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Abstract. Wavelets have emerged as a cutting edge technology in a number of fields. Concrete
results of their application in Image and Signal processing suggest that wavelets can be effectively
applied to Natural Language Processing (NLP) tasks that capture a variety of linguistic properties.
In this paper, we leverage the power of applying Discrete Wavelet Transforms (DWT) to word and
sentence embeddings. We first evaluate, intrinsically and extrinsically, how wavelets can effectively
be used to consolidate important information in a word vector while reducing its dimensionality.
We further combine DWT with Discrete Cosine Transform (DCT) to propose a non-parameterized
model that compresses a sentence with a dense amount of information in a fixed size vector based
on locally varying word features. We show the efficacy of the proposed paradigm on downstream
applications models yielding comparable and even superior (in some tasks) results to original
embeddings.

Keywords: Word Embedding, Sentence Embedding, Discrete Wavelets Transform, Discrete Co-
sine Transform

1 Introduction

Word embeddings are the basic building blocks for all recent NLP systems. They
represent words in distributed dense real-valued vectors which geometrically en-
code the semantic and syntactic information of words in addition to their linguistic
regularities [26]. It has been noted that word embeddings have interesting algebraic
characteristics capturing analogies and word relationships suggesting that dimen-
sions along which words are aligned are correlated [29]. These embeddings have a
large mean vector and most of their salient features are located in a subspace of
much fewer dimensions [35]. This representation has led many to view embeddings
as a signal on which spectral techniques are applicable [23]. Such spectral tech-
niques transform data into a new space that captures their different characteristics
and sketch new potentials for their usage and the information they convey. Recent
spectral analysis in NLP include Discrete Cosine Transform (DCT) [2] and Higher-
order Dynamic Mode Decomposition (HODMD) EigenSent [23] embedding models.
In this setting, a sentence is represented as a signal with transitional properties cap-
tured in the frequency domain using uncorrelated coefficients to encode a sentence.
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Such models proved to capture structural variation without losing on efficiency
(comparable to averaging) [45] and outperform more complex sentence embedding
models [28]. However, these models tend to analyze embedding features along sim-
ilar word embedding dimensions, on a vertical level (inter-word embedding, aka
across all words), accumulating a limited number of base frequency coefficients and
dropping the rest, in addition to ignoring their position in the original domain, i.e.,
ignoring intra-word spectral frequencies within individual word embeddings.

Accordingly, in this paper we propose applying a successful method from image
and signal processing, namely, Discrete Wavelet Transform (DWT), that proved to
be very effective, fast, and space-efficient in Image Processing [7], Signal Processing
[38, 36] and Speech Recognition [39].

We primarily shed light on how DWT can be beneficial for NLP applications. We
further adapt DWT to analyze data in terms of their spectral frequency with re-
spect to their position in embedding representations to understand how data vary
across different word embedding dimensions. Additionally, we recognize features
that are highly varying and those that are nearly identical and can be combined
into fewer dimensions.
We posit DWT as an efficient method for word and sentence encoding. We explore
DWT to selectively compress relevant information in a word embedding and effec-
tively pack sentence embedding models with semantically condensed word repre-
sentations. By applying DWT, we avert some of the observed drawbacks of previous
spectral models that generate sentence embedding with exponentially increased di-
mensionality.

Our key contributions are:
1) We propose a novel approach for leveraging DWT to word embeddings that se-
lectively and efficiently compresses relevant salient information at different levels
of detail;
2) We show the efficacy of our proposed adapted DWT approach on textual similar-
ity as well as various downstream tasks using non-parameterized word embeddings;
3) We propose the novel approach of conjointly modeling DWT with DCT to encode
variable length sentences into a fixed-size vector without hurting performance.

1.1 Motivation

Wavelets Transforms (WTs) are mathematical transformation functions that switch
between different levels of detail, or different resolution, to capture various insights
about the data. As described in [17], WTs are like a “window”, investigating data,
with a large ”window” would notice coarse features, while looking at the data with
a small “window” would notice small features. Accordingly, WT analysis captures
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Fig. 1. An example of Level-1 Wavelet transform using DWT to the cameraman image (1) and
the corresponding transformed image (2) The transform, (2), produces 4 sub-bands. The top left
sub-band is a low resolution version of the original sub-sampled in both horizontal and vertical
directions, while the horizontal, h, vertical, v, and diagonal, d, details represent the down-sampled
residual versions of the original image.

both the forest and the trees. In Image Processing, as shown in Figure 1, WT
transforms the input iconic cameraman picture to four sub images: the top left sub
image (or sub-band) captures a low resolution form of the main image (Approxi-
mation), comprising low-frequency content, and three other sub-bands comprising
high frequency content (Details), that represent different edges present in the im-
age along different directions, horizontal, vertical and diagonal. Accordingly, WTs
have been effectively used for image compression [24, 18], and high-frequency com-
ponents have been used for edge detection [43, 44]. In signal processing, WTs have
been used for signal compression [10, 12] [38, 36], speech recognition [39] and noise
filtering [14].

