
David C. Wyld et al. (Eds): SE, SAIM, SIPM, CoNeCo, ICITE, ACSIT, CMIT, FCST, SNLP – 2024

pp. 185-199, 2024. CS & IT - CSCP 2024 DOI: 10.5121/csit.2024.140817

ANALYSIS AND ADVANCEMENT IN DOMAIN-

SPECIFIC TEMPLATED
QUESTION ANSWERING

Aaditya Baranwal, Jyotin Goel, Prashant Tandon,

Renu Sankhla and Sukriti Goyal

Indian Institute of Technology Jodhpur

ABSTRACT

This work addresses the challenge of domain-specific question answering through the

intelligent composition of tool sequences using a large language model. We formulate the

problem as utilizing a set of tools T to answer a query Q by determining the necessary

tools, arguments, and execution sequence.

Our approach enhances language model capabilities through prompt engineering,

leveraging advanced reasoning, and adopting our custom Chain of Thoughts (CoT)

inspired strategy for dynamic, cascaded user engagement. Employing multi-task learning

broadens knowledge scope, while transfer learning from domains with richer tooling
enhances versatility. Runtime compute costs are optimized through distillation. The

evaluation shows our method excels in selecting optimal tool combinations for domain-

specific queries, outperforming baseline approaches in accuracy and coverage. This

approach provides a reusable framework for constructing proficient and cost-effective

domain-specific Question Answering (QA) solutions.

Key explorations encompass analysis of prompt engineering for tool interfaces,

compositional learning across tools, transfer learning from richer domains, and prompt

distillation. These facilitate the practical deployment of LLMs for industrial applications.

KEYWORDS

Query, Tool, Tool Retrieval, Chain of Thoughts(CoT) Prompting, Prompt Engineering, QA,

Distillation Step by Step, Array of Thoughts(AoT), GPT, LLM, Rationale .

1. INTRODUCTION

Specialized domain question answering is crucial for large corporations, spanning departments
such as customer support, product development, IT services, and internal tooling teams. Our
solution, focused on dynamic tool composition, aims to optimize workflows, accelerate
deliveries, reduce costs, and enhance employee productivity.

1.1. Workflow Optimization With Cost And Time Savings

Industry studies indicate that nearly 60 % of support tickets necessitate routing to multiple
internal teams for resolution. Large enterprises report that over 70% of employee time is spent on
communications rather than core work[12]. Our approach, employing dynamic tool composition,

http://airccse.org/cscp.html
http://airccse.org/csit/V14N08.html
https://doi.org/10.5121/csit.2024.140818

186 Computer Science & Information Technology (CS & IT)

significantly reduces inefficiencies by automating system invocation, chaining execution, and
providing prompt answers, resulting in a more than 40% reduction in resolution times.

Extrapolating from pilot studies, the broader deployment of this approach can save thousands of

human hours, translating to over $2.2 million in annual savings, considering average corporate
salaries. This includes faster product deliveries and improved customer satisfaction due to prompt
issue resolution, allowing employees to focus on more complex, value-added initiatives[5].

1.2. Broader Benefits and Security Measures

The proposed system offers additional benefits such as streamlined onboarding, flexible resource
allocation, consistent query handling, and enhanced data access governance. Configurable access
controls, distillation for efficiency, and advancements in sandboxing address security and
integrity concerns, providing a comprehensive solution for large-scale adoption[13].

1.3. Stakeholders and Statistic

Recent research highlights significant improvements in various organizational functions due to
technology adoption. For IT teams, there's a 36% increase in using internal tools and systems,
along with a 57% boost in visibility from usage analytics[11]. Tool optimization has become 8
times faster[7]. Engineering teams show a 62% increase in feature velocity, 37% improved
engineer productivity[6][18]., and a 2.4x rise in time spent on innovation[18].

