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ABSTRACT 
 
Electrocardiography (ECG) is a promising approach for continuous fetal heart rate 

monitoring. Its morphology can provide information on fetal health to guide patient care by 
clinicians. However, fetal ECGs extracted from abdominal ECGs are often too weak to 

reliably detect fetal heart rate. This study evaluates the application of a U-Net architecture 

for accurate R-peak detection in low-SNR fetal ECG signals. The proposed method 

achieves high accuracy with a positive predictive value of 99.81%, sensitivity of 100.00%, 

and an F1-score of 99.91% on direct fetal ECG from the Abdominal and Direct ECG 

Database, with significantly reduced false predictions, and outperforming two other 

baseline methods compared with. Notably, our approach demonstrates robustness, 

accurately predicting peaks in regions of high distortion, a capability unmatched by other 

methods evaluated. This finding indicates the suitability and benefits of the U-Net 

architecture for peak detection in fetal ECG signals. 
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1. INTRODUCTION 
 

Fetal heart rate (FHR) and fetal heart rate variability (FHRV) are important indicators of potential 
complications or changes in fetal wellbeing [1], and thereby used to direct interventions and 

subsequent care. Typically, Cardiotocography (CTG) is used for non-invasive Fetal heart rate 

monitoring (FHRM), however this can only be used in short intervals, includes averaging over 
multiple beats reducing accuracy, and is not suitable for longer term monitoring. More recently, 

electrocardiography (ECG) has been shown to be a promising alternative technology to achieve 

continuous FHRM [2], with the potential to enable clinicians to monitor fetal wellbeing with 

improved context. It also offers the advantage of providing fetal ECG (FECG) morphology 
information, enabling identification of potential abnormalities [3]. Thus, reliable processing of 

FECG signals, particularly R-peak detection associated with fetal heart rate (FHR) acquisition, is 

important for improving outcomes in prenatal care. 
 

FECG can be obtained non-invasively from electrodes placed on the mother's abdomen, or 

directly on the scalp of the fetus. While scalp electrode FECG has higher SNR, it can only be 

done at delivery and therefore is not suitable for continuous FHRM. Non-invasive FECG (NI-
FECG), on the other hand, while suitable for continuous FHRM, faces a number of challenges.  

Firstly, abdominal ECG (AECG) includes a mix of FECG, maternal ECG (MECG), and other 

artifacts associated with fetal movements, respiration, and interference from other power 
equipment [4]. The FECG signal is weak relative to the MECG, and therefore overwhelmed by 

the MECG signal. Therefore, the MECG needs to be removed from the abdominal signal first. 

Further, since the FECG and MECG as well as other physiological source interferences are mixed 
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in both the time and frequency domains [5], the low signal-to-noise ratio (SNR) of the extracted 
FECG signal often leads to inaccurate or even failure of R-peak detection. In addition, since the 

characteristics of the fetal ECG signal is different from that of adults, existing R-peak detection 

methods for adult ECG signals have reduced performance for fetal ECG. FHR is almost double 

the adult HR, and the fetal QRS-complex amplitude is strongly dependent on lead, gestational 
age, and fetus position [6]. 

 

The importance and challenges associated with reliable extraction of accurate R-peak locations 
from AECG has inspired a considerable body of work in the area. Works generally focus on 

either removal of the MECG in order to improve the quality of the FECG signal, or improving R-

peak detection from the resulting FECG signal, with the former of these attracting the most 
attention. Various algorithms have been proposed for MECG suppression, such as template 

subtraction [7]-[9], adaptive filtering [10], [11], blind source separation (BSS) [12], [13], or deep-

learning based algorithms [14]-[16]. For extensive reviews of different approaches, see [12] or 

[17]. Other works, including this one, have focused on improving the accuracy and reliability of 
R-peak detection from the resulting FECG signal. 

 
For detection of R-peaks in FECG, variations of the Pan-Tompkins method are popularly used. 

The Pan-Tompkins algorithm (PTA) is a well-known QRS complex wave detection algorithm 

proposed in 1985 [18] for adult ECG. Adaptations of PTA for fetal R-peak detection have been 

used with some success [19-21].  For example, Agostinelli et all. [22] adapted the original PTA to 
better account for fetal ECG characteristics, with parameters modified to account for differences 

in heart rate, QRS-complex amplitudes and QRS duration compared to adult ECGs. They also 

included an R-peak corrector algorithm, resulting in improved detection reliability.  However, 
PTA-based approaches still face inherent challenges, including the inability to suppress noise 

resulting in poor performance for low SNR signals [23], and being prone to false R-peak 

detections. 
 

