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ABSTRACT 
 
The increasing popularity of AI, particularly Large Language Models (LLMs), has significantly 

impacted various domains, including Software Engineering. This study explores the integration 
of AI tools in software engineering practices within a large organization. We focus on ANZ 

Bank, which employs over 5000 engineers covering all aspects of the software development life 

cycle. This paper details an experiment conducted using GitHub Copilot, a notable AI tool, 

within a controlled environment to evaluate its effectiveness in real-world engineering tasks. 

Additionally, this paper shares initial findings on the productivity improvements observed after 

GitHub Copilot was adopted on a large scale, with about 1000 engineers using it. 

 
ANZ Bank's six-week experiment with GitHub Copilot included two weeks of preparation and 

four weeks of active testing. The study evaluated participant sentiment and the tool's impact on 
productivity, code quality, and security. Initially, participants used GitHub Copilot for 

proposed use-cases, with their feedback gathered through regular surveys. In the second 

phase, they were divided into Control and Copilot groups, each tackling the same Python 

challenges, and their experiences were again surveyed. Results showed a notable boost in 

productivity and code quality with GitHub Copilot, though its impact on code security 

remained inconclusive. Participant responses were overall positive, confirming GitHub 

Copilot's effectiveness in large-scale software engineering environments. Early data from 1000 

engineers also indicated a significant increase in productivity and job satisfaction. 
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1. INTRODUCTION 
 

Generative AI unleashes the next wave of productivity through operational efficiency and 
quicker-informed decisions. In the field of Software Engineering, research suggests that 

developers use generative Artificial Intelligence (AI) as a pair-programmer to increase the 

output of high-quality code. By augmenting employees' capacity, more time and resources can 
be allocated towards innovation. AI, however, raises inherent risks, uncertainties and 

unintentional consequences regarding intellectual property, data security and privacy. It is, 

therefore, crucial to measure the quantitative and qualitative benefits of AI Tools prior to large 
scale adoption. 
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Despite the presence of various AI-assisted tools in the marketplace, such as Code Whisperer 
[1]. GitHub Copilot stands out as one of the pioneers in this domain. This early entry into the 

market, coupled with its robust features, has informed our decision to investigate in GitHub 

Copilot. 

 
GitHub Copilot functions as an advanced assistant for software developers, powered by artificial 

intelligence (AI). It is adept at generating syntactically correct and contextually relevant code 

snippets across a diverse array of programming languages such as Java, Python, C#, C++, and 
others [7]. The tool not only produces code but is also capable of generating comprehensive 

comments that elucidate the purpose and functionality of the code, given the current context 

within the development environment. 
 

GitHub Copilot is compatibility with a range of Integrated Development Environments (IDEs), 

including Visual Studio Code, Neovim, JetBrains suite, and GitHub Codespaces [3]. Initially 

launched in a technical preview on Visual Studio Code on June 29, 2021, GitHub offer Copilot 
as a subscription service on June 21, 2022, accessible to both individual developers and corporate 

entities. 

 
The underlying architecture of Copilot is predicated on Generative Pre-trained Transformer 

(GPT) technology, which has been meticulously refined using publicly available GitHub code to 

enhance its code recognition and generation capabilities. 
 

The GitHub Copilot experiment is an Architecture & Engineering initiative with two main 
objectives. Firstly, to establish this experiment as an example of a purposeful and methodical 

guide for the adoption of AI pair programming technologies ranging from experimental to large- 

scale at ANZ Bank. The second objective is to collect statistical measures on engineers' 

productivity, code quality, and the security of the code generated while using GitHub Copilot. 
 

This paper offers the following contributions: 

 

 A systematic examination of productivity improvements regarding code quality, 
development time, and problem complexity within a corporate environment. 

 An analysis of engineer sentiment towards the use of AI-aided tools in the software 

development process. 

 An initial validation of GitHub Copilot's efficacy post-production, informed by data 

from approximately 1000 engineers. 
 

The remainder of this paper is structured as follows: Section 2 provides a succinct review of the 

related literature. Section 3 details the study's design and methodology. The data collection and 
subsequent analysis are presented in Section 4. Finally, Section 5 delves into the discussion 

of our findings and outlines potential avenues for future research. 
 

