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ABSTRACT 
While Multi-view Graph Neural Networks (MVGNNs) excel at leveraging diverse modalities for learning object 
representation, existing methods assume identical local topology structures across modalities that overlook 
real-world discrepancies. This leads MVGNNs straggles in modality fusion and representations denoising. To 
address these issues, we propose adaptive modality-wise structure learning (AMoSL). AMoSL captures node 
correspondences between modalities via optimal transport, and jointly learning with graph embedding. To 
enable efficient end-to-end training, we employ an efficient solution for the resulting complex bilevel 
optimization problem. Furthermore, AMoSL adapts to downstream tasks through unsupervised learning on 
inter-modality distances. The effectiveness of AMoSL is demonstrated by its ability to train more accurate graph 
classifiers on six benchmark datasets. 
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1. INTRODUCTION 
A large amount of data networks exhibits a unique structure known as graph-structured data. Irregular, 
non-Euclidean data characterize this data type and are frequently found in areas such as 
recommendation systems [1], social media networks [2], knowledge graphs [3], and molecular 
structures [4]. The analysis of graph-structured data has garnered substantial attention for its inherent 
inductive and transductive properties, which enable relational reasoning among entities (nodes) and 
their connections (edges). 

Graph Neural Networks (GNNs), through a series of advancements [5][6][7][8][9][10][11][12][13], 
have shown promising improvement in studying graph-structured data to conduct various 
downstream graph- related tasks. These tasks include node classification, link prediction, and graph 
classification. GNNs inherit key operations from Convolutional Neural Networks (CNNs), including 
convolution and pooling, while leveraging layer-by-layer graph signal processing [14] and message 
passing [15] to capture inherent structures within the graphs effectively. 

Drawing from the capabilities of GNNs, Multi-view Graph Neural Networks (MVGNNs) are designed 
to learn multiple input modalities, each providing a unique perspective to understand the same 
underlying object. These networks make use of parallel and independent GNNs to capture modality-
specific representations, which are subsequently fused into a unified representation. This framework 
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positions MVGNNs for potential superiority over single-view GNNs and is supported by practical 
applications across diverse domains. Examples include the identification of molecular networks 
characterized by diverse underlying molecular structures [16], prediction of brain diseases using various 
neuroimaging data sources [17], analysis of global poverty patterns across different countries [18], 
and analysis of user activities on social networks from their both online and offline interactions [19]. 

MVGNNs, while effective, face several noteworthy challenges: 1) Labeling variability: Modalities 
could fall apart for being labeled to different classes in a given feature space, due to parallel learning 
with unshared GNN parameters. Fusing these representations from disparate classes can significantly 
increase the potential for noise in the resulting unified representation; 2) Node correspondence 
ambiguity: Different modalities often exhibit distinct graph topologies, making element-wise fusion 
challenging due to unclear node correspondences across modalities. As an example, modality-wise 
pooling, a commonly used fusion technique, involves selecting specific merits from modality-specific 
representations on an element-wise basis. However, without establishing clear node correspondences 
before fusion, information underutilization and noise in the unified representation can occur; 3) Inter-
modality correlation neglect and knowledge underutilization: Modalities should inherently exhibit 
some level of correlation since they all pertain to a single object. However, neglecting to capture the 
inter-modality correlation can impede the utilization of the complementary knowledge carried by 
diverse modalities. 

Optimal transport distance, alternatively known as Wasserstein distance [20] in Mathematics or Earth 
Mover’s Distance [21] in Computer Science, is a linear programming (LP) problem. Its objective is 
to minimize transportation costs between two probability distributions while identifying transport 
correspondences and quantifying the transport flow between these correspondences. This concept 
extends to various domains, including graph learning, where it applies to probability distributions such 
as graph filters [22] or graph signals [23]. Recently, extensive research efforts have delved into the 
graph problem through the perspective of optimal transport distance. These studies span various 
domains, including graph matching [22][24][25][26] and node classification [27][23]. Indeed, these 
studies have predominantly contributed to the advancements in graph-based machine learning, often 
centered around off-the-shelf machine learning models or single-layer neural networks. However, 
incorporating the optimal transport distance into deep neural networks still needs to be investigated 
in problem formulation and method optimization. 