From Image and Signal Processing to NLP. WTs can provide considerable
insight to NLP as it had in Image and Signal Processing. WTs are expected to
provide more insight about the data which should be of great value to NLP. WT
can be used to analyze words and sentence representations based on spectral fre-
quency of their variation across time, i.e. where they appear in the vector. Basically,
WT can be used to build models that generate arbitrarily good approximations of
word representations eliminating irrelevant details, hence generating compressed
representations. Also, WT can be used to derive high-frequency representations,
which capture details, nuances and contrasts between different features, resulting
in equally minimized representations suitable for applications where contrast and
subtle nuances are of special value.
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1.2 DCT Sentence Embedding

Sentence Embedding is considered important for transferring knowledge to down-
stream tasks in NLP [4]. Recent advances in sentence embedding proposed using
DCT coefficients to compress word vectors considering order and structure of words
in a sentence [2]. Later studies proved the efficiency of DCT embedding to capture
semantic regularities [45] and demonstrated how it outperforms more complex sen-
tence embedding models [28].
However, DCT sentence embedding is mainly based on the idea of concatenating
the first K DCT coefficients, resulting in a sentence vector of size Kd, where d is the
word vector dimension, which constitutes a very long representation as the number
of coefficients increases. For example, the proposed model in [2] achieved its best
performance over a number of tasks using K=6, which results in a sentence vector
of size 1800 when using a word vector size of 300. This increased sentence embed-
ding dimension and its impact on the performance of NLP tasks has been a recent
research question [42] suggesting that the increased size of a sentence embedding is
usually sub-optimal.

Fig. 2. Plotting word embedding of the word ‘work’ and its coefficients across 2 levels of WT. cD
and cA represent Detail and Approximation coefficients derived from Level-1 of the transform. cDA
and cDD indicate Level-2 Approximation and Detail coefficients derived from applying DWT on
the Level-1 Detail coefficients. cAA and cAD indicate Level-2 Approximation and Detail coefficients
derived from applying DWT on the Level-1 Approximation coefficients.

2 Wavelet Transforms

WT presents a time-frequency analysis tool that can effectively transform a given
function f(t) into another domain making certain features more amenable to study
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and analyze[27]. In our context, f(t) represents the word embedding vector. A WT
is applied by translating and shifting a convolution-like function called the Mother
Wavelet (MW) Ψ(t) over f(t). MWs are like a microscope zooming in to see details
or zooming out to ignore details and see an approximation of the data.

Basically, WT calculates the correlation between the MW and the word vector
at different segments of position. Higher correlation indicates more similarity. Using
these correlation values, WT efficiently generates pairs of low-pass (low-frequency/high-
correlation) and high-pass (high-frequency/low-correlation) filters. The low-pass
filters capture Approximation coefficients(cA), and the high-pass filters capture
Detail coefficients(cD). The output of a filter pair is usually down-sampled by two.
This filtering+downsampling process can be applied on multiple levels recursively
as shown in Figure 2. First level transformation will produce cA and cD coefficients
downsampled by 2. The second level transformation will further transform cA into
new approximation and details coefficients, denoted cAA and cAD, that are fur-
ther downsampled by 2 in size. Similarly, cD will be transformed into cDA and cDD.

It should be noted that although WT can be used as continuous and discrete
transforms, in the context of this paper we only consider Discrete Wavelets Trans-
forms, DWT, which is more suitable for NLP data, which is discrete, that is, word
embeddings are finite-dimensional vectors (of real numbers) rather than continuous
(i.e., analog) signals.

Formally, given a MW Ψ(t) that can be scaled by factor j and shifted by k, we
get the conjugate of Ψ(t) according to the following equation:

Ψj,k(t) = 2j/2Ψ(2jt− k)

The general DWT, denoted by W(j,k), is then given by

W (j, k) =

∫
t
f(t)2j/2Ψ(2jt− k)dt

To convert data back from the wavelet domain to the original domain, an inverse
DWT can be applied.

