
David C. Wyld et al. (Eds): SE, SAIM, SIPM, CoNeCo, ICITE, ACSIT, CMIT, FCST, SNLP – 2024

pp. 39-48, 2024. CS & IT - CSCP 2024 DOI: 10.5121/csit.2024.140804

LOGICAL ANALYSIS AND CONTRADICTION

DETECTION IN HIGH-LEVEL

REQUIREMENTS DURING THE REVİEW

PROCESS USING SAT-SOLVER

Simge Yatkın1,2 and Tolga Ovatman1

1Faculty of Computer and Informatics Engineering, Istanbul Technical

University, Istanbul, Turkey
2MGEO Test and Verification Directorate, ASELSAN Inc., Ankara, Turkey

ABSTRACT

DO-178C stands out as a guiding standard for aviation system development processes. This

standard not only mandates ensuring the consistency of requirements in the software

verification process but also recognizes it as a mandatory element. The main objective of

this study is to introduce a method for analyzing and identifying inconsistencies between

high-level requirements using information obtained from a data dictionary. This method
aims to transform high-level requirements into logical expressions and then thoroughly

examine them using a SAT Solver to detect inconsistencies. While methods focused on

identifying inconsistencies among requirements often appear in the literature, this study

presents a novel approach to detect contradictions between non-natural language,

systematically structured, and language-independent requirements. The goal of this

approach is to significantly reduce the review time of high-level requirements in the

software verification process. Evaluations indicate that the use of this method results in

substantial time savings in the inconsistency detection process.

KEYWORDS

Contradiction Analysis, High-Level Requirements, SAT-Solver Analysis, Software

Verification Process

1. INTRODUCTION

DO-178C stands as an obligatory standard for aviation certification authorities, including the
Federal Aviation Administration (FAA), the European Union Aviation Safety Agency (EASA),

and various other certification entities. In today's aviation landscape, this standard provides

comprehensive guidance for the software-based certification processes of commercial aviation
systems, considering the complexity of modern aviation systems. Crucial for the safety and

performance of the aviation industry, DO-178C requires a thorough examination of all process

outputs to determine the accuracy of the software and identify potential errors.

Furthermore, the standard emphasizes the consistency of specific high-level requirements at

various stages of the software development process. In particular, ensuring the consistency of

these high-level requirements, as detailed in section 6.3.1 of the DO-178C document [1], is a
critical element for the successful progression of the certification process. This requirement aims

http://airccse.org/cscp.html
http://airccse.org/csit/V14N08.html
https://doi.org/10.5121/csit.2024.140804

40 Computer Science & Information Technology (CS & IT)

to secure the compliance of the software with civil aviation standards, ensuring adherence to
industry norms.

In complex software systems, requirements can conflict over time for various reasons. Failure to

address these conflicts in the early stages can lead to issues and errors in the software
development process. Therefore, the early detection of inconsistencies is crucial for ensuring a

smooth software development process. Consistency among requirements requires that two or

more requirements do not contradict each other[2]. This becomes particularly challenging and
time-consuming in large-scale software projects, such as avionics, where there are often more

than ten modules, each containing hundreds of requirements. Given the complexity of

requirements, the workload increases, and reviewers may be more prone to making errors. The
identification of these conflicts during the writing of tests and the testing of real systems can

delay standardized processes. This underscores the importance of early and meticulous attention

to requirement consistency to prevent potential setbacks in the development timeline.

This study presents a method aiming to automate the analysis of inconsistencies among

requirements by utilizing data specified in the data dictionary during the review process of high-

level requirements. The proposed methodology integrates with the Dynamic Object-Oriented
Requirements System (DOORS) to transform each high-level requirement in the High-Level

Requirements (HLR) document into logical expressions. The requirements extracted from the

relevant module within DOORS are converted into logical expressions for various programming
languages and data formats using ANTLR4 (ANother Tool for Language Recognition), a

versatile parser generator. These logical expressions are then subjected to analysis using a SAT

Solver.

The primary objective of this approach is to reduce the time spent on reviewing high-level

requirements in the software verification process and minimize potential reviewer errors. The

implementation of this method has the potential to significantly enhance the efficiency and
accuracy of the software development process.

2. RELATED WORKS

In recent times, there has been a significant increase in interest in the analysis of conflicts in
software development processes. Both researchers and practitioners acknowledge the critical role

of early detection and resolution of conflicts in the development process in enhancing software

quality and minimizing costly revisions. Various methods are proposed in studies focusing on
this important topic to detect and resolve conflicts among requirements[3].

