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Abstract. The CSAI-4-CPS model leverages federated learning to collaboratively train machine
learning models, providing accurate and up-to-date results while preserving data privacy. This
approach is particularly beneficial in complex and dynamic Cyber-Physical Systems (CPS) envi-
ronments where traditional centralized machine learning models may fall short. This paper presents
the first validation of the CSAI-4-CPS model using a framework implemented for an IoT system
and describes the new features of its expanded version. Real-time threat detection, consideration
of false positives, and verification and validation of results on nodes that benefit from federated
learning are among these new capabilities. It also compares the results obtained with and without
the model. IoT systems often represent the most challenging scenarios in CPS cybersecurity, and
in most cases, IoT devices are part of a more complex CPS structure, where they are usually the
most vulnerable assets. The application of CSAI-4-CPS to predict malicious traffic in Internet of
Things (IoT) networks appears promising. The results demonstrate that the model effectively de-
tects intrusions in these datasets. By employing federated learning and a self-adaptive architecture,
the model maintains its accuracy and relevance as new data emerges.
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1 Introduction

The increasing adoption of IoT (Internet of Things) devices in modern society has
raised concerns about the security of these devices and the confidentiality of the
data they generate. The security of these devices can be improved by employing
machine learning models designed for intrusion detection, capable of identifying
and thwarting cyberattacks. However, applying machine learning models to IoT
devices presents several challenges.

In addition, the centralized solutions for handling the large amounts of data
generated by these devices, that prevent malicious actors and cyberattacks (for ex-
ample, Intrusion Prevention Systems - IPS and Intrusion Detection Systems - IDS)
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used to protect IoT devices, can do not address adequately the privacy concerns.
Especially when using a traditional approach that involves sharing data from the
nodes to detect and respond.

The use of sensitive IoT data also raises significant privacy concerns because this
data often contains sensitive information that must be protected. To overcome these
challenges, security solutions for IoT often combine edge computing (to process data
closer to the source), federated learning (for privacy-preserving collaborative model
updates), and lightweight cryptographic techniques to ensure both security and
privacy without overburdening the IoT devices.

In this context, federated learning emerges as a promising solution to protect
IoT devices against cyberattacks while preserving data privacy. Federated learning
is a distributed machine learning training method in which the data remains on user
devices, preserving data privacy, while the model is trained collaboratively [28]. This
approach enables the data to remain on the devices where it was generated while
the model is trained by all participants.

This task includes ensuring the quality and improving the accuracy of the train-
ing data, managing the communication between the central server and the user
devices, and dealing with the potential for data imbalance across user devices.

While federated learning offers a promising solution for preserving data pri-
vacy in network IoT intrusion detection systems, there are still several challenges
that must be overcome to ensure its effective implementation. This is where ma-
chine learning, and more specifically, federated learning, can play a significant role.
Federated learning can be particularly useful for intrusion detection in scenarios
where privacy is paramount, such as in healthcare or industrial IoT. It is also valu-
able in scenarios where IoT devices have limited connectivity to central servers,
or where regulatory constraints limit data sharing across borders or between or-
ganizations [8]. In summary federated learning enhances the capabilities of IDSs
by enabling collaborative, privacy-preserving, and scalable machine learning across
distributed IoT devices, which is critical for the dynamic and diverse nature of IoT
security threats. Integrating Intrusion Detection Systems with Federated Learning
aims to preserve user privacy, enhance anomaly detection accuracy, minimize net-
work bandwidth usage, ensure system scalability, maintain robustness against un-
even data distribution, and facilitate ongoing adaptive learning in the ever-evolving
cybersecurity landscape.

Feature selection and an adequate pre-process in each dataset node are es-
sential steps in building local machine learning models that can effectively detect
cyberattacks on IoT devices. These tasks involve identifying the most relevant data
features that are most predictive of the target variable while discarding irrelevant
or redundant ones that may introduce noise and reduce model accuracy.