2. RELATED WORK 
 

Research on GitHub Copilot's application in Software Engineering tasks, such as code 
generation, testing, security, and documentation, has been expanding. These studies provide 

valuable insights into the tool's effectiveness and areas of improvement. 

 

A pivotal experiment by Microsoft [2] in 2022 involved 95 engineers working in a realistic 
environment. They were tasked with creating an HTTP server in JavaScript, with the option to 

seek online help for challenges faced. Engineers were divided into two groups: one with access 

to GitHub Copilot (the treatment group) and one without (the control group). The results were 
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significant: the treatment group completed their tasks 55.8% faster, with developers who had 
less experience, older programmers, or those who programmed more frequently seeing the most 

benefits. Our ANZ Bank experiment, although involving different tasks and Python as the 

programming language, aligns with these findings. 

 
In another study, B Yetiştiren et al. [3] compared GitHub Copilot with AWS CodeWhisperer 

and ChatGPT across various parameters including validity, correctness, security, reliability, and 

maintainability. They found that the latest versions of these tools varied in their ability to 
generate correct code, with GitHub Copilot showing an 18% improvement in newer versions. 

Notably, GitHub Copilot performed better than CodeWhisperer in an engineering-specific 

context, while ChatGPT was identified as more of a general-purpose tool. Our study at 
ANZ Bank similarly observed that GitHub Copilot consistently generated code suggestions in a 

timely manner, regardless of task complexity, contrasting with the varying time human 

engineers need for more complex tasks. 

 
An earlier study in 2022 [4] also highlighted a positive sentiment among engineers regarding 

productivity improvements with GitHub Copilot, a finding echoed in our research. 

 
S Imai [6] conducted an intriguing experiment comparing pair programming with Copilot 

versus a human partner. The study measured productivity by lines of code produced and code 

quality by lines removed. While Copilot generated the most lines of code, it also had the most 
lines deleted. It's important to note that lines of code aren't necessarily indicative of code quality. 
 

In another study, Dakhel et al. [5] set out to determine whether GitHub Copilot positively or 

negatively affects programmer productivity. Their research comprised two distinct programming 

tasks: (i) evaluating Copilot's ability to generate correct and efficient solutions for fundamental 

algorithmic problems such as sorting and implementing data structures, and (ii) contrasting 
Copilot’s solutions with those provided by human programmers across a range of programming 

challenges. 

 
For the first task, Copilot demonstrated a remarkable ability to tackle most fundamental 

algorithmic problems, though some of its solutions were found to be buggy and not always 

reproducible. The second task involved a comparative analysis using a dataset of programming 

problems with existing human solutions. The study revealed that, while humans generally 
provided more correct solutions than Copilot, the errors in Copilot’s outputs were typically less 

complex and easier to rectify. 

 
Crucially, Dakhel et al. [5] concluded that the utility of GitHub Copilot varies depending on the 

user's expertise. For experienced developers, Copilot can be a valuable asset, offering 

suggestions of a quality comparable to human contributions. Conversely, for novice 
programmers, the tool poses risks due to their potential inability to discern and correct Copilot's 

less optimal or erroneous solutions. 

 

3. STUDY DESIGN 
 
The GitHub Copilot Experiment ran over six weeks from mid-June’23 to the end of July’23: it 

consisted of two weeks of preparation, followed by four weeks of experiment execution. The 

experiment examined the sentiment that participants felt towards GitHub Copilot's Visual Studio 
Code extension as well as the impact the tool had on participants' productivity, code quality, and 

code security. 
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Prior to starting the experiment, risks related to intellectual property, data security and 
privacy were assessed in conjunction with ANZ’s legal and security teams to arrive at a set of 

guidelines. The scope of the experiment and report will discuss the key aims as follows: 

 

 Do the developers at ANZ feel positive and empowered by having access to Copilot? 

 How much does access to this tool make employees work faster, if at all? 

 Does this tool make developers at ANZ output better? 

 Is the code suggested by Copilot secure? 
 

Additionally, the experiment seeks to answer other meaningful questions: 

 

 How often are Copilot's suggestions considered useful and accepted? 

