, sound engineering

1 Introduction

Sound engineering encompasses a wide array of activities, including the manipula-
tion and production of audio signals for diverse applications such as music, speech,
film, and broadcasting. A prevalent challenge in this field is the occurrence of non-
speech vocal sounds in audio recordings, such as breaths and lip smacks. These
sounds can be distracting and may degrade the quality and intelligibility of the
audio[1], particularly when the recording is intended for professional or academic
use.Historically, this issue has been addressed through manual editing of audio
waveforms or the use of noise gates, which dynamically reduce signals below a
certain threshold by adjusting gain and ratio settings[2]. However, these methods
pose their own challenges, including substantial time consumption and the need for
domain expert knowledge[3].
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The manual removal of non-speech vocal sounds is a meticulous and time-
consuming task that demands significant expertise and focus from the sound en-
gineer. It involves a detailed examination of the audio waveform, identification of
undesired sounds, and their elimination using specialized software tools[1]. This
method can inadvertently introduce artifacts or distortions into the audio, thereby
affecting its authenticity and quality. Furthermore, manual removal is impractical
for tasks requiring rapid and efficient audio processing, such as managing lengthy or
multiple recordings simultaneously[4]. The automatic removal of non-speech vocal
sounds presents a more efficient and desirable alternative, potentially enhancing
the quality and consistency of audio while conserving the time and effort of sound
engineers. Despite its importance, research on the automatic removal of non-speech
vocal sounds is surprisingly limited. Most of the existing studies have focused on
related but distinct problems, such as noise reduction, speech enhancement, or
vocal separation[5]. Only a few studies have explicitly addressed the problem of
non-speech vocal sound removal.

While previous methodologies have shown promise, there still exists a need for
a more efficient and effective model. In this research, we introduce an innovative,
parameter-efficient model that utilizes the attention U-Net architecture for the au-
tomatic detection and eradication of non-speech vocal sounds, specifically breath
sounds, in vocal recordings. This task is of paramount importance in the field of
sound engineering, and our model addresses the limitations of existing methods by
offering a streamlined process and superior accuracy, achieved through the appli-
cation of advanced deep learning techniques.

We begin by providing a comprehensive background on sound engineering and
the necessity for effective removal of non-speech vocal sounds in audio recordings
1.Reviewing existing methods, we elaborate on their shortcomings and detail our
approach which employs a unique dataset and cutting-edge deep learning methods
2 3. We then reveal the results from our innovatory approach, displaying its po-
tential for saving valuable time for sound engineers while boosting the quality and
consistency of audio production 4. Further, we explore its real-time application and
the possible influence it could wield on sound engineering, underscoring its superior
accuracy compared to earlier models 5. Ultimately, we ponder over the impacts
and advancements our research has contributed to the field of sound engineering in
the conclusion 6. Our model symbolizes a momentous stride towards the automatic
detection and extermination of non-speech vocal sounds, presenting an efficient and
robust resolution to a perennial challenge.

2 Related work

In recent years, there has been growing interest in developing algorithms for au-
tomatic detection and removal of breath sounds from speech signals, and several
studies have explored automated methods for detecting and removing breath sounds
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from audio recordings.In 2007 Ruinskiy and Lavner presented an algorithm aimed
at accurately detecting breaths in speech or song signals using template matching
based on mel frequency cepstral coefficients (MFCCs) [6]. Their approach achieved
a high correct identification rate of 98% with a specificity of 96%.

In 2009, Rapcan and Reilly developed an algorithm for both detecting and
removing breath sounds from speech signals, particularly focusing on its impact on
cognitive studies of speech and language[7]. Their approach resulted in a notable
increase in discrimination ability, demonstrating the potential of automated breath
removal in enhancing classification accuracy.

Magdalena and Zi6lko proposed an algorithm based on wavelet decomposition
for automatic detection of breath events in speech signals in 2013[8]. Their method
incorporated temporal features and dynamic time warping to achieve robust breath
detection, with applications extending to speech recognition systems.

Dumpala and Alluri 2017 introduced an algorithm for automatic detection of
breath sounds in spontaneous speech, emphasizing its significance in speaker recog-
nition systems[9]. Their rule-based approach outperformed previous methods, high-
lighting the importance of mitigating the impact of breath sounds on speaker recog-
nition accuracy.

Detecting breathing sounds in realistic Japanese telephone conversations was
explored by Takashi et al. in 2018[10]. They proposed a method that leverages
acoustic information specialized for breathing sounds, leading to a two-step ap-
proach that can detect breath events with an accuracy of 97.4%.

