
Axiomatics of Exceptions

Wei Chen, United States of America

Abstract. This paper presents axiomatic proof rules for exception handling and

argues that exceptions are no more than forward goto statements. The rules are

defined within Hoare’s native proof system with Dijkstra’s weakest precondition

model as a mathematical foundation.

Keywords: exception handling, exception proof rules, goto axioms, weakest

precondition.

1 Introduction

We have made some crucial progress toward axiomatizing goto and its family of jump
statements [1][2][3]. In this paper we present a very simple exception rule based on
Clint and Hoare’s mostly ignored goto rule presented in the main text of [4]. Exceptions
are no more than so called forward jumps, i.e. where, roughly speaking, goto is
encountered before its label. For forward jumps, termination is guaranteed, and no
variant functions are needed. Importantly, forward jumps are compositional in that we
can repeatedly apply the same single one-label rule. It is well known that the goto
statement is largely used for exception handling in our common practice. We follow
this path and lay down a solid mathematical foundation first on the goto statement. It is
our great fortune that we have Dijkstra’s weakest precondition model [6][7] handily
available. The goto statement and other jump statements were skipped when the weakest
precondition model was first conceived around 70’s of last century by Dijkstra.
However, the real power of the model lies actually in its ability to formally treat the goto
statement, in our opinion, since we found it out that goto possesses more mathematical
properties than all other programming constructs aggregated.

In the next section, we will postulate the weakest precondition and present some

properties of the goto statement. We give methods on how to obtain goto’s wp.

Converting the weakest precondition of a goto statement to a Hoare triple yields an

axiom of goto statements in Hoare’s native proof system. In section 3, we discuss proof

rules of goto statements especially for forward jumps in a miraculous style. Section 4

presents exception rules based on Clint and Hoare’s originally devised intention. We

show why exceptions are just like forward jumps. We also define the semantics for try-

raise-catch statements found in modern programming languages. Following section 4,

we show how to use exception rules in a case study. Section 6 sees some concluding

remarks being drawn. We see little in publication of the subject but will make a

comparison of approaches taken with [8] in the last section.

David C. Wyld et al. (Eds): SIPRO, EMSA, CCSEA- 2024
pp. 23-31, 2024. -CS & IT CSCP 2024 DOI: 10.5121/csit.2024.140903

http://airccse.org/cscp.html
http://airccse.org/csit/V14N09.html
https://doi.org/10.5121/csit.2024.140903

2 Mathematics beneath goto Statements

This section provides some background information which are already reported

somewhere else [1-3] but useful in understanding the rest of the paper. Given a

postcondition, a goto execution transfers the control to where its label is rather than the

end of the goto statement, so the weakest precondition of a goto statement is the weakest

precondition given at its label. In [3], the weakest precondition of the goto statement

is defined by

 wp(goto L, R) ≜ wpL (goto rule)

where wpL represents the weakest precondition at label L, i.e. wp(L:S, Q) for some

computed Q to that point. Such a Q exists as we are dealing with total functions. This

is much alike to any other rule of wp. For example, given S1;S2, whose wp is wp(S1,

wp(S2, R)), as S1 or S2 changes, the entire wp could change. We also need yet

determine the mid-point wp, say, wpMid, which is just wp(S2, R). The only difference

is that we do not feel like writing down S in the goto rule. Whether goto reaches its

end does not matter much since we are seeking a precondition. We can still claim that

goto reaches the end but through a miracle.

We take a few more observations on this definition. First, the rule does not require

the uniqueness for locations where wpL holds within a program, so theoretically it

allows the same label to appear in multiple locations as long as the weakest precondition

at each location is the same wpL. The goto statement can jump to any of such locations.

So, L:L:S must be allowed in the language, among others. Such a forking jump,

although we don’t need it in this paper, may shed more light on non-determinacy and

parallel composition. Our second observation is that the rule does not impose any

scoping nor require where the label should be. So, it could be inside an alternation or

repetition construct. For example, consider

 prog1 ≜ do x < 0 → L: x := x+1 od; if x > 0 then x := -x; goto L fi

which has a jump into the loop body. We calculate,

 wp(prog1, post)

 = “plug in prog1”

 wp(do x < 0 → L: x := x+1 od; if x > 0 then x := -x; goto L fi, post)

 = “sequential composition and if-then rules (1)”

 wp(do x < 0 → L: x := x+1 od, x>0 ∧ wp(x := -x; goto L, post) ∨ 0≥x ∧ post)