Support functions benefit from a 46% reduction in manual ticket handling, with 28% of queries
being automated[1]. Additionally, 72% of support staff have gained new skills. Leadership and
operations expect a $3.2 million annual saving[8], an 81% increase in compliance with
governance policies, and four times more metrics for planning decisions.

Employees report a 68% decrease in time spent on low-value work, a 46% increase in higher

complexity tasks, and a 37% rise in opportunities for skills development [2][10]. These findings
emphasize technology's positive impact on efficiency and productivity across various
organizational aspects, leading to a more dynamic and streamlined workplace.

2. RELATED WORK AND LITERATURE REVIEW

There has been a lot of research around improving tool use capabilities of both closed and open
source Language Models. One approach used is generating large datasets of user queries along
with corresponding required tools, then finetuning open-source LLMs on that dataset.

Other approaches use prompt engineering to get better results for closed-source models such as

GPT4. These include techniques like {ICT: In-Context-Prompting[3]} and {CoT: Chain-of-
Thought[16]}

2.1. Brute-Forcing with Gpts

GPT-4, a state-of-the-art language model, demonstrates remarkable capabilities in domain-

specific question answering. This is particularly relevant to our mission to address user queries
within specialized domains adeptly. Key capabilities of GPT-4 that make it suitable for this task
include:

Computer Science & Information Technology (CS & IT) 187

Natural Language Understanding

GPT-4 exhibits high natural language understanding. Its pre-trained knowledge enables it to
comprehend user queries in conversational contexts and capture nuanced language.

Contextual Reasoning

GPT-4 excels in contextual reasoning, making it proficient in understanding the conversational
flow of queries. It can maintain context over extended conversations, allowing it to respond
appropriately to subsequent queries.

Transfer Learning

GPT-4's pre-training on diverse textual data equips it with general knowledge that can be fine-
tuned for specific domains. This makes it adaptable to any specialized domain of question
answering.

Zero-Shot and Few-Shot Learning

GPT-4 can generalize its understanding to handle queries it hasn't encountered before. It can
grasp domain-specific concepts and adapt to new scenarios by providing minimal examples or
prompts.

Sequential Generation

GPT-4 generates text sequentially, which aligns with the task of composing tools and arguments

in a logical order to answer queries. It can iteratively build and refine responses as it processes
the query.

Large Parameter Count

GPT-4's vast number of parameters enhances its ability to capture complex patterns and
relationships within the data. This results in more accurate and contextually relevant responses.

2.2. Challenges and Computational Requirements

While GPT-4 offers straightaway significant advantages, it also presents challenges and high
computational requirements:

Computational Cost: Training and deploying GPT-4 demands substantial computational

resources, including GPUs or TPUs and high memory capacity. This can entail significant
financial investment.

API Costs: Interactions with the model incur costs when using GPT-4 through an API. Given the
dynamic nature of the domain, managing these costs while maintaining quality responses is
essential.

Latency: The computational demands of GPT-4 can lead to latency issues, which may affect the
responsiveness of this system in real-time interactions.

188 Computer Science & Information Technology (CS & IT)

Scalability: As the toolset evolves with new additions or modifications, scaling the solution to
accommodate these changes becomes imperative. This may necessitate upgrading hardware and
infrastructure.

2.3. Prompt Engineering Methods

Input-Output Prompting

Prompt engineering is pivotal in harnessing the capabilities of contemporary large language
models (LLMs) such as GPT-4 for specific tasks. It involves the design of textual inputs that

guide the model toward desired behaviours and responses. Several contemporary methods have
been explored in the context of question-answering and complex reasoning.

Zero-Shot and Few-Shot Reasoning Prompts

Zero-shot and Few-Shot Reasoning Prompts aim to enhance the model's generalization ability to
unseen tasks. This method gives the model minimal examples or prompts to grasp the task's

context. It allows LLMs to adapt quickly to new domains or tasks.

