
David C. Wyld et al. (Eds): AdNLP, CDKP, NCO, SAI, MLT, Signal, SOFT, ICAITA, CMC - 2024

pp. 11-23, 2024. CS & IT - CSCP 2024 DOI: 10.5121/csit.2024.141002

SUMMARIZING ARABIC ARTICLES USING

LARGE LANGUAGE MODELS

Bader Alshemaimri, Ibrahim Alrayes, Turki Alothman, Fahad

Almalik, Mohammed Almotlaq

Department of Software Engineering, King Saud University, Saudi Arabia

Abstract

This paper explores abstractive and extractive Arabic text summarization using AI,

employing fine-tuning and unsupervised machine learning techniques. We investigate the

adaptation of pre-trained language models such as AraT5 through fine-tuning.

Additionally, we explore unsupervised methods leveraging unlabeled Arabic text for

generating concise and coherent summaries by utilizing different vectorizers and

algorithms. The proposed models are rigorously evaluated using text-centric metrics like

ROUGE [1]. The research contributes to the development of robust Arabic summarization

systems, offering culturally sensitive and contextually aware solutions. By bridging the gap

between advanced AI techniques and Arabic language processing, this work fosters

scalable and effective summarization in the Arabic domain.

Keywords

Arabic Text Summarization, Abstractive Summarization, Extractive Summarization,

Natural Language Processing (NLP), Fine-Tuning Language Models

1. INTRODUCTION

In recent years, the explosive growth of digital content in Arabic has led to an overwhelming

abundance of information across various domains. As a result, the need for efficient and effective
methods of summarizing Arabic text has become increasingly crucial for facilitating

comprehension and knowledge extraction. Automatic text summarization, a subfield of natural

language processing (NLP), aims to generate concise and coherent summaries that capture the

main ideas and salient information present in a given document. Within this realm, two
predominant approaches have emerged: abstractive and extractive summarization.

Abstractive summarization involves generating summaries by paraphrasing and rephrasing the
original text in a more concise form, often with the ability to generate novel sentences. Extractive

summarization, on the other hand, involves selecting and condensing existing sentences or

phrases from the source text to create a summary. Both approaches have their strengths and
challenges, making it imperative to explore how AI-powered techniques, such as fine-tuning and

unsupervised machine learning, can enhance the quality and accuracy of Arabic text

summarization.

The aim of this research is to delve into Arabic text summarization, addressing the critical need

for advanced methods in handling the language’s digital content surge. By navigating the

complexities of Arabic text preprocessing and exploring both extractive and abstractive
summarization, this study seeks to set new benchmarks in the field. It leverages fine-tuning and

http://airccse.org/cscp.html
http://airccse.org/csit/V14N10.html
https://doi.org/10.5121/csit.2024.141002

12 Computer Science & Information Technology (CS & IT)

unsupervised learning to push the boundaries of what’s achievable in summarizing Arabic texts,
contributing to this underrepresented language area in NLP.

1.1. Background Context

Automatic text summarization is a crucial task in NLP, particularly in the context of the Arabic

language, which faces unique challenges due to linguistic complexities and limited labeled data.
To address these challenges, researchers have explored advanced AI techniques such as fine-

tuning and unsupervised machine learning.

In the pursuit of abstractive summarization for Arabic text, the present study incorporates fine-
tuning the AraT5 base model [2]. AraT5, a pre-trained language model for Arabic text, is adapted

to the text generation task.

Fine-tuning AraT5 or any LLM on a specific task will leverage its pre-existing knowledge and

tailoring it to the intricacies of the Arabic language.

Additionally, for extractive summarization, the study explores the utilization of K-means

clustering and Latent Semantic Analysis (LSA), which are unsupervised machine learning

techniques. These techniques are applied to identify and condense the most relevant sentences

from the source text, forming an extractive summary. These unsupervised approaches do not
require labeled data, making them particularly valuable for summarizing vast volumes of Arabic

text without the need for manual annotations. Moreover, the study will explore and compare

different vectorizers.