Selecting features for machine learning models remains a challenging task, par-
ticularly in the context of IoT devices, where data is often unstructured and com-
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plex. Therefore, developing effective feature selection methods that can be combined
with federated learning is critical for the development of accurate and privacy-
preserving intrusion detection models. Therefore, addressing these challenges is
fundamental to the development of effective and privacy-preserving IoT network
intrusion detector systems. These systems are becoming increasingly important as
IoT devices continue to be integrated into various aspects of our daily lives.

This paper expands and validate a solutions for achieving privacy-preserving IoT
intrusion detection using the CSAI-4-CPS model characterize in [10]. The work em-
phasizes the importance of federated learning in training machine learning models
collaboratively, enabling accurate and up-to-date results while safeguarding data
privacy. In addition to presenting and describing the CSAI-4-CPS model, the paper
presents a validation of the proposed method by implementing a framework based
on the model and highlighting key findings through case studies using realistic data.

The remainder of this work is divided as follows: Section 2 presents some back-
ground and the related work; the CSAI-4-CPS model expanded is presented in
Section 3; Section 4 presents case studies carried out to validate the approach;
the results and discussions can be found in Section 5; finally Section 6 brings our
conclusions and future works.

2 Background and Related Work

This section outlines the concepts that underpin this work and resumes a liter-
ature review. Essentially, it involves subjects focused on cybersecurity, artificial
intelligence, machine and federated learning, and data privacy.

2.1 Background

The concept of cybersecurity is frequently treated as synonymous with information
security; however, cybersecurity extends beyond the traditional boundaries of in-
formation security. It encompasses not only the digital assets but also considers the
users of the systems, focusing on their responsibilities and interaction with the sys-
tems [2]. Notably, cybersecurity is one of the fastest-growing industries today. The
most common threats are the exploitation of vulnerabilities in end-user computers,
IoT devices, web pages, and cryptocurrency technologies; the exposition of data
made available to third parties; the management of security patches; and phishing
attacks [3]. The CSAI-4-CPS model [10] addresses cybersecurity in cyber-physical
systems, considering the protection of computational assets and the role of people
involved in processes and system usage. It can provide relevant guidelines for im-
plementing cybersecurity measures in cyber-physical systems. When we enter the
topic of Artificial Intelligence (AI) in cybersecurity, we see that its adoption is syn-
ergistic and presents great opportunities. However, it brings several challenges to be

    Computer Science & Information Technology (CS & IT)                                        109



overcome. New attack methods will be postulated due to the advancement of tech-
nologies, using technologies that are often still in the state of the art or not trivial
in the field of AI. These technologies increase the degree of sophistication of cyber-
attacks, allowing them to be faster, better targeted, and more destructive [4]. It is
increasingly common to use Botnets, for example, which are normally distributed
logically and geographically. This makes it necessary to build more effective tools,
raise user awareness, avoid cyber incident costs, improve technical knowledge, and
seek market incentives [5].These attacks have evolved from simply obtaining ac-
cess passwords, exploiting backdoors, and denial of service to the use of automated
attacks using bots, botnets, and zombies, the use of force to crack hashes, and
even cryptography exploitation. The propoused model recognizes the importance
of adopting AI technologies to strengthen cybersecurity in cyber-physical systems.
It can provide guidelines for addressing the challenges and developing effective
tools, as well as promoting user awareness and enhancing technical knowledge in
cybersecurity and AI.

The most diverse techniques and approaches can be used in cybersecurity to
protect networks and systems. The work presented by SARKER et al. [6] considers
the most popular AI techniques, which include machine learning (ML) and deep
learning (DL) methods, natural language processing (NLP), Knowledge Represen-
tation and Reasoning (KRR), as well as the concept of knowledge- or rule-based
Expert Systems (ES) modeling, to meet needs related to the use of AI in cyberse-
curity. According to the authors a security model for machine learning is usually
characterized by a set of data related to security events, such as network behavior,
databases, application activities, and users, among others. The authors emphasize
that a major requirement in automating cybersecurity systems is the necessity to
uncover patterns of security incidents or insights from cybersecurity data in order to
construct data-driven models. Furthermore, FENG et al. [7] highlights that a bet-
ter balance between AI, cybersecurity, and data protection in relation to legislative
regulations such as GDPR is required [8]. Our model emphasizes the importance of
utilizing AI techniques such as machine learning and deep learning in data analysis
and decision-making in cyber-physical systems. It can provide relevant guidance for
developing data-driven security models and finding a balance between AI, cyberse-
curity, and data protection, taking into account applicable regulations.