Note that those definitions are continuous convolutions. In the discrete case as in
NLP, discrete convolution counterparts are used. Therefore, WT can be compared
to Convolutional Neural Networks (CNNs) [19] in that they both use sliding-window
filters and downsampling (pooling). The difference is that in CNNs, the filters are
learned from the training data, whereas in WT the filters are designed, not learned.
Though less tuned to the data, WT are more computationally efficient in terms of
time and space. In fact, some WT algorithms, such as Mallat’s pyramid, are linear
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in time and space [25].

There are many families of WT functions available in the literature and used as
MWs including: Haar, Symmlets, Coiflets, Daubechies, and Biorthogonal, to name
a few [27]. Yet as a proof of concept in this paper, and in the interest of space
efficiency, we will only be using a subset of the MWs in our experiments. 4

Comparing DWT to other transforms such as Discrete Cosine Transforms (DCT),
DWT allows good localization in both time and frequency domains permitting spec-
trum analysis of the data, in addition to its spectral behavior in time. DWT allows
analyzing related features in word embeddings by their frequency with respect to
where they occur. In DCT, feature frequencies are analyzed based on their variation
regardless of their location in a word embedding. As a result, DWT can give more
analytical insights about the data being transformed. DWT also proved to yield
higher compression ratios at comparable fidelity, as well as inherent scaling [36].

Fig. 3. Proposed Wavelet-DCT sentence embedding model applied to a sentence of 4 words rep-
resented as a matrix. Level-1 DWT and DCT-1 are used as demonstrated on the left side, while
the right side demonstrates using Level-1 DWT with DCT-2 by skipping every-other coefficient in
DWT coefficients matrix to generate sentence embedding representation.

4 For a more detailed explanation of WT theory, refer to [13] [27] [9].
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3 Wavelet-DCT Sentence Embedding

We propose a novel method of applying wavelets conjointly with DCT for sentence
embedding. WT can be used to reduce the dimensionality of a word vector retain-
ing important features with respect to local variation, while DCT coefficients are
further considered to preserve word order in a sentence.

Given a sentence of N d-dimensional word vectors, w1, .., wN , we initially stack
the words in an N × d matrix. The sentence matrix is then DWT-transformed
row-wise, where every row represents a word, for L levels (L can be 1, 2, ..., n)
to compress word embeddings. This transformation will break the sentence matrix
into 2L matrices each of size N × d

2L
, representing the WT coefficients. For L=1,

we will have two N × d
2 matrices, one for cA and one for cD. For L=2, we will have

four matrices of size N × d
4 , namely, cDD, cDA, cAD and cAA. Since we want the

sentence embedding to further inherit the details and coefficients of its words, we
will keep all DWT-coefficients, but we will further summarize their pattern along
different words using a DCT. Applying DCT to summarize DWT coefficients is like
the crème de la crème for the N words in a sentence.

Accordingly, the DWT-coefficients matrices will be transformed, column-wise, us-
ing DCT. We finally encode a sentence vector of size d by concatenating either 1
or 2 DCT coefficients, which proved to be sufficient empirically and also consistent
with observations in [2], for final sentence representation. As mentioned in [2] we
will be using K to denote the number of coefficients and c[0 : K − 1] for their
actual values. When the number of DCT coefficients is 1; K = 1, the DCT-DWT-
coefficients matrices will be of size 1 × d

2L
each, concatenating them results in a

final sentence embedding of size d.

However, when K = 2, we generate our final sentence embedding vector by us-
ing a simple trick that skips every other DWT coefficient before applying DCT.
This will further reduce a DWT-coefficient matrix into N× d

2L+1 . As a result, select-
ing 2 DCT coefficients and concatenating them will still result in a sentence vector
of size d. This trick proved, empirically, not to affect the information preserved by
these coefficients but keep the sentence embedding dimension unchanged.

4 Evaluation of DWT Efficacy

We initially investigate the efficacy of applying DWT to word embeddings. We ex-
plore DWT coefficients and selectively using them as new compressed embeddings.
We evaluate the efficacy of the new embeddings to capture and compress semantics
using semantic similarity tasks. We further evaluate their effectiveness in a number
of downstream tasks to evaluate their efficacy extrinsically.
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In this evaluation, we will consider the following DWT coefficients as embeddings;
Level-1 Detail (cD) and Approximation (cA) coefficients. Additionally, we extend
these coefficients with Level-2 coefficients (performed on Level-1 Approximation
and Detail coefficients as shown in Figure 2), cD + cAD and cA+ cDA, to enrich
the word representation with more information from subsequent transformation
levels.