1.2. Research Objectives

1. The paper aims to investigate both abstractive and extractive approaches to Arabic text

summarization using AI techniques

2. The paper focuses on adapting pre-trained language models, such as AraT5, through fine-
tuning to mitigate the challenge of limited labeled data for Arabic summarization 3. The

study explores unsupervised techniques for generating concise and coherent summaries

from unlabeled Arabic text, contributing to the development of scalable summarization

systems
3. Evaluate and compare the proposed models using language-centric metrics like ROUGE,

providing a comprehensive assessment of their effectiveness in generating high-quality

summaries

2. LITERATURE REVIEW

This section compares the research on Arabic texts that have been done on extractive, abstractive,

and hybrid summarization.

In the study conducted by [3], they introduced a novel approach to Arabic text summarization by

employing multilingual BERT [4]. Their primary aim was to demonstrate the effectiveness of

multilingual BERT in the context of a language like Arabic, which lacks abundant linguistic
resources. Typically, a BERT model comprises an encoder and a decoder to process and generate

content. The encoder utilizes various linguistic symbols and interval segmentation embedding to

distinguish between related sentences. However, it’s worth noting that the standard BERT model
is designed for the English language. To adapt it for Arabic, the researchers utilized a multilingual

BERT model that had been pre-trained in multiple languages. For their experiments and model

Computer Science & Information Technology (CS & IT) 13

evaluation, they employed the KALIMAT dataset, a versatile Arabic corpus containing 20,291
articles. The results of their tests on this dataset indicated an accuracy rate of 12.21% in ROUGE-

1.

Another proposed model was a hybrid approach to single-document Arabic text summarization,
with a focus on ASDKGA [5]. Their method integrated statistical techniques, genetic algorithms,

and domain expertise, specifically tailored for political texts. The researchers utilized two

datasets, the Kalimat corpus [6] and the EASC [7], and assessed the performance of their
proposed model using the Rouge metric.

[8] introduced an abstractive approach for summarizing single documents in Arabic. They
adapted and implemented the latest techniques and mechanisms from English to Arabic using a

multi-layered LSTM transformer (Long Short-Term Memory). To emphasize the identification of

critical sections in the original text, they employed an encoder with a 128-dimensional embedding

layer and 256 hidden states in both directions. Their decoder featured 512 hidden states. For
precision, they incorporated a copy mechanism that selected terms from the original text for

inclusion in the generated summary. They compared the results of a model with only an attention

mechanism to one with both attention and copy mechanisms, showing that accuracy improved
with the latter. Additionally, they used Dagrad as an optimizer.

In their research conducted, [9] utilized a substantial dataset of 79,965 texts from diverse sources
to develop an innovative model. This model comprised three LSTM encoder layers and one

decoder layer. They implemented a three-stage process for the encoder, involving word

embeddings. The first layer contained the embedding of the input text, followed by input text

keywords in the second layer, and input text named entities in the third layer. In contrast, the
decoder layer utilized word embeddings for the summary words. Their model’s performance

evaluation considered both quantitative and qualitative aspects, where they quantitatively

assessed it using ROUGE.

[10]introduced a novel theory in the realm of extractive summarization, which entails evaluating

sentences by considering both statistical and semantic features. Their research involved a

comparative analysis of two distinct summarization methods to gauge the effectiveness of the
proposed enhancements. The first method is a scoring-based approach that takes into

consideration a wide range of attributes, including the frequency of strong words and their

placement within phrases, to derive an overall score. The second method involves supervised
learning and addresses a binary classification problem. To assess their results, they utilized five

standard classifiers, namely Naive Bayes, Support Vector Machine (with an RBF kernel), Two-

Layer Neural Network, and Random Forest, employing the WEKA program with 100 random
trees.

2.1. Existing Approaches to Fine-Tuning LLM Models

1. Fine Tuning is a process that leverages the knowledge acquired by a pre-trained network

and adapts it to a specific downstream task. During fine-tuning, the weights and parameters

of the pre-trained network are used as a starting point for training on the new task, allowing
the model to specialize and excel in the target domain. By building upon the previously

learned features, the fine-tuned model can achieve better performance and faster

convergence compared to training from scratch.
2. Parameter-Efficient Fine-Tuning (PEFT) is an advanced technique in the field of transfer

learning that aims to improve the efficiency of fine-tuning pre-trained language models

[11]. It addresses the issue of high computational and memory requirements typically

14 Computer Science & Information Technology (CS & IT)

associated with traditional fine-tuning approaches, especially when dealing with large
language models like BERT or GPT-3.