Another useful technique is feature selection, which enables the selection and
utilization of higher quality data subsets, resulting in stronger learning models and
increased prediction accuracy. SILVA et al. [11] sought to comprehend the impact of
feature selection on the performance of supervised machine learning systems during
the classification assignment. The work was able to verify, through experiments on
CPS data, the increase in classification accuracy in machine learning when feature
selection was employed in the pre-processing step. There are two main feature selec-
tion techniques: supervised and unsupervised. Supervised methods can be divided
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into three types [11]: i) wrapper: subsets of features with good performance; ii) filter:
use statistical measures to choose the most relevant attributes; and iii) intrinsic: au-
tomatically select features during training. The main type of unsupervised method
is clustering, which partitions data into k groups. The CSAI-4-CPS model inte-
grates the attribute selection method proposed by SILVA et al. [11], embedding it
within the workflow to identify and retain only the most pertinent attributes before
forwarding them to federated learning local node. This pre-selection process effec-
tively reduces the volume of data that needs to be processed by the local models,
easing the computational load and optimizing network traffic. Consequently, only
the most relevant attributes are shared with the centralized server in the federated
learning (FL) setup, thereby enhancing the overall efficiency and effectiveness of
the system.

Aiming to preserve data privacy, federated learning was proposed, which is a
distributed machine learning approach where several devices at the edge of the
network work collaboratively to train a shared prediction model on top of data
maintained locally by these devices [28], keeping sensitive data private [12] [13].
In this approach, devices at the edge of the network download the global model
and perform a training step on it, generating a local model. After that, the models
updated by all clients are sent again to the central server, which updates the global
model of the server, and sent again to the edges of the network so that the steps can
be repeated for each training round [12] [13]. The federated learning architecture
can be defined as horizontal (the same attributes, but the data sources are different),
vertical (similar samples, and it is necessary to intersect the spaces of the samples
to test the model), or by transfer (participants only transfer knowledge from one
model to another without exposing the used dataset).

2.2 Related Works

Some works propose different learning techniques to improve the algorithm’s per-
formance and capacity for detecting attacks. The work by JAHROMI et al. [14]
present a method utilizing a stacked autoencoder in an unsupervised manner. This
technique is designed to process original features and distill them into a more com-
pact, reduced-dimensional representation. Besides, six classification algorithms were
analyzed to verify the efficiency of the proposed technique. The results showed an
improvement in the performance of all algorithms, with a special result for weak
algorithms on unbalanced data.

In the research conducted by SIDDIQUE et al. [15], a novel approach is em-
ployed that merges lateralization with modular learning throughout varying stages
of abstraction in a machine learning system designed for classifying images. The
findings indicate that this system adeptly masters hierarchical knowledge structures
and exhibits a performance that rivals or surpasses contemporary advanced deep
learning systems, especially when it utilizes a variety of representations.
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To train and create a robust intrusion detection model for IoT devices, SHAHID
et al. [16] propose the use of federated learning techniques. Their approach suggests
a decentralized and cooperative method for training machine learning models that
complies with GDPR regulations by maintaining user data on the local IoT de-
vice. The approach evaluation uses three different use cases to show the security
enhancements, resulting in a more reliable model. They also conclude that the way
the dataset is distributed impacts performance. Our proposal also considers the
Federated Learning (FL) technique, but it is complemented with feature selection
(SF) to optimize the process. Moreover, our approach self-adapts the model, consid-
ering the false positives, to refine the model that returns to the server for retraining.
Our goal is to propose a methodology that uses FL, SF, and end-user knowledge
as possible techniques to classify broad types of intrusion.