4.1 Experimental Setup

Embeddings For our experiments we used a number of base embeddings to
demonstrate the capabilities of DWT. In this context we use GloVe [34] and Fast-
Text[28] for word embeddings with various dimensions (100, 200, 300) for a com-
prehensive evaluation.

Sentence Embedding Evaluation For sentence embeddings, we use the SentE-
val toolkit [11] for evaluation. For all downstream tasks, we employed multi-layer
perceptron (MLP) classifiers based on the setup outlined in SentEval.

4.2 Intrinsic Evaluation

We evaluate DWT embeddings and their encoded semantics in two evaluation tasks:
Word Similarity and Concept Categorization. For Word Similarity, we use the fol-
lowing datasets : SimLex-999 [20], MEN[8] and WS353[16].

Baseline We set the original embeddings, i.e. without transformation, as our base-
line: F-BASELINE and G-BASELINE1, corresponding to FastText and GloVE
embeddings. In GloVE, we consider another baseline, G-BASELINE2, which is
the original GloVE embedding with 50% less dimensions to compare the reduced
DWT embeddings to the original embeddings of the same size, i.e. for a GloVE
embeddings of size 100, the transformed DWT embeddings will be of size 50, so we
consider GloVE embedding of size 50 as another baseline.

Our experiments show that Level-1 DWT embeddings, cA and cD, with 50% re-
duction in size, surpass the performance of the baselines, G-BASELINE1 and G-
BASELINE2, as depicted in Table 1. Given the original dimension of 100, for the
SimLex dataset, cA outperforms G-BASELINE1 by 8%. Moreover, cA exhibits
superior performance compared to G-BASELINE2 and increases performance by
11% even though they share the same size. This empirically demonstrates that
DWT embeddings capture the underlying semantics conveyed in the embeddings
and effectively encoding them into fewer dimensions. While for WS353 and MEN
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datasets, cD beats both baselines, illustrating that for different datasets, every set
of coefficients captures different aspects about the data.
Furthermore, for dimension of 200, cA outperforms specifically for the SimLex and
MEN datasets, emphasizing how various coefficients capture information within the
embeddings as the dimension size increases.

In our subsequent experiment, we utilize FastText embeddings with 300 dimensions
as the baseline, F-BASELINE. Furthermore, we explore Level-2 DWT embeddings,
specifically, we enrich the Level-1 cA coefficients with the approximation coefficients
from the Level-2 cD transform, cDA. Similarly, we examine the Level-1 cD coeffi-
cients alongside the Level-2 detail coefficients for Level-1 approximations, cAD. As
shown in Table 2, at a compression of 25% dimensionality reduction, cD+cAD yields
comparable results to F-BASELINE for all 3 datasets. For the SimLex dataset, the
cD coefficients effectively encode the semantics, and the addition of coefficients from
subsequent layers (cD+cAD) didn’t improve the performance. 5 However, for the
MEN and WS353 datasets, combining the coefficients (cD+cAD) achieves perfor-
mance comparable to the F-BASELINE embeddings, with a slight reduction of at
most 1% in performance.

Table 1. Word Similarity Evaluation using GloVe Embeddings

Dim SimLex WS353 MEN

G-BASELINE1 100 0.12 0.46 0.57

G-BASELINE2 50 0.09 0.42 0.53

cD 50 0.11 0.50 0.58

cA 50 0.2 0.44 0.57

G-BASELINE1 200 0.13 0.48 0.59

G-BASELINE2 100 0.12 0.46 0.57

cD 100 0.13 0.40 0.48

cA 100 0.17 0.47 0.62

Spearman Rank Order Correlation (SPC) Results on SimLex-999, WS353 and MEN datasets;
using GloVe-Twitter27B embeddings with dimensions 100 and 200 compared to Level-1 DWT
coefficients on word similarity tasks. In addition to G-BASELINE2 which represents GloVE

embedding with 50% less dimensions. cD and cA correspond to the embeddings yielded at Level-1
DWT transform. Best results are in bold and best results per experimental condition are in red.

