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ABSTRACT 
 
Handwriting classification based on a writer's demographics, such as gender and 

handedness, has been an essential discipline in forensic science and biometric security. 

Although there are already experts in forensic science called Forensics Document 

Examiners, their work can be affected due to a lack of efficiency and the risk of human 

errors. As there are only limited studies on handwriter demographics problems using 

Convolutional Neural Networks (CNN), this research implemented a system that predicts 

the gender, handedness, and combined gender-and-handedness of offline handwritten 
images from the IAM Handwriting iDatabase 3.0 using 2-Layer and 3-Layer CNN with 

Canny Edge Detection (CED). The researchers found that the base model 2L-CNN without 

CED had the best performance in the binary classes, gender, and handedness, with an 

overall accuracy of 68.5% and 89.75%, respectively. On the other hand, 3L-CNN without 

CED had the best average accuracy of 51.36% in the combined gender-and-handedness 

class. It was observed that Canny Edge Detection is not an effective preprocessing 

technique in handwriting classification as it worsened its counterpart’s performance, 

without CED, in most of the models. 
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1. INTRODUCTION 
 

Handwriting identification and analysis has been an essential discipline of forensic science, as it 
can serve as crucial evidence in court testimonies in certain situations. Experts in the field are 

called Forensic Document Examiners (FDE), and they aid in criminal investigations by 

identifying the authenticity of documents in cases such as fraud, forgeries, theft, etc. Through 
forensic handwriting analysis, helpful information can be gathered just by examining the 

handwritten texts, which could reveal the demographics of the writer, such as gender and 

handedness, which can significantly help identify possible suspects. The process requires many 
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steps that an FDE must follow to arrive at a conclusion that is as accurate as possible. However,  
forensics experts can still be prone to misinterpretations despite thorough examinations due to 

human error. This is the primary motivation behind the creation of automated systems, as they 

can reduce humans’ subjectivity regarding sufficiency determination, quality decisions, feature 

selection and extraction, feature matching, and interpretation [1]. 
 

Nonetheless, despite many studies and enhancements regarding handwriting automated systems, 

they still have a long way to go before reaching the analysis capabilities of humans [2]. Further 
development is still needed before they can be used in forensic document examination, as they 

still have more potential for improving performance in terms of the computational speed and 

accuracy of the algorithms. That is why it is essential to continue advancing on the subject to 
supplement FDEs with their work and evaluation eventually. 

 

Optical Character Recognition (OCR) is a field of study in pattern recognition, computer vision, 

and artificial intelligence that is tasked with accurately differentiating and recognizing printed 
text divided into two forms: online text and offline text [3]. Online text must be identified while 

written, whereas offline text merely needs a static representation that can be typed or handwritten. 

Numerous methods for recognizing handwriting include Convolutional Neural Networks (CNN), 
Incremental Recognition Methods, Line and Word Segmentation Methods, Zoning Methods, etc. 

Convolutional neural network (CNN) technology has been one of the most popular approaches 

that has been demonstrated to have a high accuracy rate and be effective in various handwriting 
recognition systems [4]. 

 

Edge detection is another fundamental technique used in image processing. Many edge detection 

algorithms have been developed that enhanced their abilities to evaluate effective edges to restrict 
false detection of edges, edge localization, and computational time [5]. Using edge detection, the 

object limits considered are instrumental during the stages of detection and segmentation [3]. 

Standard edge detection techniques include Prewitt Edge Detection, Sobel Edge Detection, Kirsch 
Edge Detection, Laplacian Edge Detection, and Canny Edge Detection. 

 

One of the most popular edge detection methods is Canny Edge Detection (CED), which offers a 

better solution with a faster processing time thanks to its straightforward calculation process, 
better detection results compared to other methods of detection [6, 5], and the ability to retain 

important information filtered from the original image [7]. 

