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1 Introduction 

We have made some crucial progress toward axiomatizing goto and its family of jump 
statements [1][2][3].  In this paper we present a very simple exception rule based on 
Clint and Hoare’s mostly ignored goto rule presented in the main text of [4].  Exceptions 
are no more than so called forward jumps, i.e. where, roughly speaking, goto is 
encountered before its label. For forward jumps, termination is guaranteed, and no 
variant functions are needed.  Importantly, forward jumps are compositional in that we 
can repeatedly apply the same single one-label rule.  It is well known that the goto 
statement is largely used for exception handling in our common practice.  We follow 
this path and lay down a solid mathematical foundation first on the goto statement.  It is 
our great fortune that we have Dijkstra’s weakest precondition model [6][7] handily 
available.  The goto statement and other jump statements were skipped when the weakest 
precondition model was first conceived around 70’s of last century by Dijkstra. 
However, the real power of the model lies actually in its ability to formally treat the goto 
statement, in our opinion, since we found it out that goto possesses more mathematical 
properties than all other programming constructs aggregated. 

In the next section, we will postulate the weakest precondition and present some 

properties of the goto statement.  We give methods on how to obtain goto’s wp.  

Converting the weakest precondition of a goto statement to a Hoare triple yields an 

axiom of goto statements in Hoare’s native proof system.  In section 3, we discuss proof 

rules of goto statements especially for forward jumps in a miraculous style.  Section 4 

presents exception rules based on Clint and Hoare’s originally devised intention.  We 

show why exceptions are just like forward jumps.  We also define the semantics for try-

raise-catch statements found in modern programming languages.  Following section 4, 

we show how to use exception rules in a case study.  Section 6 sees some concluding 

remarks being drawn.  We see little in publication of the subject but will make a 

comparison of approaches taken with [8] in the last section.  
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2 Mathematics beneath goto Statements 

This section provides some background information which are already reported 

somewhere else [1-3] but useful in understanding the rest of the paper.  Given a 

postcondition, a goto execution transfers the control to where its label is rather than the 

end of the goto statement, so the weakest precondition of a goto statement is the weakest 

precondition given at its label.  In [3], the weakest precondition of the goto statement 

is defined by  

 wp(goto L, R) ≜ wpL                        (goto rule) 

where wpL represents the weakest precondition at label L, i.e. wp(L:S, Q) for some 

computed Q to that point.  Such a Q exists as we are dealing with total functions.  This 

is much alike to any other rule of wp.  For example, given S1;S2, whose wp is wp(S1, 

wp(S2, R)), as S1 or S2 changes, the entire wp could change.  We also need yet 

determine the mid-point wp, say, wpMid, which is just wp(S2, R).  The only difference 

is that we do not feel like writing down S in the goto rule.  Whether goto reaches its 

end does not matter much since we are seeking a precondition.  We can still claim that 

goto reaches the end but through a miracle. 

We take a few more observations on this definition.  First, the rule does not require 

the uniqueness for locations where wpL holds within a program, so theoretically it 

allows the same label to appear in multiple locations as long as the weakest precondition 

at each location is the same wpL.  The goto statement can jump to any of such locations.  

So, L:L:S must be allowed in the language, among others.  Such a forking jump, 

although we don’t need it in this paper, may shed more light on non-determinacy and 

parallel composition.  Our second observation is that the rule does not impose any 

scoping nor require where the label should be.  So, it could be inside an alternation or 

repetition construct.  For example, consider 

  prog1 ≜ do x < 0 → L: x := x+1 od; if x > 0 then x := -x; goto L fi 

which has a jump into the loop body.  We calculate, 

  wp(prog1, post)  

    =  “plug in prog1” 

  wp(do x < 0 →  L: x := x+1 od; if x > 0 then x := -x; goto L fi, post) 

    =  “sequential composition and if-then rules (1)” 

  wp(do x < 0 → L: x := x+1 od, x>0 ∧ wp(x := -x; goto L, post) ∨ 0≥x ∧ post) 