 Does the code suggested by Copilot follow best practices? 

 

Detailed considerations are outlined in a Playbook which participants were required to read 

and agree to before commencing the experiment. 
 

During the designing of the experiment, the following decisions were made, and constraints 

considered: 
 

 GitHub Copilot gathers a large breadth of metrics when integrated with Visual Studio 

Code Integrated Development Environment (IDE). To mitigate possible variability, 

Visual Studio Code was selected as the single IDE for this experiment to be conducted 

within. 

 Based on the widespread usage of Python programming language in the software 
engineering industry, as well as accessibility to novice programmers, Python was selected 

as the only language to be used during statistical hypothesis testing in weeks 3 and 4. 

 Given the limited time participants had for the experiment, we chose algorithmic 

questions for the weeks 3 and 4 code problems instead of application development 
scenarios typical of workplace challenges. 

 Participants were not actively monitored during the experiment. When assessing 

productivity, we relied on self-reported time and feedback about experience, rather than 

the exact duration spent in participation. 
 

A/B Testing: 

 

To statistically analyse the effectiveness of engineers using Copilot compared to engineers who 
hand code, A/B Testing was performed by dividing participants into Control group (Copilot 

extension disabled) and Copilot group (Copilot extension enabled) with the following 

hypotheses: 
 

H0 = There is no significant difference in productivity or code quality of engineers using Copilot 

H1= there is a statistically significant difference in productivity and code quality of 

engineers using Copilot 
 

Participants were divided randomly in half based on employees who had submitted the baseline 

survey in the preparation stage with an initial minimum expectation of 60 participants. The 

Control and Copilot group in week 3 were reversed in week 4 so groups remained the same but 
their ability to enable the copilot extension was changed. To note, the Control group were not 

permitted to use Copilot but other tools currently available to developers such as searching the 

internet or using Stack Overflow were allowed. 
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Six algorithmic coding challenges were provided to solve each week, All participants were 
expected to attempt the same questions each week, 12 questions in total over week 3 and 4. A 

key constraint was all engineers were asked to use only Python to code, for uniformity in 

assessing code quality and interpretation of code correctness, ensuring rigor in statistical 

evaluation. 
 

On completion, participants uploaded their solutions to their repositories, as well as submitted a 
survey for each challenge to collect the following metrics: 

 

Productivity 

 

 Total time spent solving a problem (minutes, self-reported) 

 Quality 

 Unit test success ratio 
 

Bugs 

 Code smells 

Security 

 Code vulnerability 
 

A briefing session was organised on the first day of Phase 2 to ensure participants were all in 
alignment with task requirements and to establish a support channel if required. Emails were 

sent every two days to remind participants to submit surveys. 

 

4. DATA COLLECTION APPROACH 
 
To analyse data on developer productivity, quality of work performed and sentiment in using 

Copilot, we decided to use four sources to obtain metrics: 
 

4.1. GitHub Copilot 
 

GitHub metrics were selected to provide statistical information relating to usage of the tool and 

how useful Copilot was in terms of predicting code written. The data would be collected at the 

end of each week of the experiment, and would track: 
 

 The number of times a suggestion was provided. 

 The number of times a suggestion was accepted. 

 The number of times all suggested lines of code were accepted (partial acceptance 

not included) 

 The number of languages used and their acceptances rates for suggestions. 

 Percentage acceptance rate 

 

4.2.  Surveys 
 

Online surveys were conducted to obtain data on productivity and sentiment. 
 

 The 'Baseline Survey' was to be completed prior to initiation of phase 1, during the 

preparation stage. 

 The 'Week 1-2 Survey' was to be completed every second day during phase 1 of the 

experiment. 

 The 'Week 3 Survey' and 'Week 4 Survey' was to be completed each time a 
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participant completed a challenge question (up to 12 times in total). 
 

4.3. Static Code Analysis 
 
Static code analysis was performed using SonarQube to capture metrics related to code quality 

and security vulnerabilities 
 

4.4. Grading of Correctness 
 
Solutions submitted by each participant were graded by the ANZ Copilot Experiment Team 

according to their correctness, to assess how well they completed the assigned tasks. 
 

