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Abstract. This research investigates the untapped wealth of centuries-old French botanical lit-
erature, particularly focused on floras, which are comprehensive guides detailing plant species in
specific regions. Despite their significance, this literature remains largely unexplored in the context
of AI integration. Our objective is to bridge this gap by constructing a specialized botanical French
dataset sourced from the flora of New Caledonia. We propose a transformer-based Named Entity
Recognition pipeline, leveraging distant supervision and CamemBERT, for the automated extrac-
tion and structuring of botanical information. The results demonstrate exceptional performance:
for species names extraction, the NER model achieves precision (0.94), recall (0.98), and F1-score
(0.96), while for fine-grained extraction of botanical morphological terms, the CamemBERT-based
NER model attains precision (0.93), recall (0.96), and F1-score (0.94). This work contributes to
the exploration of valuable botanical literature by underscoring the capability of AI models to
automate information extraction from complex and diverse texts.

Keywords: Information Extraction, Natural Language Processing, Named Entity Recognition,
Biodiversity Literature.

1 Introduction

In this paper, we explore the rich botanical diversity documented in French-written
flora: Flora of New Caledonia5

tures, hosts a range of biogeographic zones including Atlantic, Continental, Mediter-
ranean, and Alpine, making it a focal point in European botanical diversity, which
reflect the extensive ecological variation across France’s metropolitan and overseas
territories. This is confirmed by the presence of about 6,000 species6 of higher

5 Flora of New Caledonia https://bibliotheques.mnhn.fr
6 Biodiversity in France https://inpn.mnhn.fr/informations/biodiversite/france

. France, characterized by its diverse geographical fea-
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plants, a figure that underscores the country’s significant contribution to Europe’s
floristic richness. The incorporation of data from French overseas regions further
accentuates the global relevance of this botanical diversity.

Given this context, the automated extraction of botanical information from
French texts is not only methodologically sound but also crucial for advancing
botanical knowledge and conservation. This work aims to leverage these rich textual
resources to offer new insights into plant species distribution and characteristics,
contributing to the broader understanding of global biodiversity.

Furthermore, the extraction of morphological data from botanical floras holds
significant implications for the advancement of knowledge bases on platforms ded-
icated to descriptive data management and interactive identification like Xper37

[1]. However, the current manual extraction process is both time-consuming and
demands botanical expertise. Consequently, our proposed automated information
extraction pipeline stands as a potential checkpoint in elevating the construction
of knowledge bases on platforms such as Xper3.

This paper uniquely converges on the fundamental domains of botany: taxon-
omy and morphology. Our contribution to taxonomy involves the automatic extrac-
tion of plant species names, rooted in botanical nomenclature. This process relies
on identifying and classifying segments of information referenced in text into pre-
defined named entities [2] (known as Named Entity Recognition), facilitating the
automatic labeling of extracted entities through distant supervision.

Traditional methods for acquiring this crucial information are acknowledged
for their challenges in terms of time, cost, and complexity [3]. Acknowledging this,
recent endeavors explore resources for trait information embedded in texts found
in books, and online sources.

One notable contribution to this effort is found in the work proposed by (Victor
et.al (2023)) [4], introducing a natural language processing (NLP) pipeline designed
to automatically extract trait information from unstructured textual descriptions
of plant species. In the proposed pipeline, textual classification models are utilized
for categorical attributes, and question answering models for numerical attributes,
specifically targeting five categorical traits (growth form, life cycle, epiphytism,
climbing habit, and life form) and three numerical traits (plant height, leaf length,
and leaf width).

Another notable project [5] in the space of Open Information Extraction (OIE)
[6] explores the extraction of information from plant morphological descriptions
written in Spanish. This initiative utilizes information from the National Biodiver-
sity Institute of Costa Rica (INBio), a pre-trained language models (PLM) and a
language model specifically trained on Spanish plant morphological data.