    =  “sequential composition, goto, assignment rules”  

  wp(do x < 0 → do L: x := x+1 od, x>0 ∧ wpL(x ← -x) ∨ 0≥x ∧ post) 

    =  “repetition rule(1)” 

  the strongest solution of Z: [ Z ≡ x < 0 ∧ wp(L: x := x+1, Z)  

∨ x > 0 ∧ wpL(x ← -x) ∨ x=0 ∧ post ] 

    =  “assignment rule, found wpL and plug in, which is Z(x ← x+1)” 

  the strongest solution of Z: [ Z ≡ x < 0 ∧ Z(x ← x+1)  

∨ x > 0 ∧ Z(x ← x+1) (x ← -x) ∨ x=0 ∧ post] 

    =  “substitution” 

 
(1) The if-then rule: wp(if B then S fi, post)  ≜  [ B ∧ wp(S, post) ∨ ¬ B ∧ post ] .   

     The repetition rule: wp(do B → S od, post)  ≜  the strongest solution X: [X ≡ B ∧ wp(S, X) ∨ ¬ B ∧ post] 

24                                 Computer Science & Information Technology (CS & IT)



  the strongest solution of Z: [ Z ≡ x < 0 ∧ Z(x ← x+1)  
∨ x > 0 ∧ Z(x ← -x+1) ∨ x=0 ∧ post ] 

    =  “solve the above equation by approximation” 

  post(x← 0) 

Therefore, wp(prog1, post ) = post(x← 0).  Indeed, prog1 operationally behaves like 

an assignment of setting x to 0.  Thirdly, goto does not satisfy Dijkstra’s Law of 

Excluded Miracle, which stipulates that [ wp(S, F) ≡ F ] for any executable statement 

S where F denotes the universally false predicate.  Any statement is called miraculous 

if it does not meet Law of Excluded Miracle.  Miraculous statements are in general not 

executable, but goto, actually, is one of a few executable miracles, because the program 

containing goto does follow Law of Excluded Miracle.  To show this, we need to define 

an auxiliary statement called miracle Q, which has the following wp rule. 

  wp(miracle Q, R) ≜ Q . 

Then we have goto L = miracle wpL, and abort = miracle F.  Now suppose our 

program looks like  

  SLL3 ≜ S0; L1:S1; L2:S2; L3:S3  

with three labels.  It is pretty easy to see, we have  

wp(SLL3, post) = wp(S0, wpL1),  

wpL1 = wp(S1, wpL2),  

wpL2 = wp(S2, wpL3) and  

wpL3 = wp(S3, post).   

We use miracle to replace goto to obtain, 

  wp(SLL3, post)  =  wp(S0(goto L1←miracle wpL1, goto L2←miracle wpL2,  

goto L3←miracle wpL3), wpL1) 

  wpL1 = wp(S1(goto L1←miracle wpL1, goto L2←miracle wpL2,  

goto L3←miracle wpL3), wpL2) 

  wpL2 = wp(S2(goto L1←miracle wpL1, goto L2←miracle wpL2,  

goto L3←miracle wpL3),  wpL3) 

  wpL3 = wp(S3(goto L1←miracle wpL1, goto L2←miracle wpL2,  

goto L3←miracle wpL3), post) 

so (wpL1, wpL2, wpL3) is a solution of the following ternary recursive equations. 

(X1, X2, X3) : 

           ( X1 = wp(S1(goto L1←miracle X1, goto L2←miracle X2,  

goto L3←miracle X3), X2) 

   X2 = wp(S2(goto L1←miracle X1, goto L2←miracle X2,  

goto L3←miracle X3),  X3) 

   X3 = wp(S3(goto L1←miracle X1, goto L2←miracle X2,  

goto L3←miracle X3), post)  ) 

As usual, we designate the strongest solution(2) of X1, X2 and X3 under position-

wise implications to be wpL1, wpL2 and wpL3, respectively.  It is not too hard to see 

(F, F, F) is also a solution when post assumes F because miracle F = abort and S1, S2 