The work published in ALVES et al. [17] presents MLPrivacyGuard, which
implements a countermeasure against black-box model inversion attacks. This pre-
ventative strategy involves the introduction of deliberate noise into the output pro-
duced by a confidence function. The work corroborates with the present research
when it highlights the importance of preserving the accuracy of the prediction or
classification for the real users of the model, preventing intruders from deducing
confidential data. This involves constantly seeking to balance the trade-off between
classification error and effectiveness in the detention of attacks.

KANIMOZHI and JACOB [18] develop a system to detect a Botnet attack
classification based on Artificial Neural Networks, presenting exceptional perfor-
mance. The authors suggest that the proposed system is capable of being deployed
in machinery for analyzing standard networks, monitoring traffic in real time, and
managing Cyber-Physical Systems (CPS). Attack detection is also the focus of the
study published in CAO et al. [19], which proposes agnostic attack detection in
interactive recommendation systems based on reinforcement learning. The study
demonstrates, via comprehensive experimentation, that the majority of adversarial
attacks prove to be effective, with the intensity of the attacks and the rate at which
they are carried out both influencing the overall effectiveness of the attacks.

HU, ZHU, and LIU [20] also employed reinforcement learning to design an
adaptive approach based on Bayesian classifiers to improve the cost-effectiveness of
attack identification and the interactions between the attacker and network mod-
eling. Also, it formulates the advocacy problem as a partially observable Markov
decision-process problem. Furthermore, it leverages Thompson sampling to esti-
mate transition probabilities and uses reinforcement learning to choose optimal
detention actions using measured utility values. The performance of the algorithm
was verified through numerical simulations based on real-world attacks.

The work published in XU et al. [21] investigates the evolutionary process,
which captures the natural interactions and evolutions of attackers and defenders,
as well as their strategies to launch data integrity attacks and protect IoT systems,
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respectively. The realistic IoT environment simulator (WCPS) was used, and the
results indicate the effectiveness of defensive strategies in protecting against various
forms of data integrity attacks with increasing time and knowledge throughout the
evolutionary process.

It is noted that the works presented in this section meet specific demands and
complex contexts in their niches. Therefore, they do not configure a framework that
can guide a model or the construction of more generic solutions, as is the case of
the CSAI-4-CPS proposal.

3 The CSAI-4-CPS Model

The CSAI-4-CPS model is designed based on two main parts, one that is responsible
for the feature selection process and the other responsible for horizontal federated
learning. The next subsections describe the model and give details about its imple-
mentation (the framework). Figure 1 exemplifies the model and the Figure 2 shows
the framework.

3.1 The Model Description

The first part of the model is responsible for data preprocessing and feature se-
lection. Three feature selection methods are used: filter, wrapper, and embedded.
Each method should generate its own list of the best features. From these lists, the
10 main attributes of each of the methods are selected, which will be used for classi-
fication tests using the Random Forest algorithm, as suggested in the work of [11].
The output of this process will be the highest accuracy found and the correspond-
ing features. In the case of a tie, the set with the lowest number of characteristics
will be selected.

Horizontal federated learning is the focus of the second part of the model. A
main loop is created that iterates four times, representing rounds of detecting and
correcting data (false positives and false negatives) for each client. Each client itera-
tion performs the following steps: i) extracts and stores its dataset locally; ii) makes
predictions using the global model on the unlabeled data; iii) corrects misclassified
data (false positives and negatives); iii) preprocesses the newly corrected dataset;
and iv) combines it with existing datasets for further training of the global model
and client models.