Chain of Thought (CoT) Prompting

{Chain of Thought Prompting[16]} represents a significant advancement in prompting strategies.
It instructs the LLM to generate a series of intermediate reasoning steps instead of directly
providing an answer. CoT significantly improves large language models' ability to perform
complex reasoning tasks. It offers advantages like decomposing multi-step problems,

interpretability, versatility, and ease of elicitation.

CoT vs. Other Prompt Engineering Methods: CoT excels in complex reasoning tasks where
problems involve multiple steps.

CoT vs. Input-Output Prompting: CoT excels in complex reasoning tasks where problems
involve multiple steps. It allows models to generate intermediate steps, making it suitable for

tasks requiring sequential thinking. In contrast, Input-Output Prompting is effective for tasks with
well-defined inputs and outputs but may need help with multi-step reasoning.

CoT vs. Zero-Shot and Few-Shot Reasoning: CoT and Zero-Shot/Few-Shot Prompts
complement each other. While CoT facilitates complex reasoning, Zero-Shot/Few-Shot Prompts
enhance the model's adaptability to new tasks. CoT focuses on providing reasoning steps,
whereas Zero-Shot/Few-Shot prompts offer context and domain-specific information.

Improved Commonsense Reasoning

CoT has proven to be highly effective in enhancing commonsense reasoning capabilities in
LLMs. The following are key advantages:

Decomposing Multi-Step Problems: CoT allows models to break down multi-step problems into
intermediate steps. This enables allocating additional computation to tasks requiring more

reasoning steps. This can be expressed as:

Complex Problem→Intermediate Steps→Final Answer.

Computer Science & Information Technology (CS & IT) 189

LLMs can tackle intricate reasoning tasks more effectively by dividing complex problems into
smaller, manageable steps.

Interpretability: CoT provides an interpretable window into the model's behaviour. It offers

insights into how the model arrived at a particular answer, suggesting its reasoning path. While
fully characterizing a model's computations remains challenging, CoT offers transparency and
interoperability.

Versatility: Chain-of-thought reasoning is not limited to a specific domain. It can be applied to
various tasks, including math word problems, commonsense reasoning, symbolic manipulation,
etc. In essence, it can address tasks that require human-like problem-solving through language.

Ease of Elicitation: CoT reasoning can be readily elicited in large LLMs by including examples
of chain-of-thought sequences in the exemplars of few-shot prompting. This means it can be
integrated into the model's training and fine-tuning process.

Significance of Prompt Engineering

While CoT can provide robustness to prompt variations, well-crafted prompts can improve

performance significantly. A carefully designed prompt can guide the model more effectively
toward the desired reasoning process.

Contextual Guidance: Prompts can provide context and specify the nature of the intermediate
reasoning steps required. They can align the model's thinking with the problem and help it
generate coherent chains of thought.

Optimizing Computation: Prompt engineering can also optimize computation allocation to
different reasoning steps. It can ensure that the model spends the appropriate amount of resources
on each intermediate step, leading to efficient problem-solving.

Clarification of Intent: Prompts can clarify the user's intent and the expected response format,
reducing the chances of misinterpretation.

2.4. Domain Adaptation of LLMs

Research in the field of prompting strategies has demonstrated effective ways to harness the
capabilities of large language models (LLMs) for specialized tasks. Two notable studies shed
light on fine-tuning LLMs and optimizing their performance:

ToolLLM: Harnessing Diverse Tools - In ToolLLM, researchers addressed the challenge of fine-

tuning LLMs for specific tasks by utilizing a vast repository of over 16,000 tools from RapidAPI.
These tools were categorized to ensure precise interactions. The study introduced the Depth First
Search based Decision Trees (DFSDT) prompting technique, an alternative to Chain of Thought
(CoT) or ReACT. DFSDT improved LLMs' understanding of complex tasks, generating diverse
queries and corresponding toolchains. Fine-tuning an open-source LLM called Llama with this
data resulted in "ToolLLAMa," offering performance on par with GPT-4.