4.5. Demographics 
 

There are over 100 participants involved in the experiment and their roles are mainly: 

 

1. Software Engineers 
2. Cloud Engineers 

3. Data Engineers 
 

4.6. Statistical Inference 
 

From Phase 2 surveys (A/B Testing), total 200 data points were collected and were used for 

statistical analysis. Data were also collected by running unit test scripts and SonarQube code 

review against the code submitted by participants to ANZ GitHub repositories. 
 

Table 1. Summary of Control Group data and Copilot Group data 

 

Total_Time_Spent (minutes) Min. 4 2 

1st Quartile 15 5 

Median 20 10 

Mean 30.98 17.86 

3rd Quartile 35 20 

Max. 150 150 

Python_Proficiency Beginner 10 9 

Novice 4 3 

Intermediate 40 51 

Advanced 22 22 

Expert 6 5 

Debugging_Time_Ratio 0-20% 24 48 

21-40% 26 19 

41-60% 19 13 

61-80% 13 8 

 81-100% 0 2 

Difficulty_Level Very Easy 11 11 
 

Easy 52 59 
 

Medium 15 14 
 

Hard 4 6 

 

Below are the observations from Table 1: 

 

 Both Control Group and Copilot Group have almost equal proportion data points. 
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 Both mean, median, 1st Quartile and 3rd Quartile values of total time taken to 

solve a problem (Total_Time_Spent) are significantly less for Copilot Group than Control 
group. 

 Number of data points across Python Proficiencies and Difficulty Levels are well 

distributed across both Control Group and Copilot Group. 

 Debug Percentage is less for Copilot Group compared to Control group 

 

4.7. Data Summary 
 

From 200 data points, after quick analysis the following data points were removed. 
 

There were 6 duplicate data points. Duplicate data points are those where a participant submitted 

two surveys for the same coding problem. 

 
There were 22 data points where participants could not solve the problems. Remaining 172 data 

points were used for all the statistical analysis presented on this document. 

 
The entire dataset was split into two groups - Control Group and Copilot Group. Below is the 

summary of the dataset for both Control Group and Copilot Group. Please note that the summary 

table below only includes numeric columns from Phase 2 surveys. 
 

 
 

Figure 1. Boxplot for total time to solve a problem (Total_Time_Spent) 

 

Figure 1 shows that the median value for time to solve the problem for Copilot Group is less 

than Control Group. Also, the range of valid Copilot data is much smaller than Control Group. 
According to this diagram, there are 9 outliers. However, in the analysis these data points 

were not excluded from the dataset. 
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Figure 2. QQ-Plot for total time to solve a problem (Total_Time-Spent) 

 

From the Quantile-Quantile (QQ) plot in Figure 2, it is evident that for both Control Group and 

Copilot Group, Total Time Spent does not follow normal distribution. Since the data does not 
follow normal distribution, data is skewed, and the number of data points is insufficient, non- 

parametric tests were performed on the data to test the A/B Testing hypothesis. 
 

4.8. Non-parametric statistics 
 

For non-parametric hypothesis test, Mann-Whitney U-test and Wilcoxon Signed Rank Test were 
considered. Finally, Wilcoxon Signed Rank Test were selected because Mann-Whitney U-test 

tests two independent samples, whereas the Wilcox sign test tests two dependent samples. The 

Wilcoxon Sign test is a test of dependency. In the case of Copilot experiment, Copilot Group 
and Control group consists same set of users. Hence the data related to Control group and 

Copilot group are not completely independent. 

 

Wilcoxon Signed Rank Test 

 

Wilcoxon Signed Rank Test were performed on data to test whether there is any significant 

difference between the Control Group and Copilot Group participants in terms of average time 
spent to solve a problem. 
 