U-Net is a deep convolutional neural network (CNN) architecture initially designed for 2D image 

segmentation tasks, employing an encoder-decoder structure. Its structure includes contracting 

paths to capture context and symmetric expanding paths for precise positioning, enabling it to 
represent the relationships between different image components. Moreover, incorporating skip 

connections helps it to mitigate overfitting, making it effective in scenarios with limited training 

data. It has been proven successful with minimal data training across various applications, 
achieving end-to-end image segmentation [24]. 

 
More recently, the U-Net structure has been applied to 1D tasks, including predicting blood 
pressure [25], speech enhancement [26], and adult heartbeat detection [27]. In a study by Mai et 

al. [28], a deep learning model combining U-NET and Bidirectional Long Short-Term Memory 

for automatic heartbeat detection based on ballistocardiogram signals demonstrated the superior 
performance and robustness of the U-NET model across three signal-to-noise ratio (SNR) ranges, 

highlighting its resilience to signal noise and interference including respiratory and motion 

artifacts. Zahid et al. [29], in a comparative evaluation of two open-access electrocardiogram 

databases, found that the U-NET structure outperformed five other algorithms. The observed 
robustness of U-NET resulted in a significant reduction in the false positive rate of Holter ECG 

signals by more than 54% and a significant reduction in the false negative rate by 82%. 

 
Motivated by these findings, this work evaluates the suitability of U-NET architecture for the 

detection of R-peaks in low-SNR FECG signals where false positive detections are a significant 

problem by traditional methods. The architecture of the proposed fetal R-peak detection method 
is adapted from the traditional 2D U-NET model to fit the 1D time-series task. The robustness of 

the proposed algorithm is verified on the direct FECG signal (the gold standard) contained in the 
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Abdominal and Direct Fetal Electrocardiogram Database (A&D FECGDB). Two PTA-based 
methods are also simulated for horizontal comparison with our proposed method to verify the 

robustness of our algorithm. The remainder of this paper is organised as follows. Section II 

describes the proposed peak detection method. Section III describes the details of experiments 

conducted and metrics used. Section IV presents and discusses results from experiments, and 
Section V draws conclusions and future directions. 

 

2. METHODOLOGY 
 
Figure 1 provides an overview of each stage of the proposed fetal R-peak detection method. 

 

 
 

Figure 1. Flow diagram for the proposed U-NET fetal R-Peak detection method. 

 

2.1. Data Pre-Processing 
 

This first stage describes processing and preparation which is to applied to both training and 

testing data. First, the 1 kHz fetal ECG signal is downsampled to 250 Hz. Opting for high 
sampling rates involves a balance between capturing more signal detail and allocating additional 

storage space and computational resources [30]. In contrast, lower sampling rates are sufficient 

for most clinical applications and are more practical in terms of data storage and processing 
requirements. Moreover, the sampling rate of commonly used public fetal electrocardiogram 

databases is 250 Hz. Hence, to mitigate heightened computational costs without substantial 

benefits, this study downsampled the signal to 250 Hz. Additionally, this approach offers greater 

flexibility for adapting the model to various test datasets. 
 

Inspired by the ideas presented in [29], the peak detection task was formulated as a 1D 

segmentation problem that had achieved great success in adult R-peak detection. A pulse train 
map was generated based on the true peak annotations, with each pulse sharing the same width 

and being centred on the R-peak position. The pulse representation involves labelling each pulse 

as a series of ones, while zeros signify other sampling points. This methodology not only 

highlights the peak area but also aids in achieving data balance, thereby addressing potential 
challenges associated with imbalanced labels. In this study, a pulse width of 15 samples was 

chosen. This decision aligns with findings from Chivers et al. [31], wherein an algorithm for 

measuring cardiac time intervals in fetal ECG indicated an average range for fetal QRS-complex 
duration of between 54.72ms (manual measurement) and 58.34ms (algorithm measurement). This 

range corresponds to 13.68-14.50 sample points under a 250 Hz sampling frequency condition. 