In this paper, we introduce an optimal transport-based adaptive modality-wise structural learning 
(AMoSL) in MVGNNs to address challenges specific to MVGNNs: 

1. To mitigate the issue of modalities potentially falling into different class spaces due 
to parallel learning with unshared GNN parameters, we propose an unsupervised 
learning method that focuses on the distances between modalities. 

2. To address the ambiguity in node correspondence and improve the fusion process 
while reducing noise in the unified representation, we explore node correspondence 
among modalities using an optimal transport metric. 

3. To tackle the neglect of inter-modality correlations and knowledge underutilization, 
we adopt a dual approach involving node-level and graph-level considerations. At the 
node level, we see corresponding nodes as inter-modality correlations, intending to 
minimize the distance between these nodes to preserve shared knowledge. At the 
graph level, in addition to unsupervised minimization of inter-modality distances, we 
guide the model to maintain balance by adapting to the classifier’s performance. This 
prevents modalities from diverging too far, neglecting shared knowledge, or 
converging too closely, underutilizing complementary knowledge. 
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Our method demonstrates its effectiveness by achieving improved graph classification results on six 
benchmark datasets. We also conduct experimental evaluations and ablation studies to further validate 
our approach. 

2. RELATED WORK 
Multi-view Graph Neural Networks. MVGNNs are built for modeling and relation reasoning 
among graphs belonging to the same object in different views. Inspired by a study in CNNs [28], 
which projected a 3D object onto 2D images to better recognize the object from different views, in 
MVGNNs, input graphs in different views are multi-structured or multi-related data. For example, 
[17][29][30] used different tractography methods in brain network studies, [18] used different data 
resources from different developing countries in a global poverty study, and [16] artificially created 
hybrid modalities to study data in the complex structure. To utilize and combine the learned knowledge 
from different modalities, [17] developed a voting strategy to balance the output from different graph 
signals, [30] used a Hadamard product layer to capture graphs similarity, [29] concatenated graph-
level knowledge to preserve all knowledge from modalities, and [31] regularized the distance between 
two modalities for node-level classification. However, most existing MVGNNs neglect the inter-
modality correlation. 

Optimal Transport. In a study of content-based image retrieval [21], optimal transport (OT) proves 
its certain robustness in partial matching and flexibility in handling variable-length signals than in 
histogram matching methods. It is the first work for OT involved in the neural network, followed by 
further applications across various domains, particularly in documents and images. For example, in 
document classification [32], OT optimizes the transfer cost of word embedding from one document 
to another. In image classification, OT overcomes the issue of the limited amount of labeled training 
data to achieve few-shot learning [33]. Recently, OT has gained significant attention in node 
classification tasks related to graph alignment [22][27][23]. OT in this domain involves aligning 
corresponding nodes or topologies between graphs for unlabeled node prediction. Because of the 
optimization challenges, these studies, are either off-the-shelf machine learning models or single-
layer neural networks. In this work, we overcome the optimization challenge of integrating OT into 
deep Graph Neural Networks and apply its properties to improve graph-level classification in 
MVGNNs. 

Parameterized Optimization Learning. Parameterized optimization learnings typically apply to 
supervised machine learning and follow differentiation through argmin techniques 
[34][35][36][37][38]. To train a well-performed predictive model by taking an object function: 

𝒪(y) = arg min{ L0 + Lreg } .                                                                 (1) 
y 

Here, L0 is the supervised loss from a data-driven perspective, often penalizing the distance between 
the predicted value 𝑦#	and the ground true value 𝑦	from the machine learning model, and Lreg is a 
differentiable function on model parameters that need additional regularization. Differentiation 
through argmin using reversed structured, in terms of layer-by-layer, logical inferences to achieve the 
end-to-end optimization learning. The nested problem shown in Eq.(1) is also known as bilevel 
optimization problem [39]. In this case, L0 + Lreg is the outer-level optimization problem, and Lreg is 
the inner-level optimization problem. Eq.(1) can be solved using Karush-Kuhn-Tucker (KKT) [40] 
conditions to constrain the inner-level optimization problem since the L0 is convex with the 
commonly used cross- entropy loss function. 