We further evaluate DWT embeddings using the Concept Categorization task that
groups words in different categories based on semantic clusters [5]. Such models have
been proven effective in downstream NLP tasks [41]. We evaluate DWT embeddings
using the AP [3], BM [31] and BLESS datasets [6]. We use FastText as original
embeddings. As illustrated in Table 3, cA and cD embeddings yield comparable and

5 In this context, cDD will represent the details of the details of Level-1 and hence won’t add
much information
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Table 2. Word Similarity Evaluation using FastText Embeddings

Dim SimLex WS353 MEN

F-BASELINE 300 0.5 0.79 0.83

cD 150 0.5 0.73 0.79

cA 150 0.49 0.74 0.79

cD+cAD 225 0.5 0.78 0.82

cA+cDA 225 0.49 0.75 0.82

even superior results compared to F-BASELINE with a dimensionality reduction
of 50%.

Table 3. Concept Categorization Evaluation

Dim AP BM BLESS

BASELINE 300 0.70 0.47 0.86

cD 150 0.70 0.46 0.87

cA 150 0.70 0.49 0.82

Furthermore, we study DWT embeddings qualitatively, we take a snippet of dif-
ferent word pairs and their cosine similarity measures using FastText embeddings,
cA and cD embeddings as shown in Table 4. The results show that, on average,
cD performs as well as original word embeddings. However, for cA, some inter-
esting results hold: For pairs like, ’dog-cow’ and ’happy-cry’, cA embeddings tend
to outperform with a big margin both the original embeddings and the cD coeffi-
cients. This could typically indicate that these two words have a high correlation
between their Approximation coefficients and basically capture a different type of
relation, for example, ’dog’ and ’cow’ are both animals, and ’happy’ and ’cry’ are
both emotions. It could also indicate that the low-pass filtering (which produces
the cA’s) preserves and highlights the commonality between ’dog’ and ’cow’ (their
animal nature), and between ’happy’ and ’cry’ (their emotional nature), leading to
higher similarity, whereas the high-pass filtering (which produces the cD’s) elimi-
nates/reduces those kinds of commonalities, but preserves certain other connections
that yield the same (or even slightly better) similarity value as/than the original
embeddings, but lower similarities than those produced by cA.

On the other hand, for the ’boy-girl’ and ’woman-girl’ pairs, cA decreases the sim-
ilarities drastically, while cD does not, indicating that the subtle nuanced connec-
tion/contrast (of gender or age) got lost in the low-pass filtering but was preserved
by the high-pass filtering. These curious observations call for further investigation
into the working of the low-pass filtering and high-pass filtering of WT, a subject
for future research.
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Table 4. Similarity measures for different word pairs

Word Pairs Word Vector cD cA

’boy’-’girl’ 0.77 0.78 0.57

’dog’-’cow’ 0.39 0.39 0.89

’woman’-’girl’ 0.65 0.67 0.49

’happy’-’cry’ 0.28 0.37 0.91

We additionally captured the 5-nearest neighbors for a set of randomly selected
words, as shown in Table 5. cD and cA were able to capture some linguistic phe-
nomena that the original word embeddings missed. For example, ’Cat’ was not one
of the 5-nearest neighbors for ’cat’. Synonyms like ’contented’ are closer to happy
as opposed to ’unhappy’ in the original representation. When using cA, we capture
more synonyms of ’happy’ like ’thrilled’ and ’overjoyed’, and when using cD, we
capture arguably better relational similarity to ’Italy’ such as ’sicily’ and ’levorno’,
which are Italian cities.

Table 5. 5-nearest cosine similar words

Word Word Vector cD cA

’cat’
’cats’, ’kitty’, ’kitten’,

’feline’, ’kitties’
cats’, ’kitten’, ’kitty’,

’feline’, ’Cat’
’cats’, ’kitty’, ’kitten’,

’feline’, ’kitties’

’happy’
’happpy’, ’unhappy’, ’hapy’,

’contented’, ’happier’
’happpy’, ’contented’, ’Happy’,

’hapy’, ’unhappy’
’thrilled’, ’happpy’, ’unhappy’,

’overjoyed’, ’hapy’

’Italy’
’rome’, ’italy.’, ’spain’,

’france’, ’europe’
’spain’, ’sicily’, ’italy’,

’livorno’, ’europe’
’rome’, ’italy’, ’france’,
’switzerland’, ’germany’

4.3 Extrinsic Evaluation

For extrinsic evaluation, DWT embeddings are applied in the same settings of
intrinsic evaluation to the following downstream classifications tasks through Sen-
tEval toolkit [11]: sentiment classification on Movie Reviews (MR), Stanford Sen-
timent Treebank (SST2, SST5) [32], product review (CR) [21], subjectivity clas-
sification (SUBJ) [33], opinion polarity classification (MPQA), question type clas-
sification (TREC) [40], paraphrase identification (MRPC) [15], STS12 semantic
similarity task [1], and entailment classification on the SICK dataset (SICK-E) [7].
We use DWT embeddings to encode sentences then feed the encoded sentences to
the aforementioned tasks.