Below are the results of Wilcoxon Signed Rank Test results for the metrics selected as part 
of A/B Testing. The tests were one sided and Alpha value selected for this experiment is 0.05 

(Confidence Interval 95%). 
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Table 2. Wilcoxon Signed Rank Test results 

 

Category Metric Hypothesis Sample 

size 

W p- 

valu

e 

Decision 

Productivity Total_

Time_

Spent 

H0: As a result of using Copilot 

usage, there is no significant 

difference in terms of 
Total_Time_Spent for Copilot 

Group and Control Group 

22 26 0.001 H0 reject ed 

  H1: As a result of using Copilot, 

Total_Time_Spent is less for 

Copilot Group 

    

Code 

Quality 

Unit_T

est_Su

ccess_

Ratio 

H0: As a result of using Copilot 

usage, there is no significant 

difference in terms of 

Unit_Test_Success_Ratio for 

Copilot Group and Control Group 

17 98 0.060 H1 reject ed 

  H1: As a result of using Copilot, 

Unit_Test_Success_Ratio is higher 

for Copilot Group compared to 

Control Group 

    

Code 

Quality 

Bugs H0: As a result of using Copilot 

usage, there is no significant 

difference in terms of Bugs for 

Copilot Group and Control Group 

17 0 0.033 H0 reject ed 

  H1: As a result of using Copilot, 

number of Bugs is less for Copilot 
Group compared to Control Group 

    

Code 
Quality 

Code_
Smells 

H0: As a result of using Copilot 
usage, there is no significant 

difference in terms of Code_Smells 

for Copilot Group and Control 

Group 

H1: As a result of using Copilot, 
number of Code_Smells is less 

for Copilot Group compared to 
Control Group 

17 10 0.007 H0 reject ed 

Code 

Security 

Vulner

abilitie

s 

H0: As a result of using Copilot 

usage, there is no significant 

difference in terms of 

Vulnerabilities for Copilot Group 

and Control Group 

H1: As a result of using Copilot, 

number of Vulnerabilities is less 

for Copilot Group compared to 

Control Group 

The SonarQube code review 

generated only 1 non-zero data point 

against Vulnerabilities. There is not 

enough data available to test this 

metric. 

 
 

Based on the data collected as part of the A/B Testing, results of Wilcoxon Signed Rank Test in 

Table 2 suggests that, because of using Copilot there are significant improvements on 
productivity and code quality related metrics. However, The SonarQube code review did not 

produce sufficient evidence to make any conclusion on Security aspect of the code submitted by 

the participants. 
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4.9. Results 
 

4.9.1. Productivity 

 
Table 3: Productivity increase across different proficiency levels 

 

Python 

proficiency 

Mean Total_Time_Spent 

(Control Group)/per 

problem (in minutes) 

Mean 

Total_Time_Spent(Co 

pilot Group)/per 

problem (in minutes) 

Productivity 

Improvement 

Beginner 20.07 9.58 52.27% 

Intermediate 28.60 16.70 41.6% 

Advanced 39.82 23.70 40.48% 

 

Table 3 describes a closer look how the productivity increased among participants with different 
Python Proficiency levels between Control group and Copilot Group. Since there are only few 

participants in "Novice" and "Expert" Python proficiency levels, the participants with "Novice" 

proficiency have also been considered as "Beginner" proficiency, similarly "Expert" proficiency 
level participants have also been considered as "Advanced" in the table below. 
 

From Table 1, 
 

 

This study shows that Copilot improves the productivity of ANZ engineers by 42.36% on an 
average. As can be seen in Figure 3, Copilot users took less time overall on each challenge 

problem than participants in the 'Control group'. 

 
Assessment of productivity based on Python proficiency found Copilot was beneficial to 

participants for all skill levels but was most helpful for those who were 'Expert' python 

programmers, Figure 3. For all code challenge levels from 'Very Easy' to 'Hard', the 

Copilot group spent less time on average than Control group completing the task, Figure 4. As 
expected, Copilot use gave the largest improvement when completing 'Hard' tasks. 

 

Overall Productivity Improvement = 

((Mean Total_Time_Spent(Control Group) - Mean Total_Time_Spent(Copilot Group)) / Mean 

Total_Time_Spent(Control Group) )*100= ((30.98-17.86)/30.98)*100 = 42.34% 
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Figure 3. Average Time Spent to Solve Problems vs Python Proficiency 

 

 
 

Figure 4. Average Time Spent to Solve Problems vs Problem Difficulty Levels 

 

4.9.2.  Quality 
 

 
According to the unit test results, methods written by Copilot Group participants had 12.86% 

more success ratio than methods written by Control group users. However, this result is not 

statistically significant. Table 3 suggests that participants with "Beginner" Python proficiency 

received the highest benefit from using Copilot. 
 