 
(2) This is because our execution of a recursive program leads to such a strongest solution.  As the Cartesian 

product of predicates forms a complete lattice under point-wise implication, the least fixed point, i.e. the 

so-called strongest solution, exists according to Knaster-Tarski fixed point theorem.  
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and S3 hypothetically preserve Law of Excluded Miracle.  But no other solution could 

be stronger.  Thus, wpL1 = wpL2 = wpL3 = F.  We then have 

   wp(SLL3, F) 

=    “ above and rewriting ”   

   wp(S0(goto L1←miracle F, goto L2←miracle F, goto L3←miracle F), F) 

=     “ miracle F = abort ” 

   wp(S0(goto L1←abort, goto L2←abort, goto L3←abort), F) 

=     “ S0 hypothetically preserves Law of Excluded Miracle ” 

   F 

It is straightforward to generalize this into the n-label case SLL ≜ S0;L1:S1;… Ln:Sn. 

Since SLL is a canonical form and any program can be converted to its appearance, we 

have established the following theorem.   

Theorem of Jump Executability   

All goto statements are executable. 

□  

This theorem reflects the fact that the goto statement can indeed be implemented on 

every computing machinery.  The unfortunate coining of Law of Excluded Miracle by 

Dijkstra probably contributes to such late recognition that goto is both miraculous and 

executable.  The interested reader can refer to [3] for more details.   

Fourthly, the goto axiom does exist for Hoare’s native proof system, on the contrary 

to popular and massive skepticism, and such axioms can easily be converted from its 

weakest precondition.  We have  

     < empty > 

        { wpL } goto L { F } 

for total correctness.  For partial correctness 

     < empty > 

        { wlpL} goto L { F } 

where wlpL is the weakest liberal precondition at the label L.  Now we should become 

aware why { T } goto L { F } cannot be a goto axiom, first noticed in [10].  Executing 

a goto does require a precondition.  It is not due to Hoare’s proof system but our own 

failure not to uncover those axioms earlier. 

3 Proof Rules for goto Statements 

Since we intend to use goto to describe exceptions, we first give some proof rules of 
goto.  Clint and Hoare’s rule in an appendix of [4] states 

  { Q } goto L { F } ⊢ { P } S1 { Q } 

  { Q } goto L { F } ⊢ { Q } S2 { R } 

           { P } S1; L:S2 { R } 
 Using the miracle statement, we can do some wonders.  Noting that goto L = miracle 
wpL, we have 

{ Q } miracle wpL { F } ⊢ { P } S1(goto L ← miracle wpL) { Q } 

 { Q } miracle wpL { F } ⊢ { Q } S2(goto L ← miracle wpL) { R } 

             { P } S1; L:S2;{ R } 
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Furthermore, we can and do choose Q to be wpL, then we have 

{ P } S1(goto L ← miracle wpL) { wpL } 

    { wpL } S2(goto L ← miracle wpL) { R } 

             { P } S1; L:S2 { R } 
since LHS of the sleeping tee sign ⊢ is just an instance of the miracle axiom.  Now that 
wpL becomes a new unknown, we can replace it back with Q again; thus, we have 

   { P }  S1(goto L ← miracle Q) { Q } 

       { Q } S2(goto L ← miracle Q) { R } 

               { P } S1; L:S2 { R } 

 This is actually a rewriting of Clint and Hoare’s goto rule for partial correctness [2].  

When we take S2 as skip in the above, we obtain, 

         { P } S(goto L ← miracle R) { R } 

              { P } S; L:skip { R } 

 We call every goto L contained in S a forward jump in that goto L gets executed first 

before its label appears.  This rule is essentially a labeling rule, comparing its antecedent 

with consequent.  Since forward jumps have no termination issue, this rule also 

characterizes total correctness for forward jumps.  We will call this rule the forward 

SLL rule.  Since we do not use the backward SLL rule in this paper, we will sometimes 

refer to this rule simply as the SLL rule. 