3. Few-Shot Learning aims to fine-tune LLM models on tasks with limited data by using only

a small number of task-specific examples. Techniques such as meta-learning and episodic

training are employed to enable adaptation to new tasks with minimal examples [12] .

2.2. Gaps and Limitations in the Existing Literature

The literature review reveals certain gaps and limitations within the existing research landscape.

The scarcity of annotated data presents a significant challenge for Arabic language models when

its compared to English language models as the journey of [13]. The absence of proper
annotations hinders the accurate determination of linguistic structures within the text, potentially

leading to inaccuracies and biases in the models.

Additionally, due to the absence of capital letters in the Arabic script, distinguishing proper

names, titles, acronyms, and abbreviations can be a challenging task [14].

The Arabic language comprises 28 letters and employs eight diacritics, which give rise to a range

of phonetic variations in its letters. The accurate placement of diacritics plays a crucial role in

discerning word and sentence meanings, leading to the emergence of both morphological and

syntactic ambiguities [15].

Moreover, Several factors contribute to the dearth of annotated data for Arabic language models.

The intricate nature of the Arabic language, characterized by rich morphology and complex
syntax, makes manual annotation a labor-intensive and time-consuming endeavor. Furthermore,

the relatively smaller community of Arabic language model researchers, in contrast to languages

like English, results in limited resources and funding for extensive annotated corpora creation.
These circumstances collectively hamper the growth of Arabic language model research and

hinder the development of high-performing models tailored to the language’s unique intricacies.

3. METHODOLOGY

We took two approaches to text summarization, namely extractive summarization and abstractive.

These two approaches have different strengths and weaknesses, which we will discuss below.

Extractive summarization is a more straightforward approach to text summarization. The
summarization model will identify the most important sentences in the input text and then create a

summary by stitching together these sentences.

Abstractive summarization is a more creative approach to text summarization. The summarization

model will read the input text and then generate a new text that is a concise and informative

summary of the original text. This approach is often more accurate than extractive summarization,
as it can capture the overall meaning of the text in a more comprehensive way. Utilizing pre-

trained models we have fine-tuned AraT5 to build an abstractive summarizer

3.1. Description of the Fine-Tuning Process

Fine-tuning is a process of training an existing model that has been trained for another task on a

new, specific task or domain. Instead of starting the training model from scratch, fine-tuning
leverages the knowledge and learned representations of the pre-existing model to adapt it to the

new task. Since NLP models are widely used and publicly available, we have discovered various

Computer Science & Information Technology (CS & IT) 15

models that have been trained on a large Arabic corpus, which has significantly advanced natural
language understanding and processing for the Arabic language. We utilized AraBERT [16] as a

preprocessor for our model (SAraT5).

3.2. Selection of The Pre-Trained Model for Fine-Tuning

We have chosen the AraT5 pre-trained model for fine-tuning for the Arabic text summarization
task for several compelling reasons

1. Limited Data Scenario: Fine-tuning a pre-trained model is especially advantageouswhen

dealing with limited labeled data for our specific task. Since AraT5 already possesses a
broad understanding of the Arabic language, we need less annotated data to fine-tune it for

text summarization, making the process more feasible and effective.

2. Performance Boost: Pre-trained models like AraT5 have demonstrated strong performance
on various NLP tasks, achieving state-of-the-art results in many cases. By fine-tuning it for

text summarization, we expect to benefit from the high-quality features and representations

extracted from the pre-training stage, leading to improved summarization performance.

In conclusion, selecting the AraT5 pre-trained model for fine-tuning in our Arabic text

summarization task allows us to leverage its Arabic language-specific pre-training, prior

experience in text generation tasks, and transfer learning benefits. This choice is well-suited for
the limited data scenario.

3.3. Data Collection and Preprocessing

For the first time, we found AMN dataset used in [17] that contains approximately 265k Arabic

news with its corresponding summaries. During our exploration, we came across a CNN Mail
dataset [18]. comprising human summaries generated from CNN stories. Recognizing the

potential of this dataset, we decided to translate it from English to Arabic using the Google

Translate API provided in the Python SDK.