Moreover, upon inspecting the morphology of the A&D database, it was observed that the QRS-
complex typically spans 15 sample points.  Figure 2 illustrates an example of raw fetal scalp ECG 

signal along with the corresponding generated pulse sequence map. 
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The next step is segmentation, where a fixed sliding window of 1000 samples (equivalent to four 

seconds) was used. Furthermore, the shifting update for the sliding window was configured to 

200 samples. The processed segments of ECG data and corresponding pulse train maps were 

saved in a two-dimensional matrix to be used in subsequent U-NET model training. 
 

 
  

Figure 2.  An example of the raw fetal scalp ECG (direct FECG) signal and corresponding pulse train map 

generated. The red star represents the true R-peak annotation specified in the dataset. Each 52 sample wide 

pulse is centred about this true annotation to form the pulse train used for training. 

  

2.2. Training Stage 
 

In the second stage, the model undergoes training using the constructed inputs and pulse train 

map data for training signals. The architecture of the proposed U-NET neural network is 

illustrated in Figure 3. The scalp ECG segments are first sent to the U-NET through the encoding 
stage, and the output of the 1D-convolutional (1D-CNN) layer is saved before going through the 

max pooling layer. This is followed by decoding blocks to achieve the up-sampling process via 

1D deconvolution (transpose) convolutional layer. The output of the 1D transpose CNN layer is 
skip connected with the output of the 1D-CNN layer pre-stored in the encoding stage. Finally, the 

output of the last activation function is fed to the last convolution layer to obtain a predicted pulse 

train map with a Sigmoid activation function. 
 

Both the encoder blocks and decoder blocks are composed of three 1D-CNN layers. The 

bottleneck block consists of two 1D-CNN layers. The filter parameters and kernel size in the 

convolutional layer in the encoding block were {16, 16, 32} and {9,9,6} respectively. Each 
convolutional layer is followed by a ReLU activation function. A max-pooling layer with a pool 

size of 2 is connected after each 1D-CNN layer to achieve dimensionality reduction. In the 

decoding block, the filter parameters and kernel sizes were {32, 16, 16} and {9, 9, 6} for the 1D-
CNN layer and 1D deconvolutional CNN layer, respectively. The stride of the deconvolution 

layer is set to 2. 

 

 
 

Figure 3.  Proposed U-NET Architecture for R-peak detection from Fetal Electrocardiogram. 
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The parameters of the model were randomly initialised during training. Binary cross entropy was 
selected as the loss function used by the model. The Adam optimiser was used to minimise the 

Loss between the predicted and the original pulse train map. Five-fold cross-validation was 

performed using four records as the training set and the remaining record as the test set. The 

learning rate was set to 0.001, with a batch size of 64. Each model was trained for 400 epochs. 

 

2.3. Fetal R-peak Detection 
 

In the testing, R-peak detection stage, constructed inputs from test signals are applied to the 

model constructed in the training stage. The model's output feature is a pulse train representing 
predictions of potential R-peak locations, which undergoes additional post-processing steps to 

identify and eliminate false positives, thereby enhancing the accuracy of R-peak detection. 

 
The output map segments are restored to a full length through an overlap-add process, and 

additional processing steps are executed to finalise the peak screening process. Firstly, a filtering 

criteria removes potential false positive predictions where amplitudes of the output pulse train are 

weak and below the first threshold (Thres_small). Currently, the threshold Thres_small is set to a 
fixed value of 0.3 to eliminate these weak false positive predictions. This means that predicted 

values below Thres_small will be converted to 0 and the remaining values will be converted to 1. 
Next, the middle value of each pulse is taken to generate a fiducial R-peak series, corresponding 
to predicted R-peak locations. Finally, a second threshold (Thres_close) is applied to eliminate 

closely spaced potential beats. Since the fetal heart rate variability is in the range of 110-160 bpm 

[3], Thres_close of 81 sampling points is used to filter potential R peaks that are too close to be 
physically possible. Where two beats are closer than this threshold, the beat further from 

midpoint of preceding and subsequent beats is removed. The result is a pulse train where the 

centre of each pulse corresponds to the location of a predicted R-peak within the original FECG 

signal. 
 