Baseline In this evaluation, we consider averaging as the baseline sentence encod-
ing (AVG), using FastText word embeddings. We further consider other baselines to
demonstrate the efficacy of DWT embeddings including: (1) FastText embeddings
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with random 50% dimensionality reduction, denoted as random pooling, under the
assumption of no correlation between dimensions. This involves the random elimi-
nation of 50% of the features in a word embedding.(2) An embedding model that
is based on a dimensionality reduction method, namely PCA(Principal component
analysis), as developed in [35] and denoted as (PCA+PPA). This embedding com-
bines PCA dimensionality reduction embeddings with a post-processing algorithm
(PPA) [30] to construct effective word embeddings of lower dimensions.

Table 6. Extrinsic Results

Sentiment Analysis Inference Paraphrase SUBJ TREC

Embedding Dim MR CR SST2 SST5 MPQA SICK-E MRPC STS12

AVG 300 78.3 79.6 84.13 44.16 87.94 79.5 74.43 58.3 92.33 83.2

AVG(Random Pooling) 150 58.83 63.58 56.07 28.82 69.61 56.59 67.07 8 69.78 33

AVG(PCA+PPA) 150 75.52 78.2 - 41.4 86.18 75.06 73.39 53.34 90.96 75.2

AVG(PCA+PPA) 200 77.18 79.76 - 43.48 86.64 76.76 72.93 53.76 91.6 77.4

AVG(cA) 150 78.57 80.85 80.12 43.6 85.61 78.41 73.22 58.01 90.01 82

AVG(cD) 150 76.61coif15 79.26 80.62 43.53 86.41 78.46 73.62 57.71 91.97 78.6

AVG(cD+cAD) 225 78 80.69 80.94 44.7 87.89 78.53 73.86 58.34 92.12 81.8

AVG(cA+cDA) 225 77.4 81.22 82.43 45.52 87.36 78.49 73.49 57.94 91.96 83.2

AVG(cD+cAD+cAAD) 263 78.38 81.09 81.55 43.94 87.95 78.89 74.5 58.34 92.34 84.8

Best Classification accuracy (except STS12, the metric is Pearson correlation %) results on var-
ious classification tasks. The Baseline AVG is the simple original word embedding averaging.
AVG(PCA+PPA) is the average of a PCA based embedding proposed in cite82 with di-
mensions 150 and 200 cite67. AVG(cD) represents the average of Level-1 Detail coefficients,
AVG(cD+cAD) is the average of Level-1 Detail coefficients concatenated to Level-2 Detail coef-
ficients as derived from Level-1 Approximation coefficients. Similarly for AVG(cD+cAD+cAAD)
and AVG(cD+cAD+cAAD). We also illustrate the MW used per condition per task in italics. The
best overall results are shown in bold. Best results per condition are shown in red.

In Table 6, the overall results are comparable to the baselines AVG for most tasks
with significant reduction in dimensionality, yet DWT outperforms in CR, SST5,
MPQA, MRPC, STS12, SUB and TREC. In this experiment we further consider
Level-3 DWT embeddings as shown in the table. For SUBJ, Level-3 yields the best
results with a compression rate of 12.5%. For the sentiment classification tasks we
note performance comparable to AVG for MR and MPQA, while outperforming
AVG for CR and SST5 at Level-2 cA+cDA with compression rate of 25%. We also
note that in the SST2 task, none of the conditions beat AVG. Similarly, for the
entailment task of SICK-E none of the conditions surpassed AVG. However, for
the Paraphrase tasks of MRPC and STS12 as well as the question classification
task TREC, Level-3 representations yielded comparable performance to AVG with
a compression rate of 12%.