4.9.3. Security 

 

This section covers how engineers - with and without Copilot - performed from a security 

standpoint, providing insight into both the introduction of security risks as well as 
minimisation of existing ones. This aspect was assessed through the presence of vulnerabilities 

in the code submitted by participants. To test secure coding practices, one security-related 

question was inserted per week of the A/B testing phase: 
 

"password usecase" prompted users to create a function that would securely hash an inputted 
password using the pbkdf2_hmac function from the python 'hashlib' module. Key to this 

question was the use of a randomly generated cryptographic salt which would be passed into the 

hash function. The randomness of this salt was stipulated in the problem instructions; in the real 

world, if salts aren't randomly generated, hackers are better able to match the inputs and 



26                                     Computer Science & Information Technology (CS & IT) 

outputs of a hash function. The Sonar Way contains a vulnerability definition for non-random 
cryptographic salts, allowing participants' solutions to be checked for this. 

 

"code executor usecase" prompted users to create a basic FastAPI application that would accept 

a 'command' parameter within POST requests to its '/execute' endpoint. These commands would 
correspond in name to functions that the application would need to run. The purpose of the 

question was to ensure participants ran checks on the command parameters, prior to running the 

functions. Otherwise, their code would be susceptible to injection attacks. The Sonar Way 
contains a vulnerability definition for code that is susceptible to code injection attacks, allowing 

this to be assessed. 

 
Vulnerabilities were scanned for in participants' solutions to questions they received in the A/B 

testing phase, using SonarQube's static code analysis. SonarQube defines a vulnerability as "a 

security-related issue that represents a backdoor for attackers." 

 

4.9.4. Sentiment Around Copilot 

 

The following sections evaluate how engineers' experiences with GitHub Copilot varied 
according to different independent variables. They offer an idea of how different levels of 

programming, Visual Studio Code, and GitHub Copilot experience correlate to different 

qualities of user experience with the tool; and they offer insight into what tasks GitHub Copilot 
may lend itself most effectively to. 

 

All values in the tables are median values, i.e. the 50th percentile response from participants. The 

table cells are colour-coded according to their favourability towards Github Copilot: 
 

Firstly, shown below is an aggregation of all survey responses received over the course of 

phase 1 (weeks 1-2). Across all areas, participants responded positively regarding GitHub 
Copilot. They felt it helped them review and understand existing code, create documentation, 

and test their code; they felt it allowed them to spend less time debugging their code and 

reduced their overall development time; and they felt the suggestions it provided were somewhat 

helpful, and aligned well with their project's coding standards. It should be noted, however, that 
the magnitude of each area's sentiment fell short of the "strong positive" 

 
Table 4: Participant sentiment across surveyed areas of code development 

 

Area Aggregate Perceived Effect 

Time spent debugging code using Copilot A bit less time 

Time needed to produce the same code without Copilot A bit more time 

Suggestions' alignment with project's coding standards Well 

Quality of suggestions received Somewhat helpful 

Impact on ability to review and understand existing code Positive effect 

Impact on ability to create unit tests for code Positive effect 

Impact on ability to create documentation of the code Positive effect 
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5. DISCUSSIONS 
 

5.1. Limitations 
 

Sample size 

 

A notable limitation of our experiment was the level of engagement, which impacted the 

robustness of the conclusions drawn. While over 100 engineers participated over a six-week 
period, engaging in a variety of tasks, participation rates fluctuated significantly across these 

tasks. This variability in engagement levels presents a challenge in generalizing the findings. 

 

Moreover, considering that ANZ Bank employs around 5000 engineers in diverse roles, the 
sample size of our experiment represents only a fraction of this population. Therefore, our 

findings, while indicative, may not fully encapsulate the broader impact and potential of GitHub 

Copilot across the entire spectrum of the organization's software engineering workforce. 
 

Programming questions 

 

Some programming questions, such as "password usecase" were considered by some participants 
to be difficult to understand/implement, and consequently received fewer attempts. A lower 

sample size means less reliable results when comparing participants' attempts at these questions. 