A method proposed by Egyed and Grunbacher[4] utilizes automated traceability techniques to

eliminate conflicts. This approach automatically identifies conflicts based on features among
requirements and determines traceability dependencies. Another system developed by Kim and

others[5] uses the RECOMA tool to detect conflicts based on natural language requirement

segments. This system employs both syntactic and semantic methods for conflict detection.
Moser et al. [6],[7] present an automatic semantic-based conflict detection approach that

associates natural language requirements with semantic concepts and defines conflicts using

logical expressions. Urbieta and the team [8],[9] propose a model-based approach aiming to
detect requirement conflicts in the early stages of software development for web applications.

Chentouf's [10] method for resolving OAM\&P requirement conflicts involves representing

requirements using EBNF and determining conflicts based on inference rules. Comparison

between existing (automatic method) and the method we present can be observed in Table 1.

Computer Science & Information Technology (CS & IT) 41

Software requirements are defined as a collection of English expressions summarizing the
intended functionality of the software. Zowghi [11] has successfully demonstrated that these

English expressions can be translated into equivalent logical statements. Automatic theorem

provers [12], [13] can be utilized for the purpose of detecting logical inconsistencies. However, in

some companies, High-Level Requirements (HLR) documents may include non-English
expressions, as they rely on data in the data dictionary, leading to diversity, including

abbreviations and proper names. Various studies offer different approaches for the detection and

management of requirement conflicts. Nevertheless, there is limited research in the existing
literature on conflict analysis methods based on HLRs and related data dictionaries. This study

aims to contribute by providing a different approach to the review process in areas with similar

software requirements.

Table 1. Comparison between existing (automatic method) and our presented studies.

Reference Approach to

Analyzing

Conflicts

Method for

Identifying

Conflicts

Requirements

Category

Representation of

Requirements

[4] Traceability

approach

Automatic Functional &

Nonfunctional

-

[5] Natural Language

Partitioning of

Requirements

Automatic Functional Formalization

[6], [7] Semantic based

approach

Automatic Functional Ontology

[8], [9] Utilization of

NDT Meta Model

in Graphical
Techniques

Automatic Functional Formalization(DSL)

Structure

model(NDT
requirement meta

model)

[10] Validation rules Automatic Functional Formalization

This study Satisfiable

approach

Automatic Functional &

Nonfunctional

Logical Expression

3. BACKGROUND

3.1. IBM Rational DOORS and Data Dictionary

High-Level Requirements (HLR) define in detail the expected behavior of all software installed
on the target computer, independent of software architecture. These comprehensive requirements

encompass a broad dataset, particularly considering the complex structure of avionic systems

[14]. This dataset is organized by a data dictionary, which essentially presents data element

names and their definitions in a tabular format [15]. The dictionary includes the values or value
ranges that the data within the requirements can take.

Some companies prefer to create a Data Definition Table (DDT) that aligns with the purpose of
the data dictionary. In Table 2, it can be observed, for example, how the values corresponding to

the data names are presented in the Range/Unit column. DDTs are found on the platform where

software requirements are stored. In our context, we manage our requirements within IBM

Rational DOORS. IBM Rational DOORS is a leading requirement management solution that
provides a collaborative environment for defining, capturing, and managing requirements

throughout the development lifecycle~cite [19].

42 Computer Science & Information Technology (CS & IT)

Table 2. Data definition table example.

Data Range / Unit

DCU_Type DCU_1, DCU_ 2

BIT_Status
UNKNOWN, PBIT_RESULT,

IBIT_RESULT

ABC_Status PASS, FAIL

SjRequestCond TRUE, FALSE

This integrated platform facilitates the systematic tracking and updating of requirements,
enabling more effective project management. Specifically designed to alleviate the complexity in

the software development process and optimize the requirement management process, IBM

Rational DOORS stands out as a valuable tool that efficiently manages detailed requirements.

3.2. DOORS Extension Language (DXL)

DXL is a specialized scripting language designed for use with IBM Rational DOORS. It allows

users to automate various tasks, customize the DOORS environment, and extract information

from DOORS modules programmatically. DXL scripts are instrumental in streamlining
workflows and enhancing the overall efficiency of the requirements management process. The

integration process involves exporting requirements from DOORS using DXL script.