 
The main objective of this research paper is to develop a system that predicts the gender and 

handedness from offline handwritten images using 2-layer and 3-layer Convolutional Neural 

Networks with Canny Edge Detection. Meanwhile, the specific objectives of the study are the 
following: to determine the accuracy of 2-layer and 3-layer CNN when implemented with and 

without CED in predicting (a) gender, (b) handedness, and (c) combined gender-and-handedness 

in offline handwriting, and to test if there is a significant improvement in the performance of the 

system in terms of accuracy when the following was implemented: 2-layer CNN with and without 
CED, and 3-layer CNN with and without CED. 

 

The researchers followed the study of (1) Morera et al. (2018) [8], which made use of use bilinear 
interpolation in resizing images, while this study utilized padded resizing, and (2) Ahlawat et al. 

(2020) [9], which used different multi-layered CNN architectures, and focused on deepening their 

studies by researching and applying the Canny Edge Detection algorithm as a preprocessing 
technique. 
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2. RELATED WORKS 
 
The following are the reviews of related works in predicting gender and handedness using the 

Canny Edge Detection and Convolutional Neural Networks. 

 

2.1. Canny Edge Detection 
 

Canny edge detection is an algorithm that can detect noise-suppressed edges in an image and was 
proposed by John F. Canny in 1986 [10]. In this technique, the image is smoothed using a 

Gaussian filter. Then, it determines the image's intensity gradient, including its edge magnitude 

and direction. The canny edge determines edge points by applying non-maximal suppression to 

the gradient magnitude. The non-maximal suppression post-processing method is used to soften 
the edges of an image. Once prospective edges have been identified, a double threshold is used 

to finalize them by suppressing weak edges and leaving only the strong ones (Liu & Mao, 2018; 

Rabby et al., 2018) [6, 7]. The Gaussian filter's principle of smoothing makes error detection 
effective. The presence of the non-maximal suppression also brings out the advantage of 

improving the signal with respect to the noise ratio. Its thresholding mechanism allows Canny 

Edge to detect edges when noise is present. The lengthy computation of the Canny edge is due 

to its complex computation, as explained by Shah et al. (2020) [10]. 
 

Like other edge detection algorithms discussed, Canny Edge has various computer vision, 

medical imaging, and handwriting recognition applications. Kanagarathinam et al. (2019)[11] 
used Canny edge detection as one of its feature extraction algorithms for their research on the 

steps involved in text recognition and research on Optical Character Recognition (OCR). The 

research methodology is as follows: preprocessing, feature extraction, recognition, and post-
processing. For the preprocessing, the initial step was to adjust the contrast and eliminate the 

noise from the image. The next step was thresholding to remove the noise if present, followed by 

page segmentation for separating graphics from the text. The next step is text segmentation to 

separate individual characters, followed by morphological processing or image enhancement. 
After the preprocessing, the researchers continued by applying spatial image filters or edge 

detection algorithms to eliminate high and low frequencies to enhance the edges of the image 

further. Text recognition was performed after these techniques and segmenting the characters 
from the original image. The proposed algorithm was then compared on the CVSLD, CPAR, and 

Chars74k Latin script database. The recognition rate for multilingual characters yielded 97.33%, 

98.26%, and 97.10% respectively. Premananada et al. (2020) [12] also made use of Canny edge 

detection in their proposed study on the design and implementation of automated handwriting 
sentence recognition using hybrid techniques on a Field-programmable gate array (FPGA). 

 

The research methodology used Canny Edge to improve the quality of the image by removing the 
pixels or noise terms in an image. According to the researchers, the study aims to formulate a 

real-time application that deals with handwritten identification, enabling a comprehensive 

computerized system to recognize handwritten data, which is more efficient and free from noise. 
Aside from the Canny edge detection algorithm, the filters used are based on Probabilistic Patch 

(PPB) identification. After the handwritten recognition with the help of the edge detection 

algorithm, the text is then classified by the database. 