Recently, there has been growing interest in using deep learning techniques for
speech processing tasks. Marco et al. proposed a differentiable signal processing
framework for black-box audio effects in 2021[4]. Their approach trains a model
with a multi-band noise gate Fx layer to automatically remove breath sounds and
other non-speech vocalisations from speech signals.

While significant progress has been made in breath sound detection and removal,
there remains a need for more efficient and advanced methods that can handle
complex speech signals and provide better accuracy. Our proposed method aims to
address this challenge by introducing a novel deep learning architecture that can
effectively detect and remove breath sounds from speech signals without damaging
the original recording.

3 Methodology

Our study proposes a comprehensive methodology that includes a meticulously
designed model, a robust model training regimen, and a specialized U-Net model.
Each of these components is crucial in addressing the complex task of eliminating
breath sounds from vocal recordings.
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3.1 Model Architecture

The backbone of our study is the specialized U-Net model emphasized with atten-
tion mechanism[11]. Originally envisioned for biomedical image segmentation, the
U-Net model has been noted for its capacity to capture both local features and
expansive context within an image. In our case, this image is the spectrogram, de-
rived from the Short Time Fourier Transform (STFT) of the audio files. The Short
Time Fourier Transform (STFT) can be represented as:

STFT (x) =
∞∑

n=−∞
x[n] · w[n−m] · e−jωm (1)

where x[n] is the input signal, w[n −m] is the window function, and m is the
time index.The STFT renders the audio file as a 2D array, segregating and cap-
turing nuanced patterns along temporal and frequency domains[12].Although the
STFT yields a complex signal, our methodology focuses solely on its amplitude. The
amplitude undergoes processing through a softmask followed by traversal through
our tailored U-Net algorithm[13].

Fig. 1. Model Architecture
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The U-Net model possesses an input shape of 3872x2048x1, uses batch nor-
malization, has a singular class, uses 16 filters, includes 4 layers, incorporates a
dropout rate of 20 percent, and employs a sigmoid function for output activation.
These parameters were meticulously chosen to obtain the desired results.

3.2 Loss Function

The design of the loss function is pivotal in the training of the network model. The
loss function essentially quantifies the discrepancy between the predicted output
and the actual output. The objective of the training process is to minimize this
discrepancy. In this research, we have employed a custom loss function for the signal
enhancement task. This loss function is unique in that it not only incorporates a
Mean Absolute Error (MAE) term but also an additional term that specifically
focuses on preserving speech over reducing noise. The Mean Absolute Error (MAE)
is a popular metric in regression problems and is defined as the average of the
absolute differences between the predicted and actual values[14]. In our context,
the MAE term is given by:

MAE =
1

N

N∑
i=1

|ytrue,i − ypred,i| (2)

Where ytrue,i and ypred,i are the true and predicted amplitude values of the
speech signal, respectively, and N is the total number of samples.

The second term in our loss function is designed to prioritize the preservation of
speech over noise reduction. This is achieved by penalizing the model more heavily
when it fails to correctly predict the amplitude of the speech signal. Mathematically,
this is expressed as:

SpeechLoss = 2 ∗ 1

N

N∑
i=1

|(ytrue,i)2 − ypred,i ∗ ytrue,i| (3)

The final loss function is a sum of the MAE and the speech loss terms:

Loss = MAE + SpeechLoss (4)

The use of this custom loss function ensures that the model not only minimizes
the overall error in amplitude prediction but also prioritizes the preservation of
speech components over noise reduction.

3.3 Dataset

The underlying data for our methodology comes from the Device and Produced
Speech (DAPS) Dataset [15]. The DAPS dataset houses 100 authentic and clean
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speech recordings, scrupulously cleaned of breaths and lip smacks. For effective
learning and unbiased evaluation, the data is partitioned into training, validation,
and testing repositories. Sizes for these sets are 213.5, 30.2, and 23.8 minutes re-
spectively.

3.4 Model Training

The model training phase revolves around a log spectrogram which operates on a
22,050Hz sampling rate. Our approach necessitates a frame length of 4096 and a
frame step of 512. Additional parameters include a ’hann’ window function and the
setting of ’center’ to True for more precise frequency representation. To facilitate a
quick and precise learning process, an V100 GPU with its high computation power
is exploited. The training procures the use of Adam optimization and incorporates
an early stopping mechanism that continuously scrutinizes validation loss to ensure
the model’s prevention from overfitting and assures achievement of an optimal state.