3.3. Requirement Format

In conducting this study, we based our analysis on requirements presented in two different
formats. The first is a requirements format commonly used in avionics software. The second

format is a customized version of the Gherkin language [16] shown in Figure 1. Keywords such

as Given, Then, And and Or are used. Conditions are specified from "Given" to "Then", after

"Then" the operations are specified.

Figure 1. A requirement written in customized version of the Gherkin

To systematically analyze the contradictions between requirements, we started the process by

creating a dataset. Within these datasets, requirements were rigorously parsed based on the

grammars associated with their respective formats. This parsing process was facilitated using
ANTLR4 (ANother Tool for Language Recognition), a versatile parser known for its ability to

create parsers for various programming languages and data formats [17].

Computer Science & Information Technology (CS & IT) 43

3.4. Jenkins and Reporting

Jenkins is an open source automation server that automates the build, test and deployment

processes of software development, facilitating continuous integration and supporting continuous
delivery. We automate our work with Jenkins and after each run, the results of the conflict

analysis are reported in HTML format. In this way, continuous analysis work can be maintained

between changing requirements. With the report generated, employees responsible for the review
process can review the report and make requests for necessary changes.

4. PROPOSED METHOD

The overall objective of the proposed method is to analyze logical contradictions between
requirements with common operations using SAT-Solver. In order to perform this analysis, we

propose a method (also see Figure 2) consisting of the three phases.

Figure 2. Requirements conflict analysis system

4.1. Converting Requirements to Logical Expressions

With ANTLR4, a grammar for requirements formats is written, as shown in Figure 3 and

requirements parsing is performed. With the grammar we have written, the requirements received
from DOORS with the DXL script (See Figure 2, Pipeline #1 box) are converted into logical

expressions as a result of the parsing algorithm (See Figure 2, Pipeline #2 box).

Conditions and operations in the requirements are meticulously defined and assigned unique

characters for reference and manipulation. Boolean conditions were cleverly represented,

reducing complex sentences to single characters and thus simplifying our analysis. Conditions
without Boolean attributes were approached differently through the application of negation.

In the requirement example given in Figure 1, we obtain the results in the tables from conditions

(see Table 3) and operations (see Table 4). Once all conditions and operations have been assigned
in this way, the requirements are translated into logical expressions. As a result of these

inferences, the logical expression equivalent of the requirement shown in Figure 1 is as follows:

Logical Expression of Gherkin1 requirement: And(A, Not(B), Not(C), D) => X

44 Computer Science & Information Technology (CS & IT)

Figure 3. An overview of the grammar of the customized Gherkin format

Table 3. Illustration of the conditions derived from the example requirement shown in Figure 1.

Conditions Symbols

MMM is SJ A

MMM is NOT SJ Not(A)

MOS_S is DGFT B

MOS_S is NOT DGFT Not(B)

SjRequestCond is TRUE C

SjRequestCond is NOT TRUE Not(C)

SjRequestCond is FALSE Not(C)

SjRequestCond is NOT FALSE C

MOS_Status is NONE D

MOS_Status is NOT NONE Not(D)

Table 4. Illustration of the operations derived from the example requirement shown in Figure 1.

Operations Symbols

MMM to NAV X

MMM to NOT NAV Not(X)

Furthermore, with the approach we present, we are able to analyze contradictions in nested

conditions. Nested conditions refer to requirements that have "Or" inside conditions with "And"

or "And" inside conditions with "Or". Looking at the requirements given in Figure 4, the conflict
analysis is performed between two requirements, called Req1 and Req2, because they have the

same operations. The operations in the given requirements are the same. Even if only one of them

was the same, the same analysis would still be performed. As a result of the algorithm we

developed, the logical expressions corresponding to Req1 and Req2 requirements are as follows:

Logical Expression of Req1 requirement: Or(A, And(Not (B), C)) => And(X, Y)

Logical Expression of Req2 requirement: Or(Not (A), And(B, Not (C)) => And(X, Y)

Computer Science & Information Technology (CS & IT) 45

Figure 4. Example HLR requirements

The requirements given in Figure 4 are extracted from the DOORS module prepared for the study

and represent conflicting requirements. These requirements that share the same operations are
analyzed using SAT-Solver. The SAT-Solver is given an expression of the following form:

And(Or(A, And(Not(B), C)), Or(Not(A), And(B, Not(C))))

Since no solution is available, the SAT Solver produces an output indicating the existence of a

contradiction.