After obtaining the translated dataset, we proceeded with data wrangling to address some flaws

that emerged during the initial inspection. We identified issues such as duplicated headers

throughout both two datasets and instances of redundant occurrences of the word or sentences "CNN,"

and " èYjJÖÏ@ éJ K. QªË@ H@PAÓB @ (CNN) " among others. These discrepancies

were resolved through careful data cleaning and deduplication procedures.

For data preprocessing, we opted to use the Arabert preprocessor, a widely used tool in the NLP

community, which is specifically designed for Arabic text. The Arabert preprocessor helped us

with essential tasks such as normalization, and handling Arabic-specific linguistic features like
diacritics and ligatures. By utilizing this preprocessor, we were able to transform the raw Arabic

text into a better format for the model to understand.

3.4. Evaluation Metrics and Techniques Used

The evaluation of the effectiveness and quality of the text summarization models in this research
was conducted using Rouge for assessing the performance of summarization approaches. Rouge,

which stands for "Recall-Oriented Understudy for Gisting Evaluation," offers a robust framework

for measuring the degree of overlap and content alignment between machine-generated

summaries and human-written reference summaries. It considers precision, recall, and F1 scores
to provide a comprehensive evaluation of how well the generated summaries capture the key

content from the source text.

16 Computer Science & Information Technology (CS & IT)

4. EXTRACTIVE APPROACH

Extractive summarization aims to identify and extract the most important sentences or passages

from a document, preserving the original context and reducing the length while retaining the

essential information. However, before this extraction process can take place, the textual data
must undergo several preprocessing steps to ensure accuracy, coherency, and efficiency during

vectorization.

4.1. Preprocessing

In the context of extractive text summarization, preprocessing of textual data holds utmost
importance as it forms the foundation for transforming raw text into meaningful numerical

representations. The Arabic language is complex, with rich and intricate morphological and

syntactic flexibility. This makes developing NLP systems for Arabic a challenging task. The
preprocessing stage is similar for all languages and typically involves normalization, tokenization,

POS tagging, stemming/lemmatization, and stop-word removal. However, the specific

implementation of these steps can be more complex for Arabic, due to the language’s unique

features. The main steps of this approach are Text Cleansing, Stemming, Normalization,
Tokenization and Feature extraction.

Fig. 1 The pipeline of the preprocessing phase for the extractive approach

4.1.1. Stemming

Arabic is a highly inflectional and derivational language, which means that words can take on
many different forms while still retaining their core meaning. This can make it difficult to process

Computer Science & Information Technology (CS & IT) 17

Arabic text using natural language processing techniques, such as text similarity analysis and bag-
of-words models.

One way to address this challenge is to use stemming, which is a process of reducing words to

their root form. This is done by removing affixes, such as prefixes, infixes, postfixes, and
suffixes. Root stemming is a particularly effective technique for Arabic, as it can help to identify

words that have the same meaning even though they appear in different forms.

In our study, we used ISIR Arabic stemmer [19] to handle the stemming operation as a

preprocessing task. We found that this approach improved the performance of our extractive text

summarization system.

4.1.2. Normalization

Arabic is a highly diverse language, with many different ways to write the same word. This can
be a challenge for natural language processing (NLP) systems, which need to be able to

understand and process text consistently.

Onewaytoaddressthischallengeistousenormalization,whichistheprocessofconverting different

forms of the same word into a single, standardized form. This can be done by removing diacritics,

replacing similar-looking letters, and eliminating non-Arabic characters.

The PyArabic [20] tool is a popular NLP tool for Arabic. It includes a normalization step that

performs the following tasks:

Removes non-Arabic characters, such as special symbols and punctuation. Removes diacritics,

which are the small marks that are used to indicate the pronunciation of Arabic letters.

Replace the letters @ , ø ,ð , @ and with Z. These letters are often used interchangeably, but
they have different pronunciations. Removes tattoos, which are stretched characters that are

sometimes used in Arabic text. Normalization is an important step in the NLP pipeline for Arabic

[21]. It helps to ensure that NLP systems can consistently understand and process Arabic text.

4.1.3. Tokenization

Tokenization is the process of dividing text into smaller units, such as words, phrases, or

sentences. This is the first step in text preprocessing, and it helps to make text easier to analyze
and process.