However, as we survey the landscape of existing research, a conspicuous gap
emerges: none have specifically addressed the morphological text of plants in the

7 Xper3 https://xper3.fr/en/
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French language. Notably, the focus of prior research has been primarily on plant
morphological descriptions documented in Spanish and/or English. This linguistic
specificity raises concerns regarding the broader applicability and transferability
of models, hinting at potential challenges necessitating significant retraining or
adaptation for other linguistic contexts. Importantly, the absence of a sequential
extraction method for the organs associated with categorical traits in previous
studies is a notable gap. Additionally, the oversight in addressing morphological
relation extraction underscores the need for a more comprehensive exploration in
our forthcoming research.

Here, we present our distinctive contributions:

1. Firstly, we construct comprehensive morphological datasets for Named Entity
Recognition of species names and morphological plant traits. We achieved this
by leveraging the abundant yet untapped information present in the extensive
published and online French literature, including the Flora of New Caledonia,
glossary of morphological terms, and Wikipedia.

2. Furthermore, we develop a specialized named entity recognition model dedicated
to extracting species names.

3. In addition, we introduce a second model for coarse-grained Named Entity
Recognition of plant species’ morphological terms. These terms are then cate-
gorized into two predefined named entity types: ORGAN and DESCRIPTOR.

4. Finally, we build upon this foundation of contributions by introducing a third
model for fine-grained Named Entity Recognition. We explore specific descrip-
tors associated with plant species’ organs, extending beyond the predefined
named entity types for fine-grained extraction. These descriptors include De-
scriptor, Form, Color, Development, Structure, Surface, Position, and Disposi-
tion.

2 Definition of Concepts

In this section, we present key concepts in botany. The definitions provided here
serve as a primer for the specialized language employed in this research:

– Botany : Botany is the branch of biology that focuses on the scientific study of
plants, encompassing various aspects of plant life.

– Flora : Flora denotes the entirety of plant species present within a specific geo-
graphical area or timeframe. It encompasses all plant species, their distribution,
and interactions within an ecosystem.

– Organism : An organism is a living individual capable of growth, reproduction,
and response to its environment.

– Taxonomy : Taxonomy is the field within biology that deals with organizing,
naming, and distinguishing different organisms..
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– Species: A species constitutes the foundational element of biological classifi-
cation. In botanical terms, a species is characterized by shared morphological,
genetic, and ecological traits.

– Plant species name : A plant species name, scientifically known as a binomial
or botanical name, is a formalized two-part naming system used in botanical
nomenclature. It consists of the capitalized genus name followed by the lowercase
species epithet, creating a distinct label for a specific plant species.

– Identification keys: Identification keys (Figure 1 encompasses identification
key section titled ”clés des espèces” for the genus ”Leptostylis”) in botany are
systematic guides with a series of paired statements and species names used to
identify plants based on their distinguishing characteristics.

– Organ : Within botany, a plant organ refers to a discrete operational component
of a plant, including entities such as roots, stems, leaves, flowers, or fruits.

– Descriptor : In botany, descriptors are specific terms used to describe charac-
teristics of plants, aiding in identification and classification, such as leaf shape
or flower color.

3 Methodology

In this paper, our focus is to build Named Entity Recognition (NER) models,
utilizing naturalist data sourced from the National Museum of Natural History.
The initial phase involves extracting, normalizing, cleaning, pre-processing, and
annotating the text data to facilitate the subsequent training of NER models.

This section delineates our overall pipeline for both contributions involving
NER, as presented in Figure 2, beginning with the extraction pipeline of plant
species names, followed by coarse-grained and fine-grained extraction of morpho-
logical terms from descriptions of plant species. We present the methodological
steps as follows:

1. Data Collection: The process initiates with the collection and extraction of
textual data from the floras.

2. Text Annotation: Rigorous annotation is applied to the collected data, a crucial
step in preparing the ground truth for training the NER models.

3. Model Training: Transformer-based training using CamemBERT language model
[7] and spacy-transformers8 package as a wrapper.

4. Model Evaluation: A thorough evaluation of the trained models is conducted to
gauge their efficacy and performance against predefined metrics.

5. Deployment: Upon successful evaluation, the models are deployed, making them
ready for application to new morphological text.