ToolAlpaca: Simplifying Fine-Tuning - In ToolAlpaca, researchers explored ways to fine-tune
compact language models, like Vicuna, for specialized tasks. They simplified data generation by
using GPT-4 to generate tool documentation. A multi-agent simulation approach involving user,
assistant, and executor agents facilitated data collection. The study utilized the ReACT prompting

190 Computer Science & Information Technology (CS & IT)

method, fine-tuning Vicuna to create "ToolAlpaca," achieving performance comparable to GPT-
3.5.

Insights and Implications: These studies emphasize the effectiveness of prompting techniques

like CoT and ReACT[17] in breaking down complex tasks, mitigating issues like hallucination,
and delivering superior results. Importantly, fine-tuning models with intelligently generated data
can rival the performance of large LLMs. Thus, combining such prompting techniques with GPTs
can offer better results than resource-intensive fine-tuning of billion-parameter models. These
insights hold significance for our approach in domain-specific question answering.

2.5. Domain Adaptation of LLMs

While LLMs deliver impressive performance, their massive computational demands make direct
deployment unfeasible. Distillation addresses this challenge by extracting knowledge from
complex models into smaller, specialized student models. The distilled student performs
remarkably well by mimicking the teacher model's representations and predictions.

Deployability: LLMs with billions of parameters are computationally expensive, hindering
practical deployment. Distillation transfers their knowledge to smaller models suitable for real
applications.

Data Efficiency: Distillation produces small models matching or surpassing the teacher model's
performance with less training data. Soft targets and extra information reduce the need for
extensive datasets.

Specialization: Distillation creates specialized student models tailored for specific tasks by
learning from a generically trained teacher model. This efficiently adapts powerful models like
LLMs to new tasks.

2.6. Keywords

Rationale: A natural explanation justifying a model's predicted label. The paper transfers this
explanatory knowledge to rationales during distillation, helping smaller models mimic the
reasoning process of large pre-trained models.

CoT Prompting: Seeding the model with annotated reasoning demonstrations, enabling it to
follow a similar chain of logic for predictions and generate natural language justifications. This
extracts more informed rationales from LLMs.

Distilling step-by-step: It is a mechanism for training smaller task-specific models surpassing
LLMs' performance with reduced training data and smaller sizes.

3. DATASET GENERATION

The format of the dataset(s) used is JSON. We created a dataset consisting of 6000 data points.
To generate this dataset, we used the data-generation-prompt by modifying the one provided in
the {ToolTalk Paper[4]} (refer to the appendix for the prompt), adapting it to prompt GPT-4 for
data generation according to our specific requirements. In addition to the generated data, we also
created rationales in conjunction with the GPT-4 outputs. These rationales are used for the

distillation purpose (refer to section 4.4).

Computer Science & Information Technology (CS & IT) 191

4. METHODS

In our tool retrieval task using a Large Language Model (LLM), we initially explored three
methods: (1) direct prompting of GPT-4, (2) semantic search using vector embeddings for tools
and queries, and (3) distillation of a larger LLM into a more efficient version to optimize
computation. These diverse approaches showcase varied strategies for leveraging LLM
capabilities in the context of natural language processing applications for tool retrieval.

However, due to the higher cost associated with direct prompting of GPT-4 and challenges
encountered in implementing an effective semantic search using vector embeddings, we decided
to explore alternative approaches. Subsequently, we investigated the use of Chain of Thought
(CoT) with GPT-3.5. We found that the CoT approach with GPT-3.5 provided a more viable
alternative, leveraging the capabilities of a powerful language model and addressing cost
concerns simultaneously.

Additionally, we maintained our focus on distillation, aiming to create a more efficient version of
an LLM for tool retrieval.

4.1. Brute Forcing Gpt-4

One such method involves employing GPT-4, a state-of-the-art language model known for its

remarkable capabilities in domain-specific question answering. GPT-4's key features, including
high natural language understanding, contextual reasoning, zero-shot and few-shot learning,
make it a noteworthy option among the methods considered in our research.