There are many different ways to tokenize text, and the best approach depends on the specific
application. In the context of Arabic text, one common approach is to use the NLTK sentence

tokenizer. This tokenizer uses a combination of punctuation marks and whitespace to identify

sentences in a document.

4.1.4. Feature Extraction

For the process of feature extraction, we employed the Term Frequency-Inverse Document
Frequency (TF-IDF) method. This statistical technique holds significance in information retrieval

and natural language processing by assessing the significance of a word across a set of

documents. In the realm of automatic summarization systems, TF-IDF plays a crucial role in
pinpointing significant sentences or phrases within a document, contributing to the creation of

concise and purposeful summaries.

18 Computer Science & Information Technology (CS & IT)

4.2. Model Building

1. Latent Semantic Analysis (LSA) is a technique used in Natural Language Processing (NLP)

and information retrieval to analyze the relationships between words in a large corpus of
text. LSA is based on the idea that words with similar meanings tend to occur in similar

contexts, and by analyzing these patterns, it can identify latent (hidden) semantic structures

and relationships within the text. By that, we utilize latent and TFIDF vectorizer to cluster

documents
2. K-means is a clustering algorithm that can be used in extractive summarization to group

similar sentences or passages together based on their content and similarity. Extractive

summarization aims to select a subset of sentences from the original document that can
effectively represent the main ideas or important information present in the text. K-means

can help achieve this by clustering sentences with similar content by utilizing TFIDF as a

vectorizer and then selecting representative sentences from each cluster to form the
summary.

3. K-means with sentence transformer By incorporating Sentence BERT [22] for sentence

vectorization, we observed a significant improvement in the efficacy of our K-means

clustering approach. This integration allowed us to represent sentences as highly
informative vectors, capturing their semantic nuances more accurately. Consequently, our

clustering results became more refined and contextually precise, enhancing the overall

quality of our summarization.
4. Summarizing by using Genetic Algorithms (GA) This approach tries to utilize genetic

algorithms [23] to get the best sentences that best represent the document as a summary.

4.3. Model Evaluation & Comparison

The model evaluation was conducted utilizing the EASC dataset [7]. Comprising 153 Arabic
articles, this dataset incorporates 765 human-generated extractive summaries of these articles.

These summaries were produced through the employment of Mechanical Turk. The evaluation

outcome unmistakably highlights the supremacy of the K-means approaches over LSA across all

assessment metrics.

When comparing our three models with the Genetic Algorithms approach, a distinct advantage

becomes evident in favor of the Genetic Algorithms approach over the TF-IDF vectorization
approaches. However, an interesting observation emerges when we employ the sentence

transformer: we achieve similar or slightly higher results. That’s an evidence that utilizing old-

fashioned TFIDF vectorizer for summarization might not be sufficient with the advancement of
transformers.

Table 1 Evaluating the extractive summarization models using ROUGE-1 and ROUGE-L metrics.

Model

 ROUGE-1 ROUGE-

L

 Precision Recall F1-

Score

Precision Recall F1-

Score

LSA - TFIDF 37.04% 38.22% 32.84% 36.41% 37.59% 32.29%

K-Means - TFIDF 38.82% 43.48% 36.54% 38.00% 42.48% 35.74%

K-Means -

Sentence-BERT

37.48% 50.58% 39.17% 36.75% 49.70% 38.44%

GA 38.00% 50.00% 39.00% - - -

Computer Science & Information Technology (CS & IT) 19

5. ABSTRACTIVE APPROACH

5.1. Preprocessing

For the Abstractive approach, we performed a series of essential preprocessing steps, including
tokenization, and removing diacritics. Arabic text normalization was applied to handle various

forms of words and improve consistency. Additionally, we leveraged word embeddings trained

on a large corpus to represent Arabic words in a dense vector space, enhancing the model’s
understanding of the language.

5.2. Implementation

The abstractive summarization model what we Call SAraT5 was implemented in transformer

architecture, Which comprises two main components: the encoder and the decoder. The encoder,
based on the AraT5 model, processes the input Arabic text, capturing essential information. The

decoder, integrated within the transformer architecture, generates the summary one token at a

time, considering the encoded representation of the input text.