In addition, our method involves discovering contradictions within HLR requirements, the

"Hypothetical Syllogism" rule for nuanced contradictions. The general form of the hypothetical

syllogism is as follows:

If P, then Q.

If Q, then R.

Therefore, if P, then R.

An operation in one requirement may be a condition of another requirement. This can lead to

contradictions, and manually finding these contradictions can be challenging and time-

consuming.

4.2. SAT-Solver Rest API

Contradiction analysis is conducted among requirement pairs with shared operations. The

request, containing requirement pairs translated into logical expressions, is sent to the SAT-

Solver Rest API utilizing the Sympy [18] library. The operation within this API involves

subjecting the condition clauses of requirement pairs to an AND operation. If there is no solution
set in this process, it returns a response indicating the presence of a contradiction.

For example, the requirements P → Q and R → Q have the same operation. These pairs are
passed as input to the SAT-Solver. To analyze these pairs, we apply a logical AND operation to

the condition parts. If this AND operation results in the value Zero (0), i.e. no solution set can be

found using the SAT-Solver, this indicates the existence of a contradiction.

46 Computer Science & Information Technology (CS & IT)

4.3. Contradiction Analysis Report

At the end of this study, reporting holds a significant place. Our work, which is connected to

Jenkins automation (see Figure 5), can be triggered automatically whenever users request or after
the update of requirement documents.

Figure 5. Stage view of Jenkins pipeline for requirement contradiction analysis system

The results of the analyses conducted with the parser algorithm implemented in our study and the

SAT-Solver used are presented in an HTML document. This document includes the analysis
results of all compared requirements. Additionally, if there are contradictions arising from the

application of the "Hypothetical Syllogism" rule, it is documented how these contradictions are

created based on this rule.

Figure 6. Contradiction Analysis Report

The presented method has certain limitations. Firstly, if there are requirements written based on a

standard, the grammar of this standard should be created using ANTLR4. Subsequently,

additional implementations should be made for logical transformations. Moreover, since our
method does not incorporate any natural language processing technique, the transformation of

logical expressions in requirement sets written in natural language must be done manually. The

Computer Science & Information Technology (CS & IT) 47

overall effectiveness and applicability of the method should be carefully assessed in various
software development contexts and scenarios. To overcome this limitation, we plan to integrate

NLP into our method in future developments. The performance of the method may be subject to

certain constraints when dealing with complex requirement sets in large-scale software projects.

Another limitation is that parsing times for very large logical formulas can be lengthy. However,
when comparing our method with the manual conflict detection approach, it can still be argued

that time is saved.

5. EVALUATİON

A dataset of 25 requirements covering avionics HLR was prepared. These requirements went

through multiple revisions. Initially, the requirements were not contradictory; however, for the

purpose of the analysis, the conditions and operations in the dataset were modified. The dataset
included simple requirements, slightly more complex requirements with nested conditions, and

requirements where operations served as conditions for other requirements.

Ten participants were given a maximum of half an hour to identify logical contradictions in the

HLR requirements. They were asked to note down the contradictions they found and to record the

time taken to identify each contradiction. Participants' experience with HLR requirements ranged
from 2 to 5 years.

A notable finding was that participants were unable to identify contradictions when operations

served as a condition for other requirements. With the developed method, 25 requirements were
internally compared within 25 seconds, revealing a total of six contradictions. One contradiction

was identified using the Hypothetical Comparison rule and interestingly, none of the participants

found this contradiction. Furthermore, 4 correct contradictions were detected in an average of 21
minutes. Considering large-scale systems with thousands of requirements, uncovering

contradictions between requirements would be a time-consuming process.

6. CONCLUSION

Consequently, the software verification process, especially for commercial aviation systems

subject to certification standards such as DO-178C, requires a thorough review of the high-level

requirements (HLRs). The presented method aims to streamline the process and reduce the
workload associated with the review of complex requirements by using logical expressions and

SAT-Solver analysis to detect contradictions between HLRs. The results obtained demonstrate

the effectiveness of this approach in identifying contradictions between requirements. This study
introduces a methodology that has the potential to increase consistency in software requirements

and consequently contribute to improvements in software development processes.

Future studies will have a more comprehensive evaluation process. 4 different data sets with 10,
20, 30 and 40 different requirements will be prepared. Depending on the time, employees with

different levels of expertise will be asked to analyze how many contradictions they found in 4

different data sets in how much time. In this way, the difference in time spent between manual
and automated approach will be more clearly demonstrated.