 

2.2.  Convolutional Neural Network 
 
Convolutional Neural Network (CNN) is a neural network with a deep structure where multiple 

layers are trained robustly and is widely used in computer vision [13]. It is a prominent topic 

regarding image recognition and classification [13, 14], but deep learning, in general, is still an 
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active field in research [15, 14]. The core structure of a CNN includes (1) the convolutional layer, 
(2) the pooling layer, and (3) the fully connected layer. The convolutional layer isolates small 

areas of the image to determine their eigenvalues. However, if the convolutional kernel (weight 

filter) is bigger, image classification will be effective. To reduce the data dimension and prevent 

overfitting, the pooling layer downsampled the small regions of the images. Depending on the 
CNN architecture being used, this could be repeated. Still, after the characteristic data has been 

extracted, it will be sent to the following layer to create a fully connected layer that will be used 

to categorize and provide the result. The error of each layer is calculated to update the weight of 
each layer for the backpropagation training using the output result and the expected outcome. 

These repeated processes train the CNN to obtain suitable parameters to recognize images 

correctly [16, 14, 17]. With this core structure in mind, various research studies considered 
different CNN architectures to improve previous studies. 

 

The study of Husnain et al. (2019) [18] proposed an architecture of a 2-layered CNN that uses the 

nonlinear rectification units (ReLu) function as the activation function. Their study focusedon 
Urdu Handwritten Numerals recognition with a result of 98.3% and Urdu handwritten character 

recognition with 96.04% accuracy, which overall showed that the proposed CNN model produced 

better accuracy compared to previous studies that used other classification models in predicting 
Urdu handwritten numerals and characters. Similarly, Morera et al. (2018)[8] used a CNN 

architecture with two layers. However, their study is regarding gender and handedness prediction. 

Specifically, Morera et al.’s (2018) [8] architecture has two stacks of convolutional and pooling 
layers and two final dense layers without padding to preserve spatial size. Moreover, all hidden 

layers have the ReLu function, and the output layer utilizes the SoftMax activation function. An 

important thing to note is that the binary class classification, namely “gender” and “handedness,” 

was trained with Stochastic Gradient Descent. Still, the multiclass “gender-and-handedness” was 
trained with the Adam optimization algorithm. As aforementioned, their study achieved 68.90% 

accuracy in gender prediction, 70.91% in handedness prediction, and 70.84% in combined 

gender-and-handedness prediction using the KHATT Database, while with the IAM Database, 
80.72% accuracy was achieved in gender prediction, 90.70% in handedness prediction, and 

83.19% in combined gender-and-handedness prediction. 

 

3. METHODOLOGY 
 
This section discusses the methodology used in this research. 

 

3.1. Data Gathering and Preparation 
 

The English offline-handwritten text dataset, the IAM database, that Morera et al. (2018) used 

was also used in this study. The database contains XML files as metadata for the writers, and with 
this, information regarding the writers’ gender and handedness was extracted from the file and 

used to label the images of handwritten texts appropriately. The database includes both an online 

and an offline version, but the researchers used the offline version, as pertained in the study’s 
title. 

 

3.2. System Architecture 
 

The system architecture shown in Fig. 1 displays the different processes implemented in creating 

the Gender and Handedness Prediction System for Offline Handwriting. There are three phases 
contained in the system architecture: (1) Data Preparation, (2) Preprocessing, and (3) 

Classification. 
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The input section includes the Data Preparation phase. The original line images were split into a 
train and test set, after which word segmentation was performed. Data augmentation, which 

consists of scaling, rotation, dilation, and erosion, was applied to the train set images, which 

increased their amount and were split again into training and validation sets. Meanwhile, the 

testing dataset remained as is. All input images were resized by adding paddings with a uniform 
size of 30h × 100w resolution. Regarding the training and validation dataset, for both gender 

and handedness, 100,000-word images that have already gone through data augmentation 

(synthetic images) were used for training. Moreover, 20,000 and 25,000 synthetic images were 
used for validation datasets of gender and handedness, respectively. For the combined gender and 

handedness problem, 130,000 synthetic images were used as the training dataset, and 20,000 

images were used for the validation dataset. The next phase is the Preprocessing phase, which 
includes Thresholding, Canny Edge Detection, and Normalization of the prepared images. 