The training of the global model updates the model weights based on the cor-
rected data from the clients, simulating the correction of false positives and nega-
tives. The process is repeated multiple times, recording training accuracy metrics
and checking if the current accuracy is higher than the previously recorded best
accuracy. Training is stopped if accuracy does not increase after a specific number
of rounds.
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The items inside the light green box in the middle of Figure 1 represent the
feature selection, machine learning, and federated learning in the local process. This
part represents the pipeline of machine learning associated with feature selection, as
explained before. This process involves the items 1 until 3. The horizontal federated
learning starts in item 4.1, where the process begins with the initialization of a
global model. This model is typically pre-trained on a large dataset or initialized
randomly. Furthermore, the data is distributed across multiple client devices or
nodes. Each client has its own local dataset, which may have variations, such as
different data samples or distributions.

Fig. 1. CSAI-4-CPS Model for Intrusion Detection

The leftmost box of Figure 1 (the pink one), represents the CSAI-4-CPS model
[10] that is expanded by this work to handle data collected and the constant mon-
itoring, where the prediction of potential attacks takes place. The data may have
been the target of physical attacks (defective devices) and/or cyberattacks, whether
intentional or not. Part of this data is used to train the model locally to ensure data
privacy by not sharing it with other nodes. A report is generated with the results
of the prediction process plus the false positives and negatives indication. At this
point, humans interact with the model to analyze if any action needs to be taken.

The rightmost box (the light blue one) is where the models of each participant
are exported to a platform that compares the models received by its n participants
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(nodes) and aggregates and generates a new global model using the techniques
of federated learning. After characterizing the best model, it is returned to its n
participants. This process is done in a feedback way, creating a virtuous cycle of self-
adaptation of the learning models of all participating nodes for the identification of
cyberattacks in the datasets. In the next round, all nodes will take advantage of the
new version of the model, which was obtained in collaboration with all participants.

3.2 Framework Implementation Details

We use Colab [22] and Keras [24] because they are popular tools for implementing
the framework, as both provide an accessible, user-friendly, and powerful platform
for developing federated learning models. Colab, short for Google Colaboratory, is
a free, cloud-based platform for developing and running machine learning models
using Python. It offers a Jupyter notebook environment with access to Graphics
Processing Units (GPU) and Tensor Processing Units (TPU) resources, making it
a popular choice for data scientists, researchers, and machine learning practitioners
[22] [23]. In addition, the users can access pre-built libraries and frameworks, such
as TensorFlow, Keras, and PyTorch [22] [23]. The implementation framework code
is available on the GitHub repository for the project CSAI-4-CPS 1.

With Colab, users can write and execute Python code in a web browser, without
the need to install any software on their computer. Colab notebooks can be easily
shared and facilitate collaboration with others. In addition, the users can access pre-
built libraries and frameworks, such as TensorFlow, Keras, and PyTorch [22] [23].

Keras is a high-level open-source neural network library written in Python. It
was developed as a user-friendly interface for building and training deep learning
models, and it can run on top of various backends such as TensorFlow, Theano,
and Microsoft Cognitive Toolkit [23]) [24]. Keras also offers a wide range of built-in
functions and tools for data preprocessing, model evaluation, and visualization. It
has a large and active community, which contributes to its ongoing development
and improvement. Keras is widely used in various domains, including computer
vision, natural language processing, and speech recognition, among others [24].

Keras provides a simple and intuitive interface for constructing neural networks,
allowing users to quickly build and train models without requiring in-depth knowl-
edge of the underlying algorithms. It supports various types of neural networks, in-
cluding convolutional neural networks (CNNs), recurrent neural networks (RNNs),
and deep neural networks (DNNs). Keras also offers a wide range of built-in func-
tions and tools for data preprocessing, model evaluation, and visualization. It has
a large and active community, which contributes to its ongoing development and
improvement. Keras is widely used in various domains, including computer vision,
natural language processing, and speech recognition, among others [24].

1 https://github.com/hebertos/CSAI-4-CPS

    Computer Science & Information Technology (CS & IT)                                         115



Fig. 2. CSAI-4-CPS Framework

The implementation of the framework in this work also utilizes several libraries
such as NumPy, Pandas, TensorFlow, Scikit-learn, and Matplotlib, among others.
These libraries provide useful functionalities for data preprocessing, feature selec-
tion, and classification model training. The main objective is to simulate the exe-
cution of the CSAI-4-CPS model in a usable framework including four client nodes.
In this setup, the approach bases the concept of the best parameters calculated by
horizontal federated learning with the Fed Average algorithm.