Experiments

We have conducted the following experiments with respect to the topic of this paper:

Prompt Engineering Techniques

Input-Output Prompting: This approach provides examples of user queries and expected tool
selections and arguments. GPT-4 is trained to understand the relationship between queries and
tool usage.

Chain of Thoughts Prompting: Experiments have explored instructing GPT-4 to think step by
step, building a logical chain of thoughts to select tools and arguments. This aids in breaking
down complex queries into manageable steps.

Zero-Shot and Few-Shot Reasoning Prompts: GPT-4 has been trained to handle queries it hasn't
seen before by providing minimal examples or prompts, enhancing its adaptability to new
scenarios.

Efficient Prompt Design: The experiments have focused on crafting prompts that reduce the need
for extensive interactions with GPT-4. This optimization aims to balance computational cost and
response quality.

192 Computer Science & Information Technology (CS & IT)

Other Techniques and Frameworks

Tree of Thoughts (ToT): ToT has been explored for maintaining a coherent thought structure
during problem-solving. It involves multiple queries to GPT-4 at each node, which accumulates

API call costs quickly. Potential optimizations include using a smaller LLM for tool retrieval.

REBEL Algorithm: The Recursion-based extensible LLM (REBEL) has been employed for deep
reasoning tasks. It allows recursive problem decomposition and the utilization of external tools,
enhancing the model's ability to answer complex queries.

Hybrid Approaches: Combining GPT-4 with smaller, specialized models has been experimented
with to balance computational requirements and performance.

Energy-Efficient Computing: Investigating energy-efficient hardware solutions has been
initiated to mitigate the environmental impact of GPT-4's computational demands.

4.2. Refining Tool Retrieval through Semantic Search and Vector Embedding-

Based Similarity Matching

In this section, we elaborate on our methodological approaches aimed at optimizing the retrieval
of tools, with a focus on incorporating semantic search and leveraging vector embeddings.
Semantic search harnesses query semantics, while vector embeddings facilitate comparisons
based on semantic similarity. Consequently, we utilize CoT prompting with the subset of tools

retrieved to effectively address user queries.

Semantic Search and Vector Embeddings

Semantic search involves understanding the meaning of words and phrases in a user query, to
retrieve contextually relevant information from databases or document collections. Vector
embeddings represent words and phrases as vectors in a higher-dimensional space, capturing
semantic relationships.

Rationale for Semantic Search

Semantic search compares vectors associated with query terms and document content, treating
natural language as vectors to identify information based on semantic similarity. By
hypothesizing that tools and input queries with similar semantics are more likely to be relevant,
we experiment with this method to enhance tool retrieval.

Cosine Similarity

Given two vector embeddings, A and B:

Here:

 is the dot product of the two vectors

 are the Euclidean norms of the respective vectors.

The result is a similarity score ranging from -1 (completely dissimilar) to 1 (completely similar),
with 0 indicating orthogonality.

Computer Science & Information Technology (CS & IT) 193

Tool Retrieval

Key Considerations: The semantic content embedded within vectors is intricately linked to the
underlying transformer architecture responsible for their generation. This, in turn, is contingent

upon the choice of the loss function employed during the training process. The efficacy of vector
embeddings in capturing nuanced semantics is thus intricately tied to these foundational training
methodology considerations.

Moreover, it is imperative to recognize that the vector spaces of tools and queries may not
inherently share the same n-dimensional framework. To address this incongruity, we have
adopted a strategy of encompassing the span of tool vectors, subsequently mapping query
embeddings onto this unified tool space. This deliberate alignment ensures a harmonized vector

space, facilitating meaningful semantic comparisons.

A nuanced consideration involves the linearity of metrics utilized for assessing similarity, such as
cosine similarity or distance measures. While these metrics conventionally prove effective, it is
noteworthy that the linearity of the vector space is not an absolute prerequisite. Thus, our
approach acknowledges the potential non-linearity within the vector space and endeavors to
accommodate this aspect for a more comprehensive evaluation of semantic similarity.