Implementation-wise, the thresholding step is already built-in within the Canny Edge Detection 

function in the sklearn Library. 

 
Table 1. Total Produce Trained CNN Models 

 
 

12 Produced Models 

4 Architectural Models 3 Classes 

*2L_CNN without CED  

(1) For gender 

(2) For handedness 

(3) For gender-and-handedness 

**2L_CNN with CED 

**3L_CNN without CED 

**3L_CNN with CED 

 
* base models; ** tuned models 

 

 
 

Figure 1. System Architecture 
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The classification phase used the preprocessed training and validation images as input for CNN 
training with hyperparameter tuning. Then, the preprocessed testing images were used to test the 

models with the trained CNN model. A majority voting scheme is done to finalize the prediction 

per test line image. The predicted subclass, e.g., male or female, with the majority of the votes, is 

chosen to be the subclass of the whole line image. The hidden layers in the systemarchitecture 
correspond to the number of CNN layers in which two hidden layers correspond to 2-layered 

CNN (2L-CNN) while three hidden layers correspond to 3-layered CNN (3L-CNN). Each of the 

four architectural models will have a corresponding classification model for each class, as shown 
in Table 1. 

 

For each produced model, the input shape is a constant 30 height × 100 width resolution. All the 
convolutional layers used zero padding to preserve their size. The ReLU activation function was 

also used. A dropout layer and a max pooling layer followed the activation function. A flattened 

layer was applied after the last convolutional layer, followed by the first dense layer. Finally, 

the kernel size is 5 × 5, the max-pooling size is 2 × 2, and the number of units/filters for the dense 
layer, right before the output layer, is 512. For the base models, the first hidden layer used 128, 

64, and 32 filters for gender, handedness, and gender-and-handedness, respectively, which 

doubled every hidden layer, e.g., 128 and 256 for the 2nd and 3rd layers of the handedness 
models. The dropout has a value of 0.25 for each hidden layer, and the first dense layer has a 

dropout value of 0.5. The optimizer functions utilized a 0.001 learning rate and 1x10-7 weight 

decay. For the tuned models, Bayesian Optimization was used to get the best hyperparameters, 
and similarly to the base model, zero-padding was also used. Only the first hidden layer filter was 

tuned, doubling the following hidden layers. 

 

3.3. Hypotheses and Assumptions 
 

This study aimed to compare the performance of gender and handedness prediction from offline 
handwritten images through the application of Convolutional Neural Networks based on the 

approaches of previous studies by Morera et al. (2018) and Ahlawat et al. (2020), with the 

addition of Canny Edge Detection. Thus, the following hypotheses were derived: 
 

3.3.1. 𝐻𝑜 : There is no significant improvement in the performance of the 2L-CNN model 
when implemented with CED* 

  𝐻 𝑎 : There is a significant improvement in the performance of the 2L-CNN model when 
implemented with CED* 

 

3.3.2. 𝐻 𝑜 : There is no significant improvement in the performance of the 3L-CNN model 

when implemented with CED* 

 𝐻 𝑎: There is a significant improvement in the performance of the 3L-CNN model when 

implemented with CED* 
 

3.3.3. 𝐻 𝑜 : There is no significant improvement in the performance of 2L-CNN with CED 

when 3-layer was implemented* 

𝐻 𝑎 : There is a significant improvement in the performance of 2L-CNN with CED 
when 3-layer was implemented* 

 
 

*in predicting (a) gender, (b) handedness, and (c) combined gender and handedness in offline 

handwriting. 
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3.4. Statistical Treatment of Data 
 

Slovin’s formula, shown in equation (1), was used to reduce significantly the number of inputs 

utilized for the hyperparameter tuning process to increase time efficiency. This is used in 
determining the sample size of a population in which nothing is known. To determine the 

sample size, it was computed with an error tolerance of 0.01, where 𝑁 is the population of the 

synthetic images per class and 𝑒 is the error tolerance. 
  