In the first part, (see Figure 2 Nodes and FL component) the implemented
framework performs data preprocessing and feature selection. Three feature selec-
tion methods are used: filter, wrapper, and embedded. Each method generates your
best features list. From these lists, the top 10 attributes from each method are se-
lected, and classification tests are performed using the Random Forest algorithm,
as suggested in the work by [11], and that for the data tested they proved to be
effective. The output of this process is the highest accuracy found and the corre-
sponding features. In case of a tie, the set with the smallest number of features is
selected. The implementation of horizontal federated learning uses the TensorFlow
Federated (TFF) library to perform the Federation Average algorithm.

Thus, a main loop is created that iterates four times, representing rounds of
detecting and correcting data (false positives and false negatives) for each client.
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Each client iteration performs the following steps: i) extracts and stores its dataset
locally; ii) makes predictions using the global model on the unlabeled data, iii)
corrects misclassified data (false positives/negatives); iii) preprocesses the newly
corrected dataset; and iv) combines it with existing datasets for further training of
the global model and client models.

The training of the global model updates the model weights based on the cor-
rected data from the clients, simulating the correction of false positives/negatives.
The process is repeated multiple times, recording training metrics such as accuracy
and checking if the current accuracy is higher than the previously recorded best
accuracy. After the initial training round, up to four rounds is established if the
accuracy does not increase. This complete process can be seen in Figure 2, and the
code can be verified at CSAI-4-CPS project Github.

4 Case Study

This section describes the experiments carried out as a model proof of concept using
the proposed framework. Firstly, it presents the used datasets and the cyberattacks
implemented, followed by the two test scenarios.

4.1 The Datasets

The datasets capture network traffic from a realistic IoT network in a controlled lab
environment provided by database N-BaIoT [26]. It includes several IoT devices and
provides information such as IP addresses, protocols, and payloads. The datasets
enable analysis of security intrusion attempts (like DDoS attacks) and can be used
to develop intrusion detection and prevention systems for IoT devices [26]. The
database N-BaIoT is composed of eight datasets with a total of 7,062,606 instances
and 115 attributes. It possesses both multivariate and sequential characteristics.

The feature headers in the N-BaIoT dataset (Stream Aggregation, Time-frame
and Statistics Extracted from the Packet Stream) describe different aspects of the
packet stream and its statistics. Here’s a breakdown of each feature header [27]:

Stream Aggregation:

– H: Statistics of the traffic from the packet’s host (IP);
– HH: The same statistics plus the destination host;
– HpHp: The same statistics plus both IP addresses and port numbers;
– HH jit: Statistics of the jitter (variation in packet arrival times) of the traffic

from the packet’s host (IP) to the destination host.

Time-frame (Decay Factor Lambda):

– L1, L3, L5, and Ln: Represent different time frames used in the statistics calcu-
lation. They determine how much the stream recent history is captured in these
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statistics. Smaller values indicate a shorter time frame with more emphasis on
recent events, while larger values indicate a longer time frame with a broader
historical perspective.

Statistics extracted from the packet stream:

– weight: The number of items observed in recent history;

– mean: The stream average value;

– std: The stream standard deviation;

– radius: The square root of the stream sum of the variances. It represents the
overall spread of the data;

– magnitude: The square root of the stream sum of the means. It represents the
data overall magnitude (or scale);

– cov: Approximated covariance between two streams (degree of correlation or
relationship);

– pcc: Approximated covariance between two streams (Pearson correlation coef-
ficient - the linear relationship between the streams).