 = “sequential composition, goto, assignment rules”

 wp(do x < 0 → do L: x := x+1 od, x>0 ∧ wpL(x ← -x) ∨ 0≥x ∧ post)

 = “repetition rule(1)”

 the strongest solution of Z: [Z ≡ x < 0 ∧ wp(L: x := x+1, Z)

∨ x > 0 ∧ wpL(x ← -x) ∨ x=0 ∧ post]

 = “assignment rule, found wpL and plug in, which is Z(x ← x+1)”

 the strongest solution of Z: [Z ≡ x < 0 ∧ Z(x ← x+1)

∨ x > 0 ∧ Z(x ← x+1) (x ← -x) ∨ x=0 ∧ post]

 = “substitution”

(1) The if-then rule: wp(if B then S fi, post) ≜ [B ∧ wp(S, post) ∨ ¬ B ∧ post] .

 The repetition rule: wp(do B → S od, post) ≜ the strongest solution X: [X ≡ B ∧ wp(S, X) ∨ ¬ B ∧ post]

24 Computer Science & Information Technology (CS & IT)

 the strongest solution of Z: [Z ≡ x < 0 ∧ Z(x ← x+1)
∨ x > 0 ∧ Z(x ← -x+1) ∨ x=0 ∧ post]

 = “solve the above equation by approximation”

 post(x← 0)

Therefore, wp(prog1, post) = post(x← 0). Indeed, prog1 operationally behaves like

an assignment of setting x to 0. Thirdly, goto does not satisfy Dijkstra’s Law of

Excluded Miracle, which stipulates that [wp(S, F) ≡ F] for any executable statement

S where F denotes the universally false predicate. Any statement is called miraculous

if it does not meet Law of Excluded Miracle. Miraculous statements are in general not

executable, but goto, actually, is one of a few executable miracles, because the program

containing goto does follow Law of Excluded Miracle. To show this, we need to define

an auxiliary statement called miracle Q, which has the following wp rule.

 wp(miracle Q, R) ≜ Q .

Then we have goto L = miracle wpL, and abort = miracle F. Now suppose our

program looks like

 SLL3 ≜ S0; L1:S1; L2:S2; L3:S3

with three labels. It is pretty easy to see, we have

wp(SLL3, post) = wp(S0, wpL1),

wpL1 = wp(S1, wpL2),

wpL2 = wp(S2, wpL3) and

wpL3 = wp(S3, post).

We use miracle to replace goto to obtain,

 wp(SLL3, post) = wp(S0(goto L1←miracle wpL1, goto L2←miracle wpL2,

goto L3←miracle wpL3), wpL1)

 wpL1 = wp(S1(goto L1←miracle wpL1, goto L2←miracle wpL2,

goto L3←miracle wpL3), wpL2)

 wpL2 = wp(S2(goto L1←miracle wpL1, goto L2←miracle wpL2,

goto L3←miracle wpL3), wpL3)

 wpL3 = wp(S3(goto L1←miracle wpL1, goto L2←miracle wpL2,

goto L3←miracle wpL3), post)

so (wpL1, wpL2, wpL3) is a solution of the following ternary recursive equations.

(X1, X2, X3) :

 (X1 = wp(S1(goto L1←miracle X1, goto L2←miracle X2,

goto L3←miracle X3), X2)

 X2 = wp(S2(goto L1←miracle X1, goto L2←miracle X2,

goto L3←miracle X3), X3)

 X3 = wp(S3(goto L1←miracle X1, goto L2←miracle X2,

goto L3←miracle X3), post))

As usual, we designate the strongest solution(2) of X1, X2 and X3 under position-

wise implications to be wpL1, wpL2 and wpL3, respectively. It is not too hard to see

(F, F, F) is also a solution when post assumes F because miracle F = abort and S1, S2

(2) This is because our execution of a recursive program leads to such a strongest solution. As the Cartesian

product of predicates forms a complete lattice under point-wise implication, the least fixed point, i.e. the

so-called strongest solution, exists according to Knaster-Tarski fixed point theorem.

Computer Science & Information Technology (CS & IT) 25

and S3 hypothetically preserve Law of Excluded Miracle. But no other solution could

be stronger. Thus, wpL1 = wpL2 = wpL3 = F. We then have

 wp(SLL3, F)

= “ above and rewriting ”

 wp(S0(goto L1←miracle F, goto L2←miracle F, goto L3←miracle F), F)

= “ miracle F = abort ”

 wp(S0(goto L1←abort, goto L2←abort, goto L3←abort), F)

= “ S0 hypothetically preserves Law of Excluded Miracle ”

 F

It is straightforward to generalize this into the n-label case SLL ≜ S0;L1:S1;… Ln:Sn.