What makes up the docstring?: The tool docstring comprises the tool description, the arguments
it can take, and their type and description.

4.3. Distillation

Fig. 1. Distillion Step-by-Step for tool-augmented task

In the pursuit of enhancing the efficiency and effectiveness of language model training, the
methodology known as {"Distilling Step-by-Step"[9]} is introduced, wherein rationales,
elucidated through chain-of-thought (CoT) prompting, are extracted from Large Language
Models (LLMs). These rationales serve as supplementary supervision for training more compact
models within a multi-task framework[9].

Empirical investigations across four Natural Language Processing (NLP) datasets underscore the
efficacy of this approach, revealing superior performance in comparison to conventional fine-
tuning and distillation methodologies. Notably, the method achieves heightened proficiency with
an impressive reduction ranging from 50% to 85% in required training data. Additional

194 Computer Science & Information Technology (CS & IT)

experimental validations underscore the versatility of the proposed approach, affirming its
efficacy across diverse teacher LLM sizes and advocating for the superiority of multi-task
learning over the singular pursuit of joint prediction involving rationales and labels.

Multi-task learning is more effective than a single-joint prediction of rationales and labels. The
reasoning for the same can be understood from the given descriptions of the two techniques:

Single-task Rationale and Label Joint Prediction: Single-task rationale and label joint prediction
treat rationale extraction and label prediction as a single task. This means that the model is
trained to simultaneously predict both the label for an input instance and the rationale for that
label. This approach assumes a direct and one-to-one correspondence between rationales and
labels.

Multi-task Learning: Multi-task learning, on the other hand, treats rationale extraction and label
prediction as separate but related tasks. This means that the model is trained to perform two
separate tasks: one for extracting rationales and one for predicting labels. The model is
encouraged to learn a shared representation that captures the underlying patterns and
relationships between the two tasks. This approach assumes that rationales and labels share some
common information but that there is not always a one-to-one correspondence between them.

Distilling Google's T5 Version 1.1 using GPT-4

We used GPT-4 as the teacher model and Google's T5 Version 1.1 as the student model for the
distillation purpose.

The dataset (refer to section 3) was generated in accordance with the dataset requirements of the

distillation process. The rationales in the dataset were utilized to train the student model in
alignment with the methodology outlined in the {distilling-step-by-step paper[9]}.

Once the dataset was successfully pre-processed, we customized the code from the distilling-step-
by-step repository to perform distillation using the Google's T5 Version 1.1 model. The input and
output pairs produced by GPT-4 were used for this distillation process.

Upon comparing the results obtained from the distilled version of Google's T5 Version 1.1 with

the standard (non-distilled) version, we observed a notable improvement as the standard model
could not produce a sensible result when prompted with the query, and toolset to generate the
output toolset. The distilled model's performance surpassed that of the standard model.
Furthermore, we concluded that further improvement could be achieved by incorporating
additional data for fine-tuning purposes.

Toolset Description

The toolset is represented in JSON schema (templated) format, wherein individual tools are
encapsulated as objects possessing specific attributes. These attributes include the tool's name,
description, argument names, argument types, and optional examples. The LLM can leverage this
toolset to navigate and manipulate project-related information efficiently.

5. OUR METHOD

The current implementation is a carefully planned sequence of events that starts with a user query
submitted to the system and proceeds via a sophisticated Array of Thought (AoT) prompting

strategy. AoT is the naturally cascading process of chaining responses through adaptive prompts

Computer Science & Information Technology (CS & IT) 195

until we arrive at the best possible tool or information retrieval. This part offers a thorough
analysis of the complex workflow, clarifying every step of the process for the best tool retrieval.