The N-BaIoT database includes different feature headers that describe various
aspects of the packet stream and its statistics. These feature headers can be catego-
rized into three groups: Stream Aggregation, Time-frame (Decay Factor Lambda),
and Statistics extracted from the packet stream. The Stream Aggregation headers,
such as H, HH, HpHp, and HH jit, provide statistics related to the traffic from the
packet’s host and destination host, including IP addresses and port numbers. Addi-
tionally, HH jit focuses on the jitter, which represents the variation in packet arrival
times. The Time-frame headers, represented by L1, L3, L5, and Ln, determine the
time frames used in calculating the statistics. They capture different portions of
the stream’s recent history, with smaller values indicating a shorter time frame
and larger values indicating a longer time frame. The Statistics extracted from the
packet stream include various measures, like Weight, Mean, Std Variation, Radius,
Magnitude, COV and PCC. These feature headers provide insights into the char-
acteristics and statistical properties of the packet stream, allowing for analysis and
modeling of the network traffic in the N BaIoT dataset. Considering the scenario
of horizontal federated learning, the datasets were separated by devices. According
to the tree graph in Figure 3, these device-specific datasets were divided equally
among the nodes. Within each node, the data was further divided into sets for
training, testing, and simulating online detection of new attacks.

4.2 The Cyberattacks

Gafgyt and Mirai [25] are two well-known botnets that have been responsible for
several high-profile cyberattacks. Both botnets are known for their ability to infect
and control vulnerable Internet of Things (IoT) devices, such as routers, cameras,
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Fig. 3. Distribution of dataset usage in an experimental setup

Fig. 4. Results for Dataset Danmini Gafgyt Attacks

and DVRs. It is common to use them to launch massive Distributed Denial of
Service (DDoS) attacks. Gafgyt is typically spread through malware that targets
IoT devices with weak or default login credentials, allowing the botnet to gain
control of the device and use it to launch attacks [25]. Mirai is similar to Gafgyt
in that it targets vulnerable IoT devices, but it also includes a worm component
that enables it to spread rapidly across devices [25]. All datasets used in this work
register previous attacks using one of these botnets.

The Gafgyt and Mirai botnets highlight the vulnerabilities of IoT devices and
the importance of their protecton against cyberattacks. It is important to ensure
that IoT devices implement strong passwords, up-to-date firmware, and security
measures. Additionally, network traffic analysis and machine learning-based intru-
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Fig. 5. Results for Dataset Ecobee Mirai Attacks

Fig. 6. Results for Dataset Philips Baby Monitor Gafgyt Attacks

sion detection systems can help to detect and prevent attacks from botnets like
Gafgyt and Mirai [25].

4.3 First Scenario Simulation

To execute the case study, the N BaIoT dataset was divided into nine separate
datasets based on equipment type. This division was done to simulate horizontal
federated learning, where data originating from the same context is tested across
equipment of the same brand and model. This approach allows for a more accurate
and realistic evaluation of machine learning models in a federated environment.
Afterward, each dataset was further divided into four equal parts to simulate data
from four clients participating in the collaboration. This division ensures that the
data from each client is represented in the training and evaluation process, allowing
for a simulation of a collaborative setting. In each client, the data was further split
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Fig. 7. Results for Dataset Provision PT838 Security Camera Mirai Attacks

into two equal and balanced parts. The first part was used for the local learning
process, where the client trains its own machine learning model using its respective
data. The second part was reserved for real-time prediction testing, where the client
evaluates the performance of its trained model on unseen data. This separation
allows for an evaluation of both the local learning capability and the real-time
prediction accuracy of each client in the collaborative setting. We proceeded to
execute the workflow as illustrated in Figure 1, and we measured the execution
time required for the attribute selection process, as well as the accuracy and loss
achieved by each individual client. Following this, we recorded the time taken for
the federated learning process to complete.

4.4 Second Scenario Simulation

In the second testing scenario, we performed the machine learning process on each
node, without including the feature selection and federated learning process, simu-
lating a traditional pipeline of isolated machine learning applied to discover attacks.
This approach allowed us (by comparison) to explore the effectiveness of feature
selection and the collaborative learning technique in improving model performance
and overall accuracy in a federated setting.