Since SLL is a canonical form and any program can be converted to its appearance, we

have established the following theorem.

Theorem of Jump Executability

All goto statements are executable.

□

This theorem reflects the fact that the goto statement can indeed be implemented on

every computing machinery. The unfortunate coining of Law of Excluded Miracle by

Dijkstra probably contributes to such late recognition that goto is both miraculous and

executable. The interested reader can refer to [3] for more details.

Fourthly, the goto axiom does exist for Hoare’s native proof system, on the contrary

to popular and massive skepticism, and such axioms can easily be converted from its

weakest precondition. We have

 < empty >

 { wpL } goto L { F }

for total correctness. For partial correctness

 < empty >

 { wlpL} goto L { F }

where wlpL is the weakest liberal precondition at the label L. Now we should become

aware why { T } goto L { F } cannot be a goto axiom, first noticed in [10]. Executing

a goto does require a precondition. It is not due to Hoare’s proof system but our own

failure not to uncover those axioms earlier.

3 Proof Rules for goto Statements

Since we intend to use goto to describe exceptions, we first give some proof rules of
goto. Clint and Hoare’s rule in an appendix of [4] states

 { Q } goto L { F } ⊢ { P } S1 { Q }

 { Q } goto L { F } ⊢ { Q } S2 { R }

 { P } S1; L:S2 { R }
 Using the miracle statement, we can do some wonders. Noting that goto L = miracle
wpL, we have

{ Q } miracle wpL { F } ⊢ { P } S1(goto L ← miracle wpL) { Q }

 { Q } miracle wpL { F } ⊢ { Q } S2(goto L ← miracle wpL) { R }

 { P } S1; L:S2;{ R }

26 Computer Science & Information Technology (CS & IT)

Furthermore, we can and do choose Q to be wpL, then we have

{ P } S1(goto L ← miracle wpL) { wpL }

 { wpL } S2(goto L ← miracle wpL) { R }

 { P } S1; L:S2 { R }
since LHS of the sleeping tee sign ⊢ is just an instance of the miracle axiom. Now that
wpL becomes a new unknown, we can replace it back with Q again; thus, we have

 { P } S1(goto L ← miracle Q) { Q }

 { Q } S2(goto L ← miracle Q) { R }

 { P } S1; L:S2 { R }

 This is actually a rewriting of Clint and Hoare’s goto rule for partial correctness [2].

When we take S2 as skip in the above, we obtain,

 { P } S(goto L ← miracle R) { R }

 { P } S; L:skip { R }

 We call every goto L contained in S a forward jump in that goto L gets executed first

before its label appears. This rule is essentially a labeling rule, comparing its antecedent

with consequent. Since forward jumps have no termination issue, this rule also

characterizes total correctness for forward jumps. We will call this rule the forward

SLL rule. Since we do not use the backward SLL rule in this paper, we will sometimes

refer to this rule simply as the SLL rule.

4 Exception Proof Rules

The forward jump is used quite often in handling exceptions. The main rule by Clint
and Hoare in [4], which capture the exception semantics, states

 { P1 } S1 {R1}

 { P1 } goto L { F } ⊢ { P } S2(goto L) { R2 }

 { P } L:S1; S2(goto L); { R1 ∨ R2 }

Clint and Hoare’s vision is presumably that S1 is taken as an exception block and

contains no more goto L, and that execution starts from S2 and ends normally when S2

ends, but exceptionally ends when S1 ends after goto L is encountered. Although goto

L appears like a backward jump, it is actually a forward jump in that S1 contains no

goto L. So, we can re-write the consequent statement portion equivalently as

 E_block ≜ S_block(goto L); goto Next; L:S_handler; Next:skip

 We have two labels L and Next. For a postcondition R, we have wp at the label Next
as R. So, by reverse applying the forward SLL rule, our proof obligation becomes for a
precondition P

 { P } S_block(goto L); miracle R; L:S_handler { R }

In order to prove

{ P } S_block(goto L); miracle R; L:skip { Q }

we reverse apply the SLL rule, again. Our proof obligation is

{ P } S_block(goto L ← miracle Q); miracle R { Q }
 Obviously, wpL is wp(S_handler, R). By the sequential composition rule, Q needs
to be weaker than wpL; thus we have one more obligation to prove