 
In testing, the statistical treatment of data used is standard classification metrics such as overall 

accuracy, average accuracy, precision, recall, and F1-score, which were used to measure the 

system’s effectiveness and draw the appropriate conclusions. Equations (2), (3), (4), and (5) show 
the formulas for the metrics mentioned earlier. 

  

 
 

Following Morera et al.’s (2018) study, precision and recall equations (6) and (7) are used to 

calculate the F1-score for the multiclass gender-and-handedness, where l = 4, representing the 
four subclasses of the multiclass. 

 

 
 

Equations (8), (9), (10), and (11) can then be calculated for True Positive (TP), True Negative 

(TN), False Negative (FN), and False Positive (FP), respectively, where l = 4 also. 
 

 
 

To compute the accuracy of each model for the multiclass gender-and-handedness using the 
equations (8), (9), (10), and (11), equation (12) was utilized for the average accuracy, where l = 4 

as well. 
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For the statistical analysis of the results, the Wilcoxon Signed-Rank Test, a non-parametric test, is 
used since the datasets have non-normal distribution due to the majority voting scheme. Since the 

objective is to know whether there is an improvement between the models being compared, a 

one-tailed test with a 0.05 significance level (α=0.05) is required, wherein if the p-value is less 

than the significance level (p<0.05). the null hypothesis is rejected. The formula for getting the p-
value of the Wilcoxon Signed-Rank Test is shown in equation (13), where W+ is the positive 

rank sum of the positive differences of the paired accuracies from the compared models, and n is 

the number of handwriting input images. 
 

 
 

With the aforementioned statistical metrics and methods above, a comparison was made between 
the different models and determined which model produced the best accuracy in predicting 

gender, handedness, and gender-and-handedness. 

 

4. RESULTS AND DISCUSSION 
 
The actual training of the models was preceded by the hyperparameter tuning, where Slovin’s  

formula was used, and then, the testing was done to determine the accuracy of the models. 

 
Table 2. Standard hyperparameters of the Base Models, the Best Hyperparametrs of Tuned Models, and the 

Maximum Number of Epochs During the Training Process 

 

Base Models 

Model f dl dd lr wd epochs 

G-2L-NC 128 0.25 0.5 0.001 1e-7 194 

G-2L-NC 64 0.25 0.5 0.001 1e-7 411 

GH-2L-NC 32 0.25 0.5 0.001 1e-7 122 

Tuned Models 

Model f dl dd lr wd epochs 

G-2L-WC 32 1e-4 0.5 0.01 2.32e-7 84 

G-2L-WC 128 0.5 1e-4 0.01 1e-8 79 

GH-2L-WC 96 0.5 0.5 1e-4 1e-8 78 

G-3L-NC 128 1e-4 0.5 0.01 1e-8 190 

G-3L-NC 128 0.5 0.5 0.01 1e-06 177 

GH-3L-NC 32 0.5 0.5 1e-4 1e-6 148 

G-3L-WC 128 1e-4 1e-4 0.01 1e-8 94 

G-3L-WC 128 1e-4 0.5 0.01 1e-6 64 

GH-3L-WC 32 0.5 0.5 1e-4 1.91e-8 197 

 

The hyperparameters that were tuned are filters (f), dropout regularization for all convolutional 

layers (dl), dropout regularization for the dense layer before the output layer (dd), and the 
learning rate (lr), as well as the weight decay (wd), for the optimizer function. The tuning is 

done for all models of each class, which are gender (G), handedness (H), and combined gender-

and-handedness (GH), on 2-layered (2L) and 3-layered (3L) CNN, With (WC) andWithout 
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(NC) CED, except for the base models (2L-CNN without CED). Table II shows the best 
hyperparameters found by the Bayesian Optimization tuning technique for each of the nine tuned 

models, as well as the standard hyperparameters of the base models for comparison, together with 

the maximum number of epochs during training after the Early Stopping was called. 