8 spacy-transformers https://spacy.io/universe/project/spacy-transformers
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Fig. 1. Plant species names and their descriptive morphological terms from flora of New Caledonia.

3.1 Overview of Data Source

The creation of the datasets used in this research involved strategic utilization of
theses primary data sources:

Table 1. Dataset Summary

Data Flora of New Caledonia Botanical Lexicon

Size 25 documents 3530 entries

Data Type Ocerized Text Text (Dataframe)

Data Source National Museum of Natural History Compiled from various glossaries online

– Flora of New Caledonia: This comprehensive botanical work comprises twenty-
five floras, each averaging 201 pages (Table 1). Each flora encompasses botanical
families, genera, and species, with each species accompanied by a detailed mor-
phological description. The Flora of New Caledonia offers a rich source of botan-
ical information, covering a spectrum of plant families, genera, and species. To
extract meaningful insights, a nuanced comprehension of each flora’s structure
is essential (Figure 1).
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– Botanical Lexicon: We utilized a botanical lexicon comprising more than
2500 terms, compiled from various glossaries accessible online9 (Table 1). The
part-of-speech tagging (POS), coupled with the definition of each term, in this
lexicon, serves as a pivotal resource for the identification of morphological terms.

3.2 Extracting Plant Species Names from Textual Data

The concept of species holds paramount significance in systematics, particularly
within the domain of taxonomy. Identifying species names provides a crucial context
for understanding and extracting more complex information such as morphological
descriptions [8]. Species names act as identifiers and help establish a clear link
between the morphological information provided and the specific organism it refers
to. Without knowing the species name, the morphological details lack a specific
reference point. Therefore, by first extracting and establishing the species names,
we create a foundation for structuring the subsequent morphological data.

In this section, we demystify our approach to identifying and classifying named
entities within textual descriptions. Specifically, we aim to categorize these entities
into the pre-defined type ”SPECIES” (translated as ”ESPECE” in french).

3.2.1 Data Understanding

Initiating the NLP pipeline for our named entity recognition model requires a pro-
found understanding of the textual data to be extracted from flora of New Caledo-
nia. This flora lists and describes the diverse plant species found in New Caledonia.
The fundamental task is to identify and extract the names of these species for
constructing the training dataset pivotal to our model.

Within the realm of botany, each species is designated by a binomial name [9],
consisting of the scientific name of its genus and a descriptive-specific epithet (as
portrayed in Figure 1). Notably, upon scrutinizing the numerized version of the
flora, we observed that species names can manifest in three distinct ways:

1. Genus epithet: The species designation consists of the genus name, capitalized
at the beginning, followed by a lowercase epithet

2. G. epithet: Alternatively, the species name may present with the initial letter
of the genus in uppercase, followed by the epithet in lowercase.

3. Genus epi-thet or G. epi-thet: In the OCR-processed version of the flo-
ras, the epithet may break at the end of a line, introducing a third form that
necessitates consideration.

9 Atlas floristique: https://atlasflore04.org/lexique.php
Pixiflore: http://www.pixiflore.com/pages/glossaire/glossaire.html
Herbierfrance: http://herbierfrance.free.fr/lexique.htm
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The overarching objective is to autonomously extract species names, regardless
of their form, while retaining the contextual information. This process is crucial for
providing accurate annotations to train the named entity recognition model for the
entity type ”SPECIES.”

Species names following the pattern G. epithet are located within the species
keys sections (”clés des espèces”) of each flora (Figure 1). The primary objective
of this stage is to extract the text containing these species names for subsequent
annotation.

Considering the potential errors introduced during the OCR process of each
Flora, such as non-normalized text and inconsistent titles for the identification keys
section (e.g., ”CLÉS DES ESPÈCES” similarly to Figure 1, ”clés des espèce,” ”clés
des especes,” ”cles des espèces,” ”cles des especes,” etc.), normalization becomes
imperative. The normalized title for this section is achieved by converting it to ”cles
des espece” in lowercase, irrespective of its initial form. The text within the section
is then segmented using a line break.