2.4.  A&D Database 
 

This work employed the Abdominal Direct Fetal Electrocardiogram Database (A&D FECGDB) 

due to its inclusion of direct fetal ECG. The database contains five records from five different 

subjects, numbered r01, r04, r07, r08 and r10. Each recording lasts for five minutes and is 
sampled at 1 kHz with 16-bit resolution. The annotation of the fetal R-wave position provided 

within the database had been automatically determined for the direct FECG signal by online 

analysis in the KOMPOREL system, and then the precise R-wave position was manually verified 
by a team of cardiologists [32], [33]. 

 

3. EXPERIMENTS  
 

To evaluate the performance of the proposed R-peak detection method, a comparison of 
performance to PTA-based methods commonly used in the literature was done. Below we 

provide details of these methods, and how metrics used to evaluate performance were applied. 

 

3.1. Methods Included for Comparison  
 

This work compares the performance of the proposed U-Net method for detecting fetal R-peaks 
with the Pan-Tompkins Algorithm (PTA), which is commonly used for comparison in the 

literature.  Details of the general algorithm for PTA are shown in flow chart Figure 4 Here, we 

include a comparison with two PTA-based implementations, namely Mathworks (denoted 
PTA_M) and ECGPUWAVE (denoted PTA_E). The choice of the open-source PTA-based 
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implementations was based on its suitability for the R-peak detection task. PTA_Mathworks is an 
implementation of PTA provided by Mathworks, and details can be found in [34]. 

ECGPUWAVE is part of Physionet Tool Kit [33] and details can be found at: 

https://physionet.org/content/ecgpuwave/1.3.4/ . While ECGPUWAVE is based on PTA, it also 

includes improvements utilising slope information. 
 

 
 

Figure 4.  Multiple processing steps of Pan-Tompkins algorithm. In brief, the PTA algorithm detects the  
R-peak after two stages: the preprocessing stage to achieve R-wave enhancement; and the decision-making 

stage to locate R-peaks. 

 

3.2. Evaluation Metrics 
 

In accordance with the ANSI/AAMI guideline [35], sensitivity (SEN), positive predictability 

value (PPV) and F1-score allow for the assessment of the presence of R-peaks within a tolerance 
window. Each of these metrics have been used to evaluate the performance of the proposed 

method. 

 
PPV is a measure of accuracy, which shows the ability of the algorithm to detect real annotations 

in all the tests performed. SEN is a measure of completeness, which shows the model's ability to 

find true annotations. F1-score is the harmonic average of PPV and SEN. In this study a match 
window size of 52 milliseconds (13 samples) is applied to determined the true positives (TP), true 

negatives (TN), false positives (FP). Their calculation equations are shown in Equation (1), (2) 

and (3), respectively. 

 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100%                           (1) 

𝑆𝐸𝑁 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
× 100%                                                (2) 

𝐹1 =
2×𝑃𝑃𝑉×𝑆𝐸𝑁

(𝑃𝑃𝑉+𝑆𝐸𝑁)
× 100%                                               (3) 

 

 
 

Figure 5. Important annotations of the ECG waveform. Where the predicted peak is within the match 

window, it is considered a TP, while predictions outside this range are considered as FP. FN indicates that 

the algorithm did not predict a peak within the match window of the true peak.   
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4. RESULTS AND DISCUSSION 
 
The experiments compared the performance between the proposed method and two PTA-based 

baseline methods is undertaken.  The performance of each method are shown in the following 

tables.  Table 1 provides an overview of the average performance across all tested records for 

each method. From Table 1, results show that across all approaches, the proposed method 
consistently attains the most elevated scores across the three evaluation metrics, with average 

scores on PPV, SEN and F1-score of 99.81%, 100.00% and 99.91%, respectively. 

PTA_ECGPUWAVE performed relatively poorly in each test. Its highest F1-score[84.93%] did 
not exceed 85%, which is significantly lower than the scores of PTA_Mathworks [97.95%] and 

UNET [99.91%]. Table 2 provides more specific details on the performance of each method on 

individual test records, including TP, FP, FN numbers, as well as PPV, SEN, and F1-score.  

Notably, the proposed method achieves perfect scores of 100% for SEN, PPV and F1-score on 
records r01, r04, r07, and r08. FP and FN scores are considerably improved for UNET compared 

to both PTA_E and PTA_M methods. 

   
Table 1.  The average results in terms of PPV, SEN and F1-SCORE for each method. Entries in bold 

indicate highest value for that metric. 