In general, Level-2 AVG(cA+cDA) and Level-3 AVG(cD+cAD+cAAD) yield the
best results compared to other conditions except for the MR task where AVG(cA)
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yields the highest result (78.57%) followed by the Level-3 condition at an accuracy
of 78.38%. Furthermore, if the embedding size is a major concern, observe that with
cA or cD alone (at half the embedding size relative to the original), the performance
is comparable to the AVG baseline in nearly all the tasks considered. Hence, we
conclude that DWT presents an effective balance between efficiency (compactness)
and accuracy, and an effective data-size reduction method with hardly any adverse
effect on accuracy.

5 Evaluating DWT with DCT Sentence Embedding

We evaluate the effectiveness of DWT by studying the application of DWT to the
DCT sentence embedding model. We argue that DWT can encapsulate ample and
pertinent information within word embeddings, leading to an improved representa-
tion for sentence embeddings without increasing dimension size nor compromising
performance.

Baseline In this evaluation, we consider a number of sentence embedding models
as a baseline including:

1. Similar spatial models, namely, DCT [2] with 1 and 2 coefficients to be consis-
tent with our proposed model, and EigenSent model [23]6. EigenSent sentence
embeddings are composed by keeping the top m dynamic modes resulting in
a sentence embedding of size md ignoring correlation and information encoded
within a word embedding for every word in the sentence.

2. Other top performing non-parametrized sentence embedding models: P-Means [37]
and VLAWE [22] to comprehend our result analysis.

For a fair comparison, we use multi-layer perceptron (MLP) classifiers based on
various settings including number of hidden states (in [0, 50, 100, 200]) and dropout
rates (in [0, 0.1]) considering the same settings in [2] that yielded their best results
for DCT-based sentence embedding.

5.1 DWT-DCT Experimental Results

The results on different tasks demonstrate the power of applying DWT to word
embeddings. The combined DWT-DCT outperforms the baseline AVG in all tasks
with a significant margin in some tasks. Comparing our approach to DCT alone, as
shown in Table 7, our combined model yields better results. It can be shown that
Level-1 or Level-2 DWT with 1 coefficient, DWT1-DCT[0] and DWT2-DCT[0], gen-
erally outperforms DCT with 1 coefficient, DCT c[0], in all task except MR which is
comparable. Similarly with 2 coefficients, DWT1-DCT[0:1], applying DWT to DCT

6 Embeddings generated using https://github.com/DeepK/hoDMD-experiments
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performs better in most of the tasks, except for SUBJ which is comparable, with
50% reduction in size. It is worth mentioning that in CR, our DWT-DCT embed-
dings outperforms the best result achieved in [2], which is 80.08, when K = 5, which
results in a final DCT sentence embedding of size 1500. In SICK-E, DCT embed-
ding model achieves a comparable result when K = 4, which results in a final DCT
sentence embedding of size 1200. Additionally, in SST2, DCT embedding didn’t
beat the AVG baseline, while our model outperformed it. As for EigenSent, our
model significantly surpasses the others, with the same embedding size, across all
tasks. Compared to other non-parametrized models, our model surpasses VLAWE
in all tasks. As opposed to P-Means, our model outperforms or is comparable to the
other models, except for SICK-E and STS16, yet our results are convenient given
the fact that our embedding dimensionality is 12 times lower in magnitude.

Our observations suggest that DWT seems to be complementary to DCT as we
observe better performance. Additionally, Level-1 DWT is sufficient to pack a sen-
tence embedding with relevant information.

Overall, the combined model is robust and efficient, yielding results that are better
than or comparable to the state of the art models across a variety of standard tasks.

Table 7. Experimental results from applying DWT to DCT sentence embeddings

Sentiment Analysis Inference Paraphrase SUBJ TREC

Model Dim MR CR SST2 SST5 MPQA SICK-E MRPC STS12 STS16 STSB

# Samples - 11k 4k 70k 19.5k 11k 10k 5.7k 8.1k 3.9k 15k 10k 6k

AVG 300 78.3 79.6 84.13 44.16 87.94 79.5 74.43 58.0 64.0 69.26 92.33 83.2

p-means 3600 78.3 80.8 84 - 89.1 83.5 73.2 54 67 72 92.6 88.4

VLAWE 3000 77.7 79.2 80.8 - 88.1 81.2 72.8 - - - 91.7 87

EigenSent 300 70.26 73.16 72.54 36.97 69.15 71.34 70.43 36 - - 85.73 54.2

DCT c[0] 300 78.45 79.81 83.53 44.57 88.36 78.91 72.93 58.3 64.1 71.5 92.79 84.8
DWT1-DCT[0] 300 78.38 81.14 84.68 46.73 88.36 79.5 73.33 58.6 64.5 71.6 92.8 84.6