The normalization and preparation of OCR-processed floras result in a list of
character strings extracted from documents where the title ”cles des especes” ap-
pears. For each character string, we employ a regular expression to identify occur-
rences of species names of the form G. epithet.

The extracted data is formatted into a dataframe, comprising the text sequence
and its named entities of the type ”SPECIES”.

Fig. 2. NER Pipeline for Botanical Information Extraction from Naturalist Data - A Case Study
with Floa of New Caledonia.
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3.2.2 Species Names of the Form ”Genus epithet / epi-thet”

This section is dedicated to extracting a distinctive category of species names,
characterized as ”Genus epithet”. These names are situated following the species
keys section of each genus, appearing as titles. The primary objective here is to
capture the text encompassing this specific form of species name, contributing to
the expansion of our training corpus.

The extraction process begins with capturing the entire title, followed by the ap-
plication of a regular expression to precisely extract the species name. The results of
this extraction are thoughtfully consolidated into a structured dataframe, detailing
the text sequence alongside its named entities of type ”SPECIES.” This organized
format optimizes the utility of the collected data for subsequent analytical phases.

Recognizing the importance of enhancing model generalization for more accu-
rate classification of named entities, we intentionally introduce another data source,
from the web, for species descriptions (Figure 2 Section 1). Beyond the Flora of
New Caledonia, this additional data source enriches the training dataset with di-
verse text sequences containing species names, thus guaranteeing the model’s ability
to generalize across varied textual structures.

3.2.3 Enriching Species Text Data with a New Data Source

Recognizing the limitations of extracting species data solely from floras—confined
to titles— we introduce a supplementary data source: Wikipedia. While the flora-
derived data was valuable for title-based species identification, it fell short of en-
compassing species within paragraphs. To bridge this gap, we leverage Wikipedia,
a rich repository of descriptive articles on various plant species.

Our methodology (Figure 3) involves utilizing The Plant List10 as a founda-
tional resource to scrap a diverse set of species names. We strategically concate-
nate these names with the Wikipedia URL structure (https://fr.wikipedia.org/wiki),
creating unique URLs for potential articles. Subsequently, we employ a scraping
mechanism to retrieve textual descriptions from these Wikipedia articles, ensuring
a broad and varied dataset for robust model training.

To address the potential dataset imbalance resulting from Wikipedia’s domi-
nance, we selectively chose 50,000 species names out of over 500,000 scraped from
The Plant List. This process resulted in the creation of a set of 50,000 unverified
Wikipedia URLs (articles).

The practical implementation involves filtering the articles with content first,
and then extracting the first paragraphs from the selected Wikipedia articles, total-
ing 1,051 lines of data. These lines constitute existing articles about plant species,
serving as the enriching addition to our dataset.

10 The Plant List http://www.theplantlist.org/
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Fig. 3. The framework for enriching plant species text data by scraping ThePlantList and
Wikipedia.

3.2.4 Text Annotation for Species Names Extraction

In this section, we focus on annotating the extracted text of plant species to allow
the training of a Named Entity Recognition (NER) model for plant species names.
Named Entity Recognition entails generating a list of tuples (Is, Ie, t), where ”Is”
represents the start index, ”Ie” represents the end index, and ”t” signifies the
predefined type of the named entity—in our case, ”SPECIES”. [10].

Our custom NER model requires a curated dataset comprising text with plant
species, paired with annotation tuples for effective training. This training dataset
(Table 2) encapsulates both the text and the corresponding named entities marked
for annotation. The significance of this annotation process cannot be overstated,
as the efficacy of our NER model is intricately linked to the quality and precision
of the annotated dataset (Figure 2, Section 1). The process involves generating
annotation tuples by aligning named entities with the texts to which they pertain,
thereby extracting the start and end indexes.

Table 2. Species Dataset Summary Statistics

Total Dataset Rows Average Text Length Average Token Count Average Species Count

2425 125.1357 19.6462 1.0478
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3.2.5 Training Custom NER model for Plant Species Names

In the preceding section, we annotated the data to meet the formatting require-
ments for spaCy11, an open-source library renowned for advanced natural language
processing.