Computer Science & Information Technology (CS & IT) 27

 { Q } S_handler { R }

 Finally, by the miracle rule, the first obligation can be written as

{ P } S_block(goto L ← miracle Q) { R }

Putting pieces together, we obtain

 { P } S_block(goto L ← miracle Q) { R }

{ Q } S_handler { R }

{ P } E_block { R }
 Modern languages use a try-raise-catch mechanism, which can be viewed as a variety
of the above rule. For example,

 try S_block(raise Exception(anException))

 catch Exception(anExceptionParam)

 S_handler

 yrt

can be modeled as

 TryRaiseCatch ≜ S_block(raise Exception(anException)

 ← ex ≔ anException; goto L);

 goto Next;

 L: anExceptionParam ≔ ex; S_handler;

 Next: skip

 Then we can define its semantics as the following proof rule by applying the SLL
rule, plus other rules,

 [Q1 ⇒ Q2(anExceptionParam ← ex)]

 { P } S_block(raise anException ← miracle (Q1(ex← anException))) { R }
 { Q2 } S_handler {R}

 { P } TryRaiseCatch { R }

 We can simplify it further to

[Q1 ⇒ Q2 (anExceptionParam ← anException)]

{ P } S_block(raise anException ← miracle Q1) { R }
 { Q2 } S_handler {R}

 { P } TryRaiseCatch { R }

 If we don’t have parameter passing during raise, the above rule is just like that of
E_block.

5 Case Study: Table Search

We are given a two-dimensional array A to find whether or not a given constant K exists
in A. First, we formalize the problem specification in a Hoare triple { x=A } TSP {

28 Computer Science & Information Technology (CS & IT)

x=A ∧ (found ≡ (∃ i, j :: A.i.j = K)) }. Using the standard technique, we could have the
following for TSP

 { x = A }

 m ≔ 0; found ≔ false;

 { inv: (∀ i, j : 0 ≤ i < m ∧ 0 ≤ j < N : A.i .j ≠ K) ∧ 0 ≤ m ≤ M ∧ ¬ found

 vf: M-m }

 do m ≠ M → n ≔ 0;

 { inv: (∀ i, j : 0 ≤ i < m ∧ 0 ≤ j < n : A.i .j ≠ K) ∧ 0 ≤ m ≤ M ∧ 0 ≤ n ≤ N

 ∧ ¬ found

 vf: N-n }

 do n ≠ N →

 “ compare A.m.n with K: ”

 if x.m.n = K → found ≔ true

 [] x.m.n ≠ K → skip

 fi; n ≔ n + 1

 od; m ≔ m + 1

 od { m = M ∧ (∀ i, j : 0 ≤ i < m ∧ 0 ≤ j < N : A.i .j ≠ K) ∧ 0 ≤ m ≤ M ∧ ¬ found }

 { x=A ∧ (found ≡ (∃ i, j :: A.i.j = K))

 Unfortunately, this program raises an uncaught exception in that the variable found
is set to true inside, as it violates the invariants. There could be several ways of fixing
this without changing the invariants. The exception is raised only when K is found in
A. Let us code this into the program using the exception rule so we have

 { x = A } m ≔ 0; found ≔ false;

 try

 { inv: x = A ∧ (∀ i, j : 0 ≤ i < m ∧ 0 ≤ j < N : A.i .j ≠ K) ∧ 0 ≤ m ≤ M ∧ ¬ found

 vf: M-m }

 do m ≠ M → n ≔ 0;

 { inv: x = A ∧ (∀ i, j : 0 ≤ i < m ∧ 0 ≤ j < n : A.i .j ≠ K) ∧ 0 ≤ m ≤ M

 ∧ 0 ≤ n ≤ N ∧ ¬ found

 vf: N-n }

 do n ≠ N →

 “ compare A.m.n with K ”

 if x.m.n = K → raise FoundException()

Computer Science & Information Technology (CS & IT) 29

 ⫿ x.m.n ≠ K → skip

 fi; n ≔ n + 1

 od; m ≔ m + 1

 od

 { x = A ∧ m = M ∧ (∀ i, j : 0 ≤ i < m ∧ 0 ≤ j < N : A.i .j ≠ K) ∧ ¬ found }

 catch FoundException ()

 “ do found ”

 found ≔ true

 yrt;

 { x = A ∧ (found ≡ (∃ i, j :: A.i.j = K))

 Since we decide not to pass anything when FoundException is raised, our proof
obligations reduce to the following two to verify.