 
Table 3. Performance Results of 2L-CNN for Each Class 

 
 

Subclass Metrics With CED % Without CED % 

GENDER 

M  

F1-score 

63.76 73.06 

F 46.58 62.11 

 Overall Accuracy 56.81 68.50 

HANDEDNESS 

R  

F1-score 

85.85 94.35 

L 22.77 45.25 

 Overall Accuracy 76.08 89.75 

COMBINED GENDER-AND-HANDEDNESS 

RM  

F1-score 

55.79 55.08 

LM 19.69 15.13 

RF 48.72 42.73 

LF 24.72 21.11 

 Average Accuracy 48.61 45.11 

 

The testing results were based on the accuracy and F1-scores of all the models for each class, in 
which Tables 3 and 4 show the performances of 2L-CNN and 3L-CNN models, respectively. 

 

For the statistical treatment, comparisons were made between 2L-CNN with and without CED 

and between 3L-CNN with and without CED to determine if there was a significant improvement 
when Canny Edge Detection was applied to the models. Additionally, 2L-CNN and 3L-CNN, 

both with CED, were also compared to identify if there was any significant improvement when an 

additional layer was implemented. The one-tailed Wilcoxon Signed-Rank Test was implemented 
with the scipy.stats module. 

 

To find out if there is a significant improvement between the accuracies of the two 2L-CNN 

models, which are with and without CED, the hypotheses were: 
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Table 4. Performance Results of 3L-CNN for Each Class 

 

Subclass Metrics With CED % Without CED % 

GENDER 
 

M F1-score 64.76 64.53 

F 46.77 46.51 

 Overall Accuracy 57.59 57.35 

HANDEDNESS 

R  

F1-score 

84.74 91.53 

L 24.89 38.83 

 Overall Accuracy 74.63 85.12 

COMBINED GENDER-AND-HANDEDNESS 

RM  

F1-score 

58.16 56.48 

LM 25.26 28.41 

RF 48.95 51.59 

LF 20.22 31.07 

 Average Accuracy 50.47 51.36 

 
Regarding the significant improvement between the accuracies of the 3L-CNN, with and 

without CED, the hypotheses were: 

 

 
 
Table  5. One-Tailed Wilcoxon Signed-Rank Test Results Between the Accuracies of the Compared Models 

 

Compared Models Gender Handedness Gender-and- 

handedness 

2L-CNN With versus Without CED 0.95096 > 0.05 1.0 > 0.05 0.00032 < 0.05 

3L-CNN With versus Without CED 0.52402 > 0.05 1.0 > 0.05 0.98815 > 0.05 

2L-CNN versus 3L-CNN, With CED 0.80659 > 0.05 0.99768 > 0.05 0.02633 < 0.05 

 

Lastly, 2L-CNN and 3L-CNN, both with CED, were compared to determine if there was a 

significant improvement between the accuracies of the models. The hypotheses were as follows: 
 

 
 

And for all the hypotheses, the null hypothesis will be rejected if the p-value is less than the 

0.05 significance level. Table 5 shows the results (p-value – alpha) of the Wilcoxon Signed-
Rank Test computation. 

 

It can be inferred that there was a significant improvement in the combined gender-and-
handedness on 2L-CNN. However, the 3L-CNN did not improve at all when CED was applied. 

On the other hand, between the 2L-CNN and 3L-CNN (both with CED), there wasa significant 
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improvement in adding another layer to the combined gender and handedness class. At the same 
time, there was no significant improvement for both the gender and handedness classes. 

 

5. CONCLUSIONS 
 

With the study of Morera et al. (2018) and their CNN architecture being utilized but with 
padded resizing instead, as well as the strategy of Ahlawat et al. (2020) on experimenting with 

different multi-layered CNN architectures, this study focused on 2L-CNN and 3L-CNN (multi-

layered CNN), with binary (gender and handedness) and multiclass classifications (gender-
handedness). 

 

In terms of applying CED to the models, CED only significantly improved the 2L-CNN and 3L-

CNN on multiclass classification. 
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