Our approach leverages spaCy’s sophisticated Named Entity Recognition sys-
tem that integrates a state-of-the-art word embedding strategy, incorporating sub-
word features and Bloom embeddings. Additionally, it deploys a deep convolutional
neural network employing residual connections, combined with a transition-based
strategy for named entity parsing. This amalgamation forms the foundation of our
custom NER model.

We initiate the training process by acquiring the dataset crafted in the preceding
section, where ”SPECIES” (ESPECE) serves as the sole annotated named entity.
This dataset is then converted into JSON format tailored for spaCy training.

The training process unfolds by initially creating an empty (blank) model, spec-
ifying the desired language model (French). Subsequently, we add the entity rec-
ognizer to the pipeline while deactivating all other pipeline components. This ap-
proach ensures that during the training phase, only the entity recognizer undergoes
refinement.

3.3 NER for coarse-grained and fine-grained morphological terms

Plant morphology is concerned with describing the external features of plants. This
includes both aerial and underground organs, encompassing size, shape, stems,
leaves, flowers, roots, bulbs, and tubers.

The morphological description of a species is presented in the form of semi-
structured text. These are not literary texts with sentences containing verbs (Fig-
ure 1), but rather a succession of assertions that review the properties of various
parts of the plant, including the general appearance, leaves, veins, flowers, fruits,
and seeds. Each assertion is, therefore, the combination, whether implicit or explicit,
of an organ name, a property, and a value. For example, in the phrase ”White flow-
ers” the organ is the flower, specifically the petals of the flower, the property is the
color (implicitly stated), and the value is white.

This section aims to clarify and explain the process of training a Named Entity
Recognition (NER) model with the objective of extracting morphological terms,
specifically of the types ”ORGAN” and ”DESCRIPTOR,” from morphological
plant species’ descriptions. We build a distantly annotated species description
dataset for NER by leveraging a curated list of common morphological terms and
combining it with the flora of New Caledonia

11 SpaCy https://spacy.io/
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3.3.1 Extracting Morphological Descriptions from Flora of New Cale-
donia

Within the Flora of New Caledonia, morphological descriptions immediately follow
the species names as titles in the format (Genus epithete) (Figure 1). The beginning
of a morphological description is consistently marked by the species title, with
relevant botanist information interposed between the title and the description.

Algorithm 1 Extracting Morphological Descriptions
procedure IdentifySpeciesTitles(floraPages)

for each page in floraPages do
Identify species titles with RegEx
Criteria:

- Titles start with a two-digit number.
- The species name is in the form (Genus epithet)
- The botanist’s name is presented as:

∗ A single uppercase name (”Linnaeus”)
∗ Enclosed in parenthesis (”(Linnaeus) Carl”)
∗ Two names separated by ”&.”

procedure TextRetrieval(speciesTitle)
if speciesTitle matches regular expression then

Retrieve all text found after the species title
end if
end procedure

end for
end procedure

By applying Algorithm1 for extracting morphological descriptions, organized by
species titles, we create a dataset comprising 944 rows and two columns: Title and
Text (as morphological description).

To refine the extracted morphological descriptions, we eliminate preceding botanist
information and irrelevant text at the beginning and end of morphological descrip-
tions. A meticulous inspection reveals that the sequence ’/x97’ denotes the begin-
ning of irrelevant text, and its counterpart signifies the end. The removal of these
segments yields a set of refined morphological descriptions.

3.3.2 Extracting Morphological Terms from Descriptions for NER Model
Training

To train our Named Entity Recognition (NER) model, which classifies morpholog-
ical terms into ORGAN and DESCRIPTOR categories, our initial step involves
extracting these terms from the retrieved morphological descriptions obtained from
the Flora of New Caledonia. A crucial aspect of this extraction process is the uti-
lization of a specialized lexicon for morphological terms (Figure 2 Section 2).
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Fig. 4. Conceptualizing the morphological lexicon.