48 Computer Science & Information Technology (CS & IT)

REFERENCES

[1] RTCA DO-178C, Software Considerations in Airborne Systems and Equipment Certification, 2011

[2] M. Kamalrudin, J. Grundy, and J. Hosking, Managing Consistency between Textual Requirements,

Abstract Interactions and Essential Use Cases in Computer Software and Applications Conference

(COMPSAC), 2010 IEEE 34th Annual, 2010, pp. 327-336.

[3] M. Aldekhail, A. Chikh, and D. Ziani, Software Requirements Conflict Identification: Review and

Recommendations, International Journal of Advanced Computer, Vol. 7, No. 10, p.326 2016

[4] A. Egyed and P. Grunbacher, Identifying requirements conflicts and cooperation: how quality
attributes and automated traceability can help, IEEE Softw., vol. 21, no. 6, pp. 50-58, Nov. 2004.

[5] M. Kim, S. Park, V. Sugumaran, and H. Yang, Managing requirements conflicts in software product

lines: A goal and scenario based approach, Data Knowl. Eng., vol. 61, no. 3, pp. 417-432, Jun.

2007.

[6] T. Moser, D. Winkler, M. Heindl, and S. Biffl, Requirements Management with Semantic

Technology: An Empirical Study on Automated Requirements Categorization and Conflict Analysis

in Advanced Information Systems Engineering, H. Mouratidis and C. Rolland, Eds. Springer Berlin

Heidelberg, 2011, pp. 3-17.

[7] T. Moser, D. Winkler, M. Heindl, and S. Biffl, Automating the detection of complex semantic

conflicts between software requirements in The 23rd International Conference on Software

Engineering and Knowledge Engineering, Miami, 2011.

[8] M. J. Escalona, M. Urbieta, G. Rossi, J. A. Garcia-Garcia, and E. R. Luna, Detecting Web
requirements conflicts and inconsistencies under a model-based perspective, J. Syst. Softw., vol. 86,

no. 12, pp. 3024-3038, Dec. 2013.

[9] M. Urbieta, M. J. Escalona, E. R. Luna, and G. Rossi, Detecting Conflicts and Inconsistencies in

Web Application Requirements in Current Trends in Web Engineering, A. Harth and N. Koch, Eds.

Springer Berlin Heidelberg, 2012, pp. 278-288.

[10] Z. Chentouf, Managing OAM\&P requirement conflicts, J. King Saud Univ. - Comput. Inf. Sci., vol.

26, no. 3, pp. 296-307, Sep. 2014.

[11] Zowghi D., Gervasi V. and McRae A., (2001), “Using Default Reasoning to Discover

Inconsistencies in Natural Language Requirements,” Proc. of the 8th Asia-Pacific Software

Engineering Conference, December 2001,pp. 133-140.

[12] Chechik, M., and J. Gannon, (2001), "Automated Analysis of Consistency Between Requirements
and Design"IEEE Transactions on Software Engineering, (27)(7), pp. 651-672.

[13] Mattolini, R. and Nesi, P., (2001), “An Interval Logic For Real-Time System Specification”,

SoftwareEngineering, IEEE Transactions, Vol. (27)(3), pp. 208-227

[14] F. Pothon and Q. Ochem, AdaCore Technologies for DO-178C / ED-12C, Version 1.1, 2017

[15] Best Practices for Data Dictionary Definitions and Usage. v. 1.1 2006-11-14

[16] Moult, D., and Krijnen, T. F. (2020). Compliance checking on building models with the Gherkin

language and Continuous Integration. In L-C. Ungureanu, and T. Hartmann (Eds.), Proceedings of

the EG-ICE 2020 Workshop on Intelligent Computing in Engineering (pp. 294-303).

[17] T. Parr, The Definitive ANTLR 4 Reference. Raleigh, NC, USA: Pragmatic Bookshelf, 2013

[18] https://github.com/sympy/sympy

[19] Hull, E., Jackson, K. and Dick, J., 2002. DOORS: a tool to manage requirements. In Require-ments

engineering (pp. 187-204). Springer London.

© 2024 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

https://airccse.org/

	Abstract
	Keywords
	Contradiction Analysis, High-Level Requirements, SAT-Solver Analysis, Software Verification Process