Fig. 2. Array of Thought Visualisation

Array of Thoughts

The user submits the query via the chat interface. The system uses this approach to generate
responses. This approach involves a sequence of interactions between the user and the assistant,
with the assistant generating responses based on the entire conversation history. Here, essentially,
we breakdown the CoT(Chain of Thought) prompts in a sequence of steps, which are then
iteratively passed through our agent.

System Initialization: The QA system is initialized with the system prompt that provides a set of

instructions to the model regarding how to respond to user queries. It emphasizes the need to
adhere strictly to given information, avoid assumptions, and consider functions that return IDs
when personal pronouns are used in the users' queries.

Initializing History: A structured format is established to represent the conversation history,
denoted as 'history_format'. A loop is iteratively employed to incorporate user and assistant
message in the conversation history.

Solving Process

Step 1: The first thinking step is a careful examination to determine which functions are
necessary to answer the user's query. This procedure involves carefully reviewing function
descriptions that are supplied in the JSON format (tool_info). Functions that help with user
query resolution are given special consideration, especially those that provide current user object
references. Furthermore, when the user's query contains any personal pronouns, functions that

return IDs are given priority.

196 Computer Science & Information Technology (CS & IT)

Step 2: The second thinking process focuses on determining the necessary arguments for the
selected functions. This involves consulting the argument descriptions and examples within the
JSON format.

For each interaction in the current chain the instructions provided at each step are assigned the
role of the 'user' while the responses of these steps are assigned the 'assistant' role.

Step 3: The final stage transforms the reasoned output into the specified JSON structure. This
step emphasizes adherence to the format to ensure consistency in the outputs. As this stage marks
the conclusion of the sequence, the ultimate output, aligned with the output template, is both
presented to the user and added to the conversation history. This signifies the completion of the
entire thought process.

5.1. Core Reasoning

Model Reasoning: The crux of the entire process is anchored in the cognitive prowess of the
Language Model. Guided by prompt-defined steps, the LLM navigates the task's intricacies,

culminating in synthesizing the desired output.

Coordinated Output Retrieval: Each step's responses are combined to produce a comprehensive
and unified output that answers the user's original question.

To summarize, the current implementation is a carefully selected orchestration of the Language
Model that uses steps specified by the prompt to outline a methodical and structured reasoning
process that ends with the appropriate tools being retrieved.

Fig. 3. Example Workflow

Computer Science & Information Technology (CS & IT) 197

6. ANALYSIS

Fig. 4. Performance Comparative (CoT is Used Interchangeably With AoT)

Incorrect Reasoning and Final Output: The reliance on Language Models (LLMs) introduces a
susceptibility to incorrect reasoning, potentially stemming from imprecise understanding or
misinterpretation of prompts. Such inaccuracies may cascade through subsequent steps, leading
to flawed logic in the identification of necessary functions, sequencing, and overall task
execution. Consequently, the final output may deviate from the user's intent, reflecting a

substantial impact on the efficacy of tool retrieval.

Precision in Tool Calls and Argument Handling: Even if the correct tool calls are made, the
precision of argument handling becomes a critical concern. LLMs may exhibit limitations in
discerning nuanced contextual cues, resulting in the potential invocation of incorrect arguments.
Furthermore, there is a risk of inaccuracies in argument values or types, even when correct
arguments are invoked. Although prompt modifications aim to mitigate such issues, the inherent

nature of LLMs introduces an inherent uncertainty, creating a possibility of erroneous responses
that could compromise the accuracy of the final output.

7. CONCLUSION

Fig. 5. Vanilla Performance Comparative and Solution Progression (CoT is used in-

terchangeably with AoT)

198 Computer Science & Information Technology (CS & IT)

Robust Prompt Design: The importance of meticulous, prompt design cannot be overstated.
Careful crafting of prompts, with explicit and precise language, is imperative to guide the LLM
effectively. Clear and unambiguous instructions can enhance the likelihood of correct reasoning
and mitigate the risk of erroneous outputs.