Our fine-tuning process involved several key components. To begin, we utilized Python and the

"transformers" library by Hugging Face to fine-tune the AraT5 model. This library streamlined

our efforts and facilitated the integration of the transformer architecture into our workflow.

5.3. Details of the Fine-Tuning

In this section, we elaborate on the specific details of the fine-tuning process for AraT5, targeting

abstractive Arabic text summarization using the CNN and AMN datasets. The optimization

process was conducted with careful consideration of various parameters to achieve optimal
performance.

5.3.1. Training Duration and Epochs

The fine-tuning process involved training the AraT5 model over 88 hours. This rigorous training

procedure encompassed 22 epochs, indicating the number of times the model iterated through the

entire training dataset. This extended training duration was employed to ensure thorough
convergence and the extraction of nuanced summarization capabilities from the model.

5.3.2. Model Parameters

Several crucial model parameters were meticulously selected to fine-tune AraT5 effectively.

These parameters played a pivotal role in shaping the model’s behavior and enhancing its
summarization prowess for the specific Arabic text summarization task.

Gradient Accumulation Steps: To stabilize the training process and allow the model to
accumulate gradients over multiple mini-batches, a gradient accumulation step of 8 was

employed. This technique aids in effective parameter updates while managing memory

constraints.

Batch Size: A batch size of 8 was chosen for the fine-tuning process. This moderate batch size

strikes a balance between efficient parallelization and memory consumption, thereby facilitating

steady training progress.

20 Computer Science & Information Technology (CS & IT)

Weight Decay: A weight decay value of 0.01 was applied during training. This regularization
technique helps prevent overfitting by introducing a penalty term to the loss function based on the

magnitude of model weights.

Learning Rate: The learning rate, a crucial hyperparameter governing the step size in gradient
descent optimization, was set at 5e-4. This value was determined through experimentation to

ensure steady convergence without causing overshooting or slow convergence issues.

5.4. Model Evaluation & Comparison

In our study, we employed the AMN dataset for evaluation and comparison. Before commencing
the training phase, we meticulously partitioned this dataset into two distinct subsets: a training set

consisting of 180,000 samples and an evaluation set comprising 5,000 samples. The latter, namely

the 5,000-sample evaluation dataset, served as a critical component in our study’s evaluation
framework. To facilitate meaningful comparisons with prior research in the domain of Arabic text

summarization, we did a comparison with the work of [8] which is a sequence-to-sequence model

with BiLSTM layer, which focused on Abstractive Arabic Text Summarization Based on Deep
Learning.

Table 2 Comparing the abstractive summarization model (SAraT5) using ROUGE-1,

ROUGE-2, and ROUGE-L

Model ROUGE-1 ROUGE-2 ROUGE-L

 Precision Recall F1 Precision Recall F1 Precision Recall F1

SAraT5 (Proposed

Model)

35.11% 58.98% 42.29% 24.90% 43.68% 30.18% 33.60% 56.17% 40.40%

Seq2Seq - BiLSTM 48.15% 42.65% 44.28% 19.46% 17.93% 18.35% 35.48% 32.86% 32.46%

6. DISCUSSION

6.1. Interpretation of the Results and their Implications

The results obtained from our experimental analysis provide valuable insights into the

performance of both the extractive and abstractive summarization approaches in the context of
Arabic text. In the extractive approach, we observed that K-means clustering outperformed Latent

Semantic Analysis (LSA) in terms of the ROUGE metrics, indicating its effectiveness in

identifying coherent and meaningful sentences for summary generation. This result suggests that

tailored methods, such as K-means clustering, can yield more accurate and representative
extractive summaries, allowing us to capture the essence of the source text more effectively.

6.2. Limitations of the Proposed Approach

For the Extractive Summarization approach, it introduces a limitation particularly relevant to

relatively large documents. The inherent constraint of generating a highly concise summary,
composed of only three sentences, can result in a potential loss of contextual information and

depth. This limitation is especially notable in the context of larger documents where a broader

scope of content may be necessary to adequately capture the nuances and comprehensive essence
of the source material.

Computer Science & Information Technology (CS & IT) 21

On the other hand, the abstractive approach SAraT5 model presented some challenges. Despite its
strong performance in summarizing articles, it faced challenges in summarizing other document

categories such as medical prescriptions.