5 Discussion of Results

In this section, we concentrate on discussing the most pertinent findings from the
case study. We have chosen to highlight certain results because of their significant
impact. These results are important for understanding how well machine learning
models can detect security threats in IoT devices when using federated learning
methods. By doing so, we can gain a deeper understanding of the approach impli-
cations for federated learning in IoT security.
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Figures 4, 5, 6, 7, Table 1 - A shows the results obtained for Federated Learning
Results in each round (1 to 4) plus in the Initial Training round (Init. Trmg). Table
1 - B shows the results when all data is used in a single node. These are divided
into several columns: #Records (number of records), Step of the tests for Nodes
1, 2, 3 e 4. The ACC (accuracy in percentage) and RT (response time in seconds)
columns display the corresponding values for each node at each stage. Table 1 - C
shows the run time (RT) required to execute the selection feature (SF) plus the
federated learning (FL) process for each node. Table 2 has a similar structure, but
it presents the results obtained without the use of federated learning. Figures 4 and
5 show the results obtained when the dataset was intruded by Gafgyt attacks, and
6 and 7 show the results under Mirai attacks.

When observing the results (Figures 4–7), there are no established patterns in
terms of accuracy. This is due to the dependency on the data arriving at each node.
However, it is observed that the accuracy remains stable in all cases when the FL
process is present, unlike the behavior that is observed when FL is not used. In this
latter case, accuracy presents sudden drops in several cases (for example, Table 2
in Figure 7 for nodes 1 and 3). The stability in the FL model occurs because with
each new round, as stated by the model in Figure 1 (item 5), the online detections
at each node are validated by an expert who checks false positives and negatives
and updates the training data in the local models, which are sent back to the server
that updates the global model and sends it back to everyone involved. Therefore,
all the nodes benefit from sharing the knowledge obtained in any local retraining.
This is one of the major advantages of federated learning, as the nodes that did
not have this knowledge are benefited by the received global model without having
to share their data, thus ensuring privacy.

The FedAvg algorithm is used in this process and helps mitigate drastic changes
or extreme oscillations in the local models [28]. It performs a weighted average of
the parameters of the local models, where the weights are determined based on the
amount of training data at each node. This means that nodes with more training
data have a greater contribution to the global model. By performing this weighted
average, FedAvg smooths out the differences between the local models and prevents
a single model from having excessive influence on the global model [28].

Regarding execution time, in most rounds and on average, the time was higher
for the FL process. As expected, when comparing the time spent on data processing
with the FL process (Table 1 - part B) and without the FL process (Table 2 - part
B), it is significantly higher. In some cases, it can be more than 60% (in fact, the
average is around this mark). Another advantage of the proposed model is that it
conceives of data processing in a distributed manner and therefore benefits from
the advantages of distribution. The execution time spent processing the distributed
data (any table A) is lower when compared with the process on a single node (any
table B), in some cases almost three times lower.
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6 Conclusion and Future Works

This work presented a self-adaptive model that is based on feature selection and
federated learning for detecting cyberattacks in IoT datasets. Furthermore, the
work brings two sets of experiments. By comparing the results with and without
the use of federated learning and feature selection, it is possible to infer that the
model has good accuracy in detecting attacks but increases the response time up
to around 60% in average.

One potential approach for further work is to explore the application of verti-
cal federated learning by incorporating heterogeneous types of devices that share
similar contexts. This approach would involve leveraging the collective intelligence
and computational capabilities of diverse devices, such as sensors, actuators, and
controllers, to collaboratively train a shared model while preserving data privacy
and security. Additionally, it would be valuable to validate the effectiveness and
practicality of the developed model in a real-world scenario. This validation could
involve deploying the federated learning system in an actual cyber-physical system
environment, collecting real-time data, and evaluating the model’s performance
in detecting and mitigating cybersecurity attacks. Such research would provide
valuable insights into the feasibility and benefits of vertical federated learning for
enhancing the security and resilience of cyber-physical systems.
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