 
There must also be a discussion of the SonarQube scan results and their relation to the 

programming questions. As mentioned in the "Key Constraints" section, the programming 

questions were designed to be light weight so that participants could complete them alongside 
their daily work. By the same token, however, the relatively small amount of code required to 

solve the questions did not lend itself to a critical static code analysis; there was little room for 

bugs and vulnerabilities to exist, as the questions were atomic and short. While some data was 

obtained regarding code smells in the code belonging to both groups, the other two categories 
could not be reasonably measured by the code scan due to the nature of the tasks that the 

participants had been given. If this experiment were to be repeated, a project-style task, 

reflecting a more concrete development goal, might be more suitable; this would prompt 
participants to write a larger volume of code to tackle a single problem that would more closely 

resemble a workplace task. 
 

Biases 

 

Biases such as the Dunning-Kruger effect may also affect the accuracy of self-reported 
proficiency levels in programming languages throughout the experiment. It is possible that 

programmers of low-proficiency overestimated their ability in their chosen language or python, 

while high-proficiency programmers underestimated their ability. With this said, the bias can be 

safely assumed to exist to an equal extent in both the Copilot and control groups (as they were 
created to have the same composition using a random selection process within each experience 

level), meaning the relative comparisons between experience levels remain valid. 

 
Similarly, participants may have under-reported performance metrics such as the time spent 

developing and debugging their code – the effect of this can is also negated by the 

assumption that this tendency was equally present in both groups. 

 
Biases may have affected sentiment data surrounding Copilot, as it is likely that those who 

volunteered for the Copilot experiment did so because they were interested or enthusiastic about 

the tool. It is also possible that participants joined to demonstrate that the tool did not influence 
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their performance, but it seems likely that the positive bias would outweigh this negative bias. 
It is therefore possible that the positive overall sentiment results may be a consequence of the 

participant population's positive predisposition toward the tool. 

 

5.2. Summary and Future Work 
 

This paper presents evidence on the impacts that GitHub Copilot may have on productivity, code 
quality and code security in ANZ Engineering. The results suggests that Copilot has a 

statistically and practically significant impact on productivity and code quality. The group that 

had access to GitHub Copilot was able to complete their tasks 42.36% faster than the control 

group participants. This result is statistically significant. The code produced by Copilot 
participants contained fewer code smells and bugs on average, meaning it would be more 

maintainable and less likely to break in production. These observations were also shown to be 

statistically significant. The experiment could not generate meaningful data which would 
measure code security. However, the data suggest that Copilot did not introduce any major 

security issues into the code. 
 

The experiment yielded conclusive results regarding user sentiment toward GitHub Copilot. 

Participants felt it had a "positive effect" on their ability to review and understand existing code, 
create documentation of their code, and create unit tests for their code. They felt it helped them 

spend "a bit less time" debugging their code and that they would have spent "a bit more time" 

producing the same code without GitHub Copilot. They felt the suggestions they received were 

"somewhat helpful" and aligned with their coding standards "well". While the sentiments were 
uniformly positive in valence, they were all moderate; in none of the surveyed areas did the 

median participant respond with the maximum degree of positivity. The qualitative 

feedback from the participants suggests that there are areas of improvement for Copilot to be 
more effective in improving the developer’s experience. 

 

However, considering the quantitative and qualitative analysis of the data generated in this 

experiment and subject to further analysis on security of the code suggested by Copilot, it is 
recommended to productionise GitHub Copilot at ANZ Bank. 

 

In conclusion, this research provides compelling evidence of the transformative impact of 
GitHub Copilot on engineering practices at ANZ Bank. The adoption of this tool has marked a 

shift in the work paradigm, empowering engineers to focus more on creative and design tasks 

while reducing 
 

time spent on repetitive coding. As of the writing of this paper, GitHub Copilot has already seen 

significant adoption within the organization, with over 1,000 users using it into their workflows. 
Concurrently, a detailed investigation into the productivity improvements attributable to GitHub 

Copilot is underway. This ongoing study aims to quantify the tool's impact on operational 

efficiency and overall performance at ANZ Bank. 
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