This morphological lexicon (Figure 4) encompasses a comprehensive set of mor-
phological terms, each accompanied by its definition and grammatical functions.
Notably, the inclusion of Part-of-Speech Tagging (PoS) allows us to discern be-
tween terms functioning as descriptors and those representing organs. Specifically,
we consider the terms categorized as adjectives to be descriptors, while the remain-
ing terms are classified as organs.

While the lexicon contains a broader range of terms beyond organs and de-
scriptors, the morphological descriptions exclusively contain terms falling into the
ORGAN and DESCRIPTOR types. To harmonize the lexicon with the extraction
requirements, we add a ”TYPE” column within the lexicon, enabling the catego-
rization of terms into ORGAN and DESCRIPTOR classes.

Our extraction approach involves matching tokens from the set of morphological
descriptions with the terms in the lexicon. This process ensures the identification
of named entities categorized as ORGAN and DESCRIPTOR types.

Total
Data rows

Average Description
Length

Average Entities
per Description

Average
Descriptor Entities

Average Organ
Entities

838 1264.31 41.43 16.41 25.02

Table 3. Morphological Terms Dataset Summary Statistics
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3.3.3 Coarse-grained Data Annotation for Custom spaCy NER Model
Training

To align with the requirements of our custom spaCy model, the training data must
adhere to the same structured JSON format of the previous species names NER
model, constituting a data dictionary inclusive of morphological descriptions and
annotations for named entities. These annotations encompass the start and end
indices of the identified entities within the text, along with their designated types
(ORGAN and DESCRIPTOR).

In this section, we present the approach to annotating data with two distinct
named entity types. The extraction of morphological terms from descriptions intro-
duces a potential challenge—overlap among terms. Overlapping entities can share
start or end indices or be nested within the index range ([Is, Ie]) of other entities,
presenting a significant annotation concern.

The annotation process revolves around matching entities from the specialized
botanical lexicon with those extracted from morphological descriptions. Crucially,
this process is executed independently for each entity type (ORGAN and DE-
SCRIPTOR), with a sequential resolution of overlapping entities within the same
type and subsequently across all entities. Our proposed annotation approach un-
folds as follows:

Algorithm 2 Annotating Morphological Descriptions for NER
procedure Annotation(morphologicalDescriptions, namedEntities)

- Initialize empty lists for ORGAN and DESCRIPTOR
for each description in MorphologicalDescriptions do

- Lowercase the morphological description.
- Retrieve associated set of entities for the description.
for each entity in set of entities do

- Determine its start and end index in the description.
if entity is the first in the description then

- Add annotation (Is, Ie, TYPE) to the entity lists.
else

Annotation is only added if the named entity:
1- Does not share its indices with other entities.
2- Its lenght >than that of the overlapping entity.

end if
In case of lenght inequality, annotate the largest.

end for
end for
Consolidate the ORGAN and DESCRIPTOR lists into a unified list for further processing.

end procedure
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3.3.4 Fine-Grained Data Annotation for Custom spaCy Model Training

The extraction of fine-grained named entities within the descriptor entity type de-
mands specialized botanical knowledge, necessitating the precise identification and
classification of these entities. To address this, we present a methodical lexicon-
based automated annotation approach, ensuring the accurate annotation of mor-
phological descriptions with predefined entity types: surface, color, develop-
ment, structure, shape, position, disposition (arrangement), and mea-
sure .

Our lexicon of morphological terms lacks explicit distinctions for the specified
entity types. However, leveraging the associated definitions with each morphological
term enables a nuanced classification of the entity types referenced.

The process of assigning entity types to morphological terms unfolds as follows:

Algorithm 3 Assigning fine-grained descriptor entity types to morphological terms
for each fine-grained entity type do

- Specify a set of keywords/expressions for exploration within the respective definitions of entities
in the specialized lexicon.
end for
for each term in the lexicon do

Search for the occurrence of keywords.
for each keyword do

if keyword is in the definition of the term then
- Assign the corresponding entity type associated with the keyword to the morphological

term.
end if

end for
end for

The outcome is a fine-grained lexicon, categorized by the fine-grained descriptor entity
type.