DWT2-DCT[0] 300 78.31 81.27 83.86 45.93 88.35 79.58 73.51 58.73 64.8 72.3 92.8 85

DCT c[0:1] 600 78.15 79.84 83.47 46.06 87.76 79.64 72.81 50.4 57.4 71.2 92.61 88.2

DWT1-DCT[0:1] 300 78.57 80.66 83.91 46.74 87.93 80.9 74.5 50.8 57.4 71.4 92.51 88.4

Results as opposed to DCT embedding, DCT c*, as reported in [2]. Our model names use the
convention ‘DWTl-DCT[k]’ to indicate l-Level DWT followed by DCT where coefficients k of the

DCT output are taken for the final representation; e.g., DWT1-DCT[0] is used for Level-1 of
DWT and c[0] DCT coefficient. ’Dim’ reflects the sentence embedding vector size. In STS12,

STS16 and STSB Pearson correlation coefficients(%) is used. The best overall results are shown
in bold. Best results per condition are shown in red. Results where the DWT-DCT sentence

embedding based model exceeds the DCT model are shown in italic.

6 Conclusion and Discussion

The results on different tasks demonstrate the power of our method. Our combined
DWT and DCT outperforms the baseline AVG (in the majority of cases, by a
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significant margin) across all tasks. It outperforms p-means and VLAWE as well,
despite their several orders of magnitude larger dimensionality for both p-means and
VLAWE. Comparing DCT to our combined models, the combined models yielded
better results especially compared to DCT[0:1] and DCT[0:2] (except for TREC)
despite having larger dimensionality for DCT. We also note that DWT seems to be
complementary to DCT as we observed better performance in the combined models
except for MR where the best results are the same, and for TREC where DCT[0:2]
outperforms all the combined models. Overall, our combined models are robust and
efficient, yielding results comparable or even outperforming the state of the art of
non-parameterized results across a variety of standard tasks.

6.1 Mother Wavelets

While we simplified our paper by omitting the specific details of MW and its ap-
plication in each task, it remains a crucial element of WT. In our experiments, we
explored the use of Coiflets, Daubechies, and Symlets wavelets at different scales;
i.e. how stretched is the MW across the data. We observed that Coiflets, on average,
demonstrate strong performance across various tasks and scales of expansion. This
suggests that the Coiflets wavelets fits well the structure of the embedding data.

Intuitively, we surmise from our experiments that frequent words will tend to
transfer better with wide scaled wavelets to capture approximation details more
efficiently. Conversely, less frequent, specialized words in a given context may yield
better results when transformed using smaller-scaled wavelets. The selection of the
best MW and scale to be used requires more research and we plan to investigate
this more in our future work.

6.2 Correlation

Although we did not explicitly prove that the dimensions in the same embedding
are correlated, the results of applying DWT suggests that there exists a correlation
between these dimensions. If no correlation existed, DWT would never achieve
comparable results to original embeddings’ performance.

6.3 Computational Complexity

The computational complexity of applying DWT to embedding is typically linear.
The general complexity is often expressed in terms of the dimension of the em-
bedding, denoted as N and depends on the number of levels in the DWT. If the
transform has L levels, the overall complexity is

O(L×N)

Accordingly, using DWT for embeddings analysis and compression is computation-
ally efficient.
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6.4 Conclusion

In this paper we explored the effectiveness of applying DWT to word embeddings
to selectively reduce word embeddings into approximated or detailed coefficients
representations by exploring frequency and space analysis of a word embedding,
retaining the same performance at 50% to 75% of the word vector original dimen-
sion size. The generated DWT word embedding postulates that different sets of
coefficients capture different semantic aspects of a word embedding. Our intrinsic
and extrinsic evaluations for the efficacy of applying DWT in the context of NLP
suggest that DWT has significant potential for efficiently modeling word and sen-
tence embeddings.
We further use the resulting word embeddings to generate a DWT-DCT based
sentence-embedding. The proposed embedding method not only yields comparable
or even better performance than original embedding models, it also has the added
advantage of significantly reducing sentence vector size, whittling it down to salient
info for the task. Finally, our model is able to outperform vector averaging for the
SST Task which to date is the dominating model among non-parametric models.
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