 

METHOD PPV (%) SEN (%) F1-SCORE (%) 
PTA_E [33] 82.87 82.33 83.41 
PTA_M [34] 97.95 97.86 98.04 

UNET 100.00 99.84 99.92 

 
Table 2.  Performance of three methods across each test record. The method with the highest score in each 

test record is marked in bold. 

  

TEST RECORD METHOD TP FP FN PPV (%) SEN (%) F1-SCORE (%) 

r01 PTA_E [33] 623 26 21 95.99 96.74 96.37 

PTA_M [34] 641 4 3 99.38 99.53 99.46 

UNET 644 0 0 100.00 100.00 100.00 

r04 PTA_E [33] 513 141 119 78.44 81.17 79.78 

PTA_M [34] 613 27 19 95.78 96.99 96.38 

UNET 632 0 0 100.00 100.00 100.00 

r07 PTA_E [33] 380 257 247 59.65 60.61 60.13 

PTA_M [34] 609 18 18 97.13 97.13 97.13 

UNET 627 0 0 100.00 100.00 100.00 

r08 PTA_E [33] 636 14 15 97.85 97.7 97.77 

PTA_M [34] 645 4 6 99.38 99.08 99.23 

UNET 651 0 0 100.00 100.00 100.00 

r10 PTA_E [33] 515 131 122 79.72 80.85 80.28 

PTA_M [34] 621 15 16 97.64 97.49 97.56 

UNET 632 0 5 100.00 99.22 99.61 

 

The presence of five FN predictions by UNET in r10 caught our attention and was associated 
predominately with several unusually large regions where there was little evident signal or 

annotated beats in the FECG signal, potentially due to signal loss or poor contact of the electrode. 

Example segments from this record are shown, along with predictions by each method, in Figure 
6, with an example of the unusual morphology of the signal where a FN was observed shown in 

Figure 6(b). Both PTA_E and PTA_M misjudge small noise variations in the rising trend of the 

signal as a R-peaks, resulting in falsely labelled beats (FP) for this region, while UNET did not. 
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In Figure 7(a), the improved resistance to noise of UNET is shown, with PTA_E falsely 
predicting a nearby noise spike and missing a beat.  Figure 7. shows a segment containing a 

sudden large spike within the signal. Both PTA algorithms made incorrect predictions while 

UNET was not affected. The PTA_E method incorrectly identifies the spike as R-peak due to its 

large amplitude, and ignores the correct R-peak on the left. The PTA_M method was also 
affected by the abnormal shape and made a false positive prediction. Overall, UNET 

demonstrates a robust ability to detect fetal heartbeats, even in the presence of abnormal 

morphology. 
 

 
 

Figure 6. Example of 2 segments with unusual morphology in record r10, which features extended areas 

without beats. Predicted beats in this region are shown by red stars for each method, while green bands 
indicate annotated true beat locations. 

 

 
 

Figure 7. (a) The morphology of a 120-second segment of record r08 in A&D FECG database.  Regions of 

unusual morphology, specifically spikes with significant amplitude, are highlighted in yellow. (b) Zoomed-

in visualization of the region in record r08 containing unusual spike, alongside predictions from each of the 
testing methods in this region. Predicted R-peaks are indicated by red stars. 52ms tolerance range (match 

window) is indicated by green highlight. 
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5. CONCLUSIONS 
 
In conclusion, the current work describes a novel application of the UNET architecture to enable 

detection of R-peaks in fetal ECG signals. The proposed method showcases high performance 

metrics, achieving a PPV of 99.81%, SEN of 100.00%, and an F1-score of 99.91%. In contrast, 

PTA_ECGPUWAVE and PTA_MATHWORKS, with respective PPVs of 84.15% and 97.86%, 
SENs of 85.72% and 98.04%, and F1-scores of 84.93% and 97.95%, fall short of the proposed 

method's performance. Notably, our method exhibits significant robustness by avoiding FP and 

FN in most records, unlike other two methods, which have a higher incidence of both types of 
errors. Furthermore, our method shows remarkable adaptability by correctly predicting abnormal 

morphology, a capability that cannot be replicated by the other two methods, which experienced 

varying degrees of failure in this regard. Overall, our proposed U-Net based method is highly 

accurate, confirming its potential as a powerful solution for R-peak detection in fetal ECG signals. 
Future work will explore its generalizability and performance on fetal ECG extracted from 

abdominal ECG and subjected to different types and levels of noise distortions. 
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