3.3.5 Training NER models with spacy-transformers and CamemBERT

Spacy-Transformers12 emerges as a pivotal component in our research methodology
as it seamlessly integrates with HuggingFace’s13 transformers, affording us access
to state-of-the-art transformer architectures, notably exemplified by BERT [11].
This integration represents a strategic fusion of advanced language representation
capabilities with the robust information extraction functionalities and production-
ready features inherent in spaCy.

12 spacy-transformers https://spacy.io/api/transformer
13 HuggingFace https://huggingface.co/
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The choice of spaCy as our framework was particularly based on spaCy’s innate
extensibility by incorporating custom components and attributes, a crucial feature
for fine-tuning NER models to the intricacies of morphological term recognition.
Furthermore, spaCy’s commendable efficiency in handling voluminous datasets, in-
cluding entire web dumps, due to being written from the ground up in the memory-
managed Cython [12], significantly contributes to the scalability of our models.

The coarse-grained morphological terms extraction model (Figure 2 Section 3)
was trained following the same approach used for training the species extraction
model, with a slight modification in the definition of named entities. Instead of
having only one entity type, ”ESPECE” (SPECIES), we introduced both entities
named ORGAN and DESCRIPTOR into the pipeline.

Similarly, we trained the fine-grained model (Figure 2 Section 3) with the
same approach with a different set of named entites: Organ, Descriptor, Form,
Color, Development, Structure, Surface, Position, and Disposition . The
inclusion of the ”Descriptor” entity type in this fine-grained extraction proves
particularly valuable, ensuring comprehensive coverage of morphological traits not
specified within the predefined entity types.

For a second fine-grained NER model, we fine-tuned CamemBERT [7], a lan-
guage model for French, based on the RoBERTa model [13], via spaCy’s standard
nlp.update training API on the french morphological corpus we created.

4 Evaluation and Assessment

We assess the performance of the species extraction NER model by initially exclud-
ing test set data rows in which the named entity type ’SPECIES’ appeared in the
training set. This ensures that the model is evaluated solely on unseen data and
unseen named entities.

Both the coarse-grained and fine-grained models undergo evaluation using a
train-test split of 0.8 and 0.2. Unlike the previous model, named entities encoun-
tered during training are not removed from the test set. Given that each morpho-
logical description contains, on average, 41 named entities, it implies that each
entity is more likely to be repeated across different descriptions. Eliminating these
descriptions would potentially reduce the size of the training set to an insignificant
level. Therefore, our coarse-grained and fine-grained models are assessed on unseen
data (descriptions) but not necessarily on unseen named entities.

We also compare the performances of both regular spaCy and CamemBERT
based pipelines for fine-grained NER models (Table 6). The CamemBERT-based
model shows a slight improvement in precision (0.93) compared to SpaCy (0.92),
indicating a higher percentage of correctly identified entities among those predicted.
Notably, its recall (0.96) surpasses SpaCy’s NER (0.94), suggesting a better abil-
ity to capture actual entities present in the data. Additionally, the F1 score for
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CamemBERT (0.94) is slightly higher than SpaCy’s (0.93), reflecting a balanced
performance between precision and recall.

Table 4. Performance of Species Names NER Model

Species NER - Pipeline: fr core news lg

Entity Type P R F1

SPECIES 0.94 0.98 0.96

Table 5. Performance of fine-grained and coarse-grained NER (SpaCy Pipeline)

Coarse-grained NER - SpaCy

Entity Type P R F1

Organ 0.97 0.987 0.98

Descriptor 0.91 0.96 0.94

Fine-grained NER - SpaCy

Entity Type P R F1

Organ 0.97 0.98 0.978

Descriptor 0.88 0.929 0.907

Surface 0.76 0.69 0.72

Color 0.77 0.73 0.75

Development 0.88 0.66 0.76

Structure 0.88 1 0.93

Form 0.82 0.88 0.85

Position 0.93 0.98 0.96

Disposition 0.95 0.93 0.94

Measure 0.909 0.829 0.867

Table 6. Comparing CamemBERT NER to SpaCy’s NER

Comparing Global Metrics for Fine-grained NER

Pipeline P R F1

SpaCy 0.92 0.94 0.93

CamemBERT 0.93 0.96 0.94
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5 Discussion

We present the performance metrics for all NER models. The species NER model
(Table 4) demonstrates high precision, recall, and F1 score for identifying plant
species names. These results indicate that the model performs well in extracting
species names from unseen text data and unseen named entities.