3. OUR METHOD 
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In this section, we first outline the network construction, along with the graph notations employed. 
Then, we introduce the objective function, followed by a specific computation detail and a 
comprehensive explanation of the optimal transport approach. Lastly, we elaborate on the 
optimization solution that enables the end-to-end training manner of the proposed method. 

3.1. Network Construction 
As depicted in Figure 1, our method consists of two-view GNNs for acquiring modality-specific 
representations. A modality-wise structure learning (MoSL) layer is used to calculate optimal 
transport between the two modalities, enabling the learning of node correspondences. A modality 
fusion layer dedicated to fusing modalities into a unified representation. Finally, the two fully 
connected layers are designed for denoising the unified representation and executing graph 
classification. 
Specifically, Method Input: We focus on learning from a single object that possesses two 
modalities. In each modality, a graph is represented as 𝒢	=	(𝑋,	ℒ), where 𝑋	∈	ℝ!×# 	represents the 
node feature matrix encoding n nodes with d feature dimensions, and ℒ	∈	ℝ!×!	denotes the 
corresponding Laplacian matrix. We use the subscripted number to denote the modality index 
throughout the paper. GNNs: While each GNN tasks a modality-specific input, it extracts the 
modality-specific representation through three graph convolutional layers. The model parameters 
denoted as	𝛩 = {𝜃$, 𝜃%, 𝜃&}, each having an associated hidden dimension size of {𝑑'! , 𝑑'" , 𝑑'#}.	The 
convolution operation in GNNs can use the method described in ChebNet [6], or GCN [9]. MoSL 
and Fusion: Following the generation of modality-specific representations by GNNs, we employ 
the learned node feature matrices Z for both MoSL and fusion. In the MoSL layer, we establish node 
correspondences through the use of an optimal transport metric. This not only determines the most 
efficient flow of structural learning between corresponding nodes but also quantifies the structural 
distance between modalities. We delve deeper into this concept by introducing it in our objective 
function in Section 3.2 and elaborating on its formulation and rationale in Section 3.3. In the modality 
fusion layer, we apply a fusion technique to combine Z into a unified representation 𝐻. The fusion 
technique can be modality-wise max pooling, concatenation, or the Hadamard product, depending on 
the chosen approach. Compatible Learning and Read-out Layer: In the final stage, the two 
consecutives fully connected (FC) layers serve the dual purpose of denoising H and generating a 
graph-level representation 𝐻’	for executing the graph classification prediction 𝑃7.  

3.2. Objective of the Method 
Parallel engineering and unshared weights of GNNs for modality training pose challenges in modality 
fusion. These challenges primarily arise from issues such as labeling variability and node 
correspondence ambiguity. To tackle these issues, we introduce an optimal transport-based MoSL in 
the network construction during the forward pass. However, how to leverage MoSL to enhance the 
fusion process becomes a problem. This motivates us to jointly learn graph embedding and MoSL. 
To achieve this, our approach builds upon the foundation of graph embedding learning, which is based 
on classifier performance within the MVGNN framework. We expand upon this by involving 
unsupervised learning on the optimal transport metric between Z1 and Z2 for MoSL. Furthermore, we 
introduce an adaptive element to improve MoSL, thus AMoSL. This adaptive component refines the 
structural learning flow based on classifier performance, employing a momentum algorithm. 

The performance of the graph classifier is evaluated using the cross-entropy loss, which measures the 
discrepancy between the ground truth distribution Y of class labels and the predicted probability 
distribution 𝑃7.  This loss is computed across C classes as follows:  
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𝐿( =	−∑ 𝑌𝑙𝑜𝑔(𝑃7))
*+$  .                                                          (2) 

Throughout the paper, we denote YT as the true class label and  𝑃7, the predicted probability of the true 
class label for a sample. 

On the other hand, the unsupervised learning of AMoSL is defined as: 
LAMoSL(Z1, Z2) = reg · OT (Z1, Z2) .                                               (3) 

In Eq.(3), the term reg is adaptive and relies on classifier performance through a momentum 
algorithm. While we minimize the structural distance between modalities in an unsupervised manner, 
reg strikes a balance of this distance, ensuring it is neither too small to cause overlapped modalities 
and miss out on complementary knowledge nor too large to raise labeling variability and disregard 
shared knowledge. To achieve this balance, we link reg to the classifier’s performance, quantified by 
the probability 𝑃7, of being the true