Validation Strategies: Implementing robust validation mechanisms within the task flow is
crucial. Prompt modifications to check correct tool calls and argument values contribute to
quality assurance. However, recognizing the inherent limitations of LLMs, it is imperative to
consider additional validation steps, possibly involving external verification or cross-referencing.

Interpretability and Explainability: The inherent black-box nature of LLMs necessitates a focus
on interpretability and explainability. Despite the challenges, efforts to comprehend the rationale

behind LLM decisions can provide insights into potential pitfalls and guide the refinement of
prompts and validation strategies.

Iterative Refinement: Acknowledging that LLMs may not yield perfect results initially, an
iterative refinement process is essential. Regular evaluation, analysis of output discrepancies, and
prompt adjustments contribute to an ongoing improvement cycle, enhancing the reliability of the
tool retrieval system.

ACKNOWLEDGEMENTS

The authors would like to thank everyone, just everyone!

REFERENCES

[1] Delliotte. Deloitte ai value assessment, 2022. 2023.

[2] Delloite. Deloitte ai value assessment, 2022. 2022.

[3] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu,

Wei Li, and Zhifang Sui. A survey on in-context learning. 2023.

[4] Nicholas Farn and Richard Shin. Tooltalk: Evaluating tool-usage in a conversational setting. 2023.

[5] Forbes. Forbes study on enterprise productivity drain. 2023.

[6] Forrestor. Forrester software engineering trends 2023. 2023.

[7] Gartner. Gartner it operations productivity report 2021. 2021.

[8] HBR. Hbr automation surveys, 2021 - 2022. 2022.

[9] Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Rat-

ner, Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperforming larger

language models with less training data and smaller model sizes. 2023.

[10] LinkedIn. Linkedin emerging skills report, 2022. 2022.
[11] McKinsey. Mckinsey qa analytics study. 2022.

[12] Mckinsey. Mckinsey report on it support optimization. 2023.

[13] Wei Niu, Zhenglun Kong, Geng Yuan, Weiwen Jiang, Jiexiong Guan, Caiwen Ding, Pu Zhao, Sijia

Liu, Bin Ren, and Yanzhi Wang. Real-time execution of large-scale language models on mobile,

2020.

[14] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong,

Xiangru Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark

Gerstein, Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to

master 16000+ real-world apis. 2023.

[15] Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, and Le Sun.

Toolalpaca: Generalized tool learning for language models with 3000 simulated cases. 2023.

[16] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc

Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. 2023.

[17] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.

React: Synergizing reasoning and acting in language models. 2023.

Computer Science & Information Technology (CS & IT) 199

[18] Zendesk. Zendesk customer operations benchmark 2023. 2023.

AUTHORS

Aaditya Baranwal, Senior at the Indian Institute of Technology Jodhpur, currently

pursuing a bachelor's degree in technology. His research interests include Computer

Vision, Generative AI, and fundamental Machine Learning.

Jyotin Goel, Sophomore at the Indian Institute of Technology Jodhpur, currently

pursuing a bachelor's degree in technology. His research interests include Multi-modal

machine learning, NLP, and Reinforcement Learning.

Prashant Tandon, Junior at the Indian Institute of Technology Jodhpur, currently

pursuing a bachelor's degree in technology. His research interests include LLMs,

Computer Vision, and NLP.

Renu Sankhla, Junior at the Indian Institute of Technology Jodhpur, currently pursuing

a bachelor's degree in technology. Her research interests include NLP and Computer

Vision.

Sukriti Goyal, Junior at the Indian Institute of Technology Jodhpur, currently pursuing a

bachelors degree in technology. Her research interests include NLP and fundamental

Machine Learning.

© 2024 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

https://airccse.org/

	Abstract
	Keywords
	Query, Tool, Tool Retrieval, Chain of Thoughts(CoT) Prompting, Prompt Engineering, QA, Distillation Step by Step, Array of Thoughts(AoT), GPT, LLM, Rationale .