4 Results

In this results section, we detail the performance of our model that’s designed
to remove non-speech sounds, such as breaths in vocal recordings. We compare
it with two of the best models currently available, Inception and MobileNetV2,
referenced in the work of Ramirez et al. [4]. Our model’s accuracy is measured by its
ability to identify and remove breath sounds from the recordings, which is presented
as a percentage. Along with accuracy, we also use the Mel-Frequency Cepstral
Coefficients (MFCC) Distance to measure spectral precision, and the Perceptual
Evaluation of Speech Quality (PESQ) to assess the clarity of speech. The detailed
results are shown in Table 1, highlighting our model’s effectiveness in improving
the quality of vocal recordings by removing unwanted breath sounds.

Model MFCC Distance PESQ Accuracy

Proposed Model 0.0371 3.8433 97%

Inception 0.0186 3.9452 98%

MobileNetV2 0.0231 3.9448 97%

Table 1. Performance comparison on various metrics

The MFCC Distance for the proposed model is 0.0371, which is slightly higher
than the Inception and MobileNetV2 models, which have an MFCC Distance of
0.0186 and 0.0231 respectively. The MFCC Distance is a measure of the dissim-
ilarity between the original and processed signals, with a lower value indicating
a closer match to the original signal. Therefore, while our proposed model does
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not outperform the Inception and MobileNetV2 models in terms of MFCC Dis-
tance, the difference is not substantial, indicating that our model is still highly
competitive.The Perceptual Evaluation of Speech Quality (PESQ) scores for our
proposed model and the other two models are quite close, with our model having a
PESQ score of 3.8433, slightly lower than the Inception’s score of 3.9452 and Mo-
bileNetV2’s score of 3.9448. PESQ is a metric that assesses the perceived speech
quality after the sound processing, with a higher score indicating better perceived
quality. Most importantly, the accuracy of our proposed model in removing breath
sounds from vocal recordings is commendable, with a score of 97%. This is on par
with the MobileNetV2 model and only slightly less than the Inception model, which
has an accuracy of 98%.

Figures 2 and 3 demonstrate the original waveform and the waveform post the
removal of the breath from the vocal recording. The highlighted box in these figures
signifies the existence of breath sound.

Fig. 2. Original Waveform

Fig. 3. Waveform after Breath Removal
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Fig. 4. Original Spectrogram

Fig. 5. Target Spectrogram

Fig. 6. Model Generated Spectrogram
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Figures 4, 5, and 6 represent the spectrogram view of the original audio, the
target audio (manually breath sound removed vocal recording), and the model
generated vocal recording, respectively. This demonstrates the model’s ability to
filter out unwanted noise without affecting the overall quality of the recording.

Table 2 compares the number of parameters, epochs, and time taken for each
model.

Model Parameters Epochs Time
(hours)

Proposed Model 1.9M 60 3.2

Inception 2.8M 89 7.4

MobileNetV2 2.2M 60 4.8

Table 2. Comparison of the number of epochs and time taken

Our proposed model is efficient, with fewer parameters (1.9M) and less time
taken (3.2 hours) for training compared to the other models[4] . This underlines
the efficiency of our approach, which is able to generate nearly identical output to
previous models, but with a more streamlined process.

5 Discussion and Future Work

The study showcases a parameter-efficient model that utilizes deep learning to
accurately detect and remove non-speech vocal sounds like breath noises from vocal
recordings. The model excels in post-processing, reducing manual work significantly
thus, benefitting sound engineering. However, the real potential lies in extending
the model to real-time systems such as live broadcasts or interactive voice response
systems. In spite of using fewer parameters, the model yielded better results than
existing models, as confirmed by audio quality metrics. Future work could focus
on devising objective methods to evaluate sound removal, exploring other deep
learning approaches, and expanding the dataset to include varied vocal recordings
for broader non-speech sound management.

6 Conclusion

This research has introduced a parameter-efficient model, which utilizes the atten-
tion U-Net architecture for the automatic detection and removal of breath sounds
in vocal recordings. Demonstrating a significant need for research in this area in the
sound engineering field, the paper emphasizes the inefficiencies and inaccuracies of
previous automated methods. Our approach, characterized by its innovation and
superior performance, leverages advanced deep learning techniques and a carefully
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constructed methodology for effectively capture local and expansive context within
the spectrogram derived from the STFT of the audio file, thereby enabling accurate
and efficient detection and removal of breath sounds. Therefore, our research holds
significant pertinence in the sound engineering domain and can be used by voice-
over artists, singing artists, and other audio recording professionals to improve the
quality of their audio files efficiently without the inconvenience of manual editing.
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