6.3. Possible Extensions and Future Research Directions

Future research could focus on improving the coherence, fluency, and factual accuracy of
abstractive summaries. Developing techniques that better understand the nuances of the Arabic

language, including its intricate grammar and semantics, would be beneficial.

Also, Designing models that can specialize in summarizing specific domains, such as medical
literature, legal documents, or news articles, could lead to more accurate and informative

summaries. Fine-tuning models on domain-specific data and creating specialized datasets for

Arabic could help in this direction.

7. CONCLUSION

7.1. Summary of the Research Findings

The evolution of Large Language Models (LLMs) has catalyzed the integration of NLP-related

technologies, bringing us closer to machines that can comprehend and generate human-like text.

The extractive and abstractive summarization approaches shed light on how NLP can facilitate

the generation of concise and informative summaries. Through the evaluation using the EASC

dataset, the dominance of the K-means approach over Latent Semantic Analysis (LSA) in
extractive summarization becomes evident, reinforcing the value of tailored techniques in

language-specific tasks.

The abstractive approach has the performance of state-of-the-art models in the realm of Arabic

summarization on AMN dataset.

7.2. Contribution to the Field of Arabic Language Processing and NLP

This research significantly contributes to the field of Arabic language processing and natural

language processing (NLP) by addressing the specific challenges and opportunities that arise
when working with Arabic text. The exploration of both extractive and abstractive summarization

techniques offers a comprehensive perspective on summarization methods that are well-suited for

Arabic content. The fine-tuning of the AraT5 model for abstractive summarization in Arabic,
although challenging, highlights the ongoing need for language-specific adaptation in NLP.

Moreover, this research underscores the importance of dataset availability and quality in

advancing Arabic NLP. By presenting our methodologies and findings, we hope to encourage
collaboration between researchers, academia, and industry stakeholders to further enrich Arabic

NLP resources. The advancements made in this study pave the way for more accurate, culturally

sensitive, and contextually aware summarization systems that cater to the Arabic language’s
unique linguistic characteristics and cultural nuances.

22 Computer Science & Information Technology (CS & IT)

REFERENCES

[1] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,” in Text Summarization

Branches Out. Barcelona, Spain: Association for Computational Linguistics, Jul. 2004, pp. 74–81.

[Online]. Available: https: //aclanthology.org/W04-1013

[2] E.M.B.Nagoudi, A.Elmadany, and M.Abdul-Mageed,“Arat5:Text-to-texttransformers for arabic

language generation,” 2022.

[3] M.Al-Maleh and S.Desouki, “Arabic text summarization using deep learning approach,” Big Data 7,

1–17, pp. 152628–152645, 2020.
[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional

transformers for language understanding,” 2019.

[5] Q. Al-Radaidehand D.Bataineh,“A hybridapproachforarabic textsummarizationusing domain

knowledge and genetic algorithms,” Cognitive Computation, vol. 10, 08 2018.

[6] M. El-Haj and R. Koulali, “El-haj, m., koulali, r. "kalimat a multipurpose arabic corpus" at the

second workshop on arabic corpus linguistics (wacl-2) 2013,” 01 2013.

[7] M. El-Haj, U. Kruschwitz, and C. Fox, “Using mechanical turk to create a corpus of arabic

summaries.” France: European Language Resources Association, 2010, published proceedings: _not

provided_ - Notes:. [Online]. Available: https://repository.essex.ac.uk/4064/

[8] A. A. A. A. A. Y. M. Wazery, Marwa E. Saleh, “Abstractive arabic text summarization based on

deep learning,” pp. 152628–152645, 2022. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8767398/pdf/CIN2022-1566890.pdf
[9] D. Suleiman and A. Awajan, “Multilayer encoder and single-layer decoder for abstractive arabic text

summarization,” Knowledge-Based Systems, vol. 237, p. 107791, 2022. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/ S0950705121010005

[10] A. B. Ayed, I. Biskri, and J.-G. Meunier, “Arabic text summarization via knapsack balancing of

effective retention,” Procedia Computer Science, vol. 189, pp. 312–319, 2021, aI in Computational

Linguistics. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1877050921012242

[11] S. Mangrulkar, S. Gugger, L. Debut, Y. Belkada, and S. Paul, “Peft: State-of-the-art parameter-

efficient fine-tuning methods,” https://github.com/huggingface/peft, 2022.