While the performance metrics of the species NER model accurately reflect
its capabilities, given its training on just one named entity type and evaluation
on unseen data from various sources (Flora of New Caledonia and Wikipedia),
assessing the performance of the coarse-grained and fine-grained NER models can
be more challenging even when the performance metrics are high (Table 5).

Our lexicon-based distant supervision annotation process (Figure 4) makes the
assumption that terms with a POS of ’Adj’ are Descriptors, while other terms are
categorized as Organs. This assumption would be accurate if our lexicon included
only organs and descriptors; however, this is not the case. Nevertheless, the accuracy
of the assumption also relies on the fact that morphological terms in the extracted
descriptions fall into one of two types: Descriptor or Organ, which holds true.
Therefore, the accuracy of the annotation process is still maintained.

We also observe high precision, and recall (Table 5) for most named entity
types, suggesting that the model accurately captures a significant portion of actual
instances of the named entity in the text. Recall specifically measures the model’s
ability to correctly identify and include all relevant instances of a specific entity
class. Although this doesn’t guarantee the complete accuracy of the annotation
process, it remains a positive indicator that the process does not suffer from the
noise labeling problem.

While comparing the performance of both pipelines (regular spaCy NER and
spaCy’s CamemBERT-based NER) (Table6), we observe that although the im-
provement in precision, recall, and F1 score for CamemBERT is not substantial, it
still indicates enhancement in named entity recognition performance. Furthermore,
the improvement is consistent across all metrics (precision, recall, and F1 score),
and is not limited to just one.

To assess the real-world applicability and performance of our NER model, we
operationalized the NER models into a proof of concept web application (Figures
5, 6, and 7). This deployment enabled engagement with domain experts, specifi-
cally botanists, who not only validated the model but also highlighted its potential
effectiveness when utilized by end-users in relevant fields.

6 Conclusion

In this paper, we proposed a transformer-based Named Entity Recognition (NER)
pipeline to extract botanical information from French-written flora. Our research
addresses the scarcity of available datasets and the lack of information extraction
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models for botanical French literature. We have detailed the proposed pipeline from
data collection to the evaluation of trained models for each of the following contri-
butions: 1) NER for plant species. 2) Coarse-grained NER to extract Organs and
Descriptors from morphological descriptions. 3) Fine-grained NER for extracting
the following entity types from morphological descriptions: Organ, Descriptor, sur-
face, color, development, structure, shape, position, disposition (arrangement), and
measure.

Through our lexicon-based distant supervision annotation approach, we achieved
high recall and precision across most entity types. Specifically, for species names
extraction, the NER model achieved precision (0.94), recall (0.98), and F1-score
(0.96). For coarse-grained extraction, the NER model achieved precision (0.97), re-
call (0.98), and F1-score (0.98) for the ”Organ” named entity type, and precision
(0.91), recall (0.96), and F1-score (0.94) for the ”Descriptor” named entity type.
Furthermore, the CamemBERT-based NER model for fine-grained extraction of
botanical morphological terms attained precision (0.93), recall (0.96), and F1-score
(0.94).

This outcome serves as a positive indicator that the annotation process does not
suffer from the noise labeling problem. Additionally, we have addressed the lack of
training data by creating new NER datasets for both taxonomic and morphological
use cases. Lastly, we productionized the trained models as proof-of-concept appli-
cations and gathered the impressions and judgments of domain experts regarding
the accuracy of the provided output.

Fig. 5. Proof of concept for fine-grained NER of morphological terms.
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Fig. 6. Proof of concept for plants species names NER.

Fig. 7. Proof of concept for fine-grained NER with dataframe format showing the relationship
between organs and fine-grained descriptors.
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