4 Exception Proof Rules 

The forward jump is used quite often in handling exceptions.  The main rule by Clint 
and Hoare in [4], which capture the exception semantics, states  

         { P1 } S1 {R1} 

 { P1 } goto L { F } ⊢ { P } S2(goto L) { R2 } 

         { P } L:S1; S2(goto L); { R1 ∨ R2 } 

Clint and Hoare’s vision is presumably that S1 is taken as an exception block and 

contains no more goto L, and that execution starts from S2 and ends normally when S2 

ends, but exceptionally ends when S1 ends after goto L is encountered.  Although goto 

L appears like a backward jump, it is actually a forward jump in that S1 contains no 

goto L.  So, we can re-write the consequent statement portion equivalently as 

  E_block ≜ S_block(goto L); goto Next; L:S_handler; Next:skip 

 We have two labels L and Next. For a postcondition R, we have wp at the label Next 
as R.  So, by reverse applying the forward SLL rule, our proof obligation becomes for a 
precondition P 

  { P } S_block(goto L); miracle R; L:S_handler { R } 

In order to prove 

{ P } S_block(goto L); miracle R; L:skip { Q } 

we reverse apply the SLL rule, again.  Our proof obligation is 

{ P } S_block(goto L ← miracle Q); miracle R { Q } 
 Obviously, wpL is wp(S_handler, R).  By the sequential composition rule, Q needs 
to be weaker than wpL; thus we have one more obligation to prove 
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  { Q } S_handler { R } 

 Finally, by the miracle rule, the first obligation can be written as   

{ P } S_block(goto L ← miracle Q) { R } 

Putting pieces together, we obtain  

 { P } S_block(goto L ← miracle Q) { R }  

{ Q } S_handler { R } 

{ P } E_block { R } 
 Modern languages use a try-raise-catch mechanism, which can be viewed as a variety 
of the above rule.  For example, 

  try S_block(raise Exception(anException))  

  catch Exception(anExceptionParam)  

     S_handler  

  yrt 

can be modeled as  

  TryRaiseCatch  ≜   S_block(raise Exception(anException)  

                ← ex ≔ anException; goto L);  

         goto Next;  

           L: anExceptionParam ≔ ex; S_handler; 

         Next:  skip 

 Then we can define its semantics as the following proof rule by applying the SLL 
rule, plus other rules, 

       [ Q1 ⇒ Q2(anExceptionParam ← ex) ] 

  { P } S_block(raise anException ← miracle (Q1(ex← anException))) { R }  
  { Q2 } S_handler {R} 

              { P } TryRaiseCatch { R } 

 We can simplify it further to 

[ Q1 ⇒ Q2 (anExceptionParam ← anException) ] 

{ P } S_block(raise anException ← miracle Q1) { R }  
  { Q2 } S_handler {R} 

  { P } TryRaiseCatch { R } 

 If we don’t have parameter passing during raise, the above rule is just like that of 
E_block. 

5 Case Study: Table Search 

We are given a two-dimensional array A to find whether or not a given constant K exists 
in A.  First, we formalize the problem specification in a Hoare triple  { x=A }  TSP  { 
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x=A ∧ (found ≡ (∃ i, j :: A.i.j = K)) }.  Using the standard technique, we could have the 
following for TSP 

 { x = A }   

   m ≔ 0; found ≔ false; 

 { inv: (∀ i, j : 0 ≤ i < m ∧ 0 ≤ j < N : A.i .j ≠ K) ∧ 0 ≤ m ≤ M ∧ ¬ found 

      vf:  M-m } 

    do m ≠ M →  n ≔ 0; 

   { inv: (∀ i, j : 0 ≤ i < m ∧ 0 ≤ j < n : A.i .j ≠ K) ∧ 0 ≤ m ≤ M ∧ 0 ≤ n ≤ N  

                   ∧ ¬ found 

     vf:  N-n } 

   do n ≠ N → 

   “ compare A.m.n with K: ” 

   if  x.m.n = K → found ≔ true 

   []  x.m.n ≠ K → skip 

           fi;  n ≔ n + 1 

   od;  m ≔ m + 1 

 od { m = M ∧ (∀ i, j : 0 ≤ i < m ∧ 0 ≤ j < N : A.i .j ≠ K) ∧ 0 ≤ m ≤ M ∧ ¬ found } 