[12] A. Parnami and M. Lee, “Learning from few examples: A summary of approaches to few-shot

learning,” 2022.
[13] R. Obiedat, D. Al-Darras, E. Alzaghoul, and O. Harfoushi, “Arabic aspect-based sentiment analysis:

A systematic literature review,” IEEE Access, vol. 9, pp. 152628–152645, 2021.

[14] A. Azmi and N. Altmami, “An abstractive arabic text summarizer with user controlled granularity,”

Information Processing and Management, vol. 54, pp. 903–921, 11 2018.

[15] A. Azmi, “A survey of automatic arabic diacritization techniques,” Natural Language Engineering,

vol. 21, 10 2013.

[16] W. Antoun, F. Baly, and H. Hajj, “AraBERT: Transformer-based model for Arabic language

understanding,” in Proceedings of the 4th Workshop on Open-Source Arabic Corpora and

Processing Tools, with a Shared Task on Offensive Language Detection. Marseille, France:

European Language Resource Association, May 2020, pp. 9–15. [Online]. Available:

https://aclanthology.org/2020.osact-1.2

[17] A. M. Zaki, M. I. Khalil, and H. M. Abbas, “Deep architectures for abstractive text summarization
in multiple languages,” in 2019 14th International Conference on Computer Engineering and

Systems (ICCES), 2019, pp. 22–27.

[18] C. d. S. G. u. B. X. Ramesh Nallapati, Bowen Zhou, “Arabert: Transformer-based model for arabic

language understanding,” 2016.

[19] D. Abd, W. Khan, K. Thamer, and A. Hussain, Arabic Light Stemmer Based on ISRI Stemmer, 08

2021, pp. 32–45.

[20] T. Zerrouki, “pyarabic, an arabic language library for python,” 2010. [Online]. Available:

https://pypi.python.org/pypi/pyarabic

[21] R. M., H. Mousa, and M. Hussein, “Improving arabic text categorization using normalization and

stemming techniques,” International Journal of Computer Applications, vol. 135, pp. 38–43, 02

2016.
[22] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese bert-networks,” in

Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.

https://www.sciencedirect.com/science/article/pii/S0950705121010005
https://github.com/huggingface/peft

Computer Science & Information Technology (CS & IT) 23

Association for Computational Linguistics, 11 2019. [Online]. Available:

http://arxiv.org/abs/1908.10084

[23] I. Tanfouri, G. Tlik, and F. Jarray, “An automatic arabic text summarization system based on genetic

algorithms,” Procedia Computer Science, vol. 189, pp. 195–202, 2021, aI in Computational

Linguistics. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S187705092101200X

© 2024 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

https://www.sciencedirect.com/science/article/pii/S187705092101200X
https://airccse.org/

	Abstract
	Keywords
	1. Introduction
	1.1. Background Context
	1.2. Research Objectives

	2. Literature Review
	2.2. Gaps and Limitations in the Existing Literature

	3. Methodology
	3.1. Description of the Fine-Tuning Process
	3.2. Selection of The Pre-Trained Model for Fine-Tuning
	3.3. Data Collection and Preprocessing
	3.4. Evaluation Metrics and Techniques Used

	4. Extractive Approach
	4.1. Preprocessing
	4.1.1. Stemming
	4.1.2. Normalization
	4.1.3. Tokenization
	4.1.4. Feature Extraction

	4.2. Model Building
	4.3. Model Evaluation & Comparison

	5. Abstractive Approach
	5.1. Preprocessing
	5.2. Implementation
	5.3. Details of the Fine-Tuning
	5.3.1. Training Duration and Epochs
	5.3.2. Model Parameters

	5.4. Model Evaluation & Comparison

	6. Discussion
	6.1. Interpretation of the Results and their Implications
	6.2. Limitations of the Proposed Approach
	6.3. Possible Extensions and Future Research Directions

	7. Conclusion
	7.1. Summary of the Research Findings
	7.2. Contribution to the Field of Arabic Language Processing and NLP

	References