• { P } TryBody(raise FoundException() ← miracle Q) { R }

• { Q } found ≔ true { R }

 We can then take the following

 P ≜ x = A ∧ (∀ i, j : 0 ≤ i < m ∧ 0 ≤ j < N : A.i .j ≠ K) ∧ 0 ≤ m ≤ M ∧ ¬ found

 Q ≜ x = A ∧ (∃ i, j :: A.i.j = K)

 R ≜ x = A ∧ (found ≡ (∃ i, j :: A.i.j = K))

 Note that TryBody is a repetition so we can use its invariant to be the P in our proof
rule. We leave the formal check to the interested reader but make a point that everything
is developed in the currently practiced programming methodology – a huge inheritance
we can now take for granted as no underlying foundation is changed.

6 Concluding Remarks

We have provided proof rules of exceptions based on Clint and Hoare’s goto rules
published decades ago by employing a miraculous statement in a novel manner. It turns
out with the discovery of goto’s wp that those rules are extremely simple and easy to
understand without any need to amend the underlying proof system. It can readily be
extended to allowing multiple catches provided that there are no crossing raise
statements, which would otherwise need backward jumps – much more complex
constructs. Similarly, we can add a finally clause.

 Some work uses traces [9] to describe an exception behavior. We think that their
approach could be very operational and is fundamentally different from ours. The work
done by King and Morgan [8] falls into a trap to add an extra postcondition for the
exceptional exit which might not exist in a plausible computation. They intended but
failed to make any enhancements over [5], which falls into the same trap of adding extra
postconditions. They had wrongly claimed that wp(skip ⫿ exit, T) = F, i.e. there would

30 Computer Science & Information Technology (CS & IT)

be no guarantee that skip ⫿ exit would terminate. Actually, skip ⫿ exit will terminate,
and the termination weakest precondition should be disjunction of the weakest
precondition of the following statement and at the end of the corresponding exception
block, which most likely might not be F. More importantly, by changing the underlying
model, their approach has to amend the entire currently being practiced methodology.
Besides, [8] is also limited in scoping. It is unclear why one would still take its complex
and costly but incomplete logic now that we have viable alternatives.

7 Acknowledgements

Thanks go to anonymous reviewers for their valuable comments and endorsements.

References

1. Chen, W.: “Loop invariance with break and continue”, Science of Computer Programming,

Vol 209, 2021, https://doi.org/10.1016/j.scico.2021.102679.

2. Chen, W.: “Behind Clint and Hoare’s goto Proof Rule”, Proceedings of the 15th International

Symposium on Theoretical Aspects of Software Engineering (TASE) 2021, Shanghai, China

3. Chen, W.: “A wp Characterization of Jump Statements”, Proceedings of the 15th

International Symposium on Theoretical Aspects of Software Engineering (TASE) 2021,

Shanghai, China

4. Clint, M. and Hoare, C. A. R.: “Program proving: Jumps and functions”, Acta Informatica,

Vol 1, No 3, September 1972, pp 214-224. https://doi.org/10.1007/BF00288686

5. Cristian, F.: “Correct and Robust Programs”, IEEE Transaction on Software Engineering,

Vol 10, No 2, March 1984, pp 163-174.

6. Dijkstra, E.W.: “A Discipline of Programming”, Prentice-Hall, Englewood Cliffs, 1976

7. Dijkstra, E.W. and van Gasteren, A.J.M.: “A simple fixed-point argument without the

restriction to continuity”, Avg 45a/EWD 901a, October 1985

8. King, S. and Morgan, C.: “Exits in the refinement calculus”, Formal Aspects of

Computing Vol 7, 1995, pp 54–76. https://doi.org/10.1007/BF01214623

9. Leino, K.R.M. and van de Snepscheut, J.L.A.: “Semantics of Exceptions”, JAN-185,

October 1993.

10. O'Donnell, M. J.: “A critique of the foundations of Hoare style programming logics”,

Communnications of ACM, Vol 25, No 12, December 1982, pp 927-935.

https://doi.org/10.1145/358728.358748

© 2024 By . This article is published under the Creative
Commons Attribution (CC BY) license

Computer Science & Information Technology (CS & IT) 31

AIRCC Publishing Corporation

https://doi.org/10.1016/j.scico.2021.102679
https://doi.org/10.1007/BF00288686
https://doi.org/10.1007/BF01214623
https://airccse.org/

	1 Introduction
	2 Mathematics beneath goto Statements
	3 Proof Rules for goto Statements
	4 Exception Proof Rules
	5 Case Study: Table Search
	6 Concluding Remarks
	7 Acknowledgements
	References