 { x=A ∧ (found ≡ (∃ i, j :: A.i.j = K)) 

 Unfortunately, this program raises an uncaught exception in that the variable found 
is set to true inside, as it violates the invariants.  There could be several ways of fixing 
this without changing the invariants.  The exception is raised only when K is found in 
A.  Let us code this into the program using the exception rule so we have 

  { x = A }  m ≔ 0; found ≔ false; 

   try  

  { inv:  x = A ∧ (∀ i, j : 0 ≤ i < m ∧ 0 ≤ j < N : A.i .j ≠ K) ∧ 0 ≤ m ≤ M ∧ ¬ found 

   vf:  M-m } 

 do m ≠ M →  n ≔ 0; 

   { inv: x = A ∧ (∀ i, j : 0 ≤ i < m ∧ 0 ≤ j < n : A.i .j ≠ K) ∧ 0 ≤ m ≤ M 

                     ∧ 0 ≤ n ≤ N ∧ ¬ found 

      vf:  N-n } 

  do n ≠ N → 

   “ compare A.m.n with K ” 

   if  x.m.n = K → raise FoundException() 
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   ⫿  x.m.n ≠ K → skip 

      fi;  n ≔ n + 1 

  od;  m ≔ m + 1 

 od    

  { x = A ∧ m = M ∧ (∀ i, j : 0 ≤ i < m ∧ 0 ≤ j < N : A.i .j ≠ K)  ∧ ¬ found } 

  catch FoundException ()  

   “ do found ” 

   found ≔ true 

  yrt; 

  { x = A ∧ (found ≡ (∃ i, j :: A.i.j = K)) 

 Since we decide not to pass anything when FoundException is raised, our proof 
obligations reduce to the following two to verify.   

• { P } TryBody(raise FoundException() ← miracle Q) { R } 

• { Q } found ≔ true { R } 

 We can then take the following 

   P ≜ x = A ∧ (∀ i, j : 0 ≤ i < m ∧ 0 ≤ j < N : A.i .j ≠ K) ∧ 0 ≤ m ≤ M ∧ ¬ found 

   Q ≜ x = A ∧ (∃ i, j :: A.i.j = K) 

   R ≜ x = A ∧ (found ≡ (∃ i, j :: A.i.j = K)) 

 Note that TryBody is a repetition so we can use its invariant to be the P in our proof 
rule.  We leave the formal check to the interested reader but make a point that everything 
is developed in the currently practiced programming methodology – a huge inheritance 
we can now take for granted as no underlying foundation is changed. 

6 Concluding Remarks 

We have provided proof rules of exceptions based on Clint and Hoare’s goto rules 
published decades ago by employing a miraculous statement in a novel manner.  It turns 
out with the discovery of goto’s wp that those rules are extremely simple and easy to 
understand without any need to amend the underlying proof system.  It can readily be 
extended to allowing multiple catches provided that there are no crossing raise 
statements, which would otherwise need backward jumps – much more complex 
constructs.  Similarly, we can add a finally clause.   

 Some work uses traces [9] to describe an exception behavior.  We think that their 
approach could be very operational and is fundamentally different from ours.  The work 
done by King and Morgan [8] falls into a trap to add an extra postcondition for the 
exceptional exit which might not exist in a plausible computation. They intended but 
failed to make any enhancements over [5], which falls into the same trap of adding extra 
postconditions.  They had wrongly claimed that wp(skip ⫿ exit, T) = F, i.e. there would 
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be no guarantee that skip ⫿ exit would terminate.  Actually, skip ⫿ exit will terminate, 
and the termination weakest precondition should be disjunction of the weakest 
precondition of the following statement and at the end of the corresponding exception 
block, which most likely might not be F.  More importantly, by changing the underlying 
model, their approach has to amend the entire currently being practiced methodology.  
Besides, [8] is also limited in scoping.  It is unclear why one would still take its complex 
and costly but incomplete logic now that we have viable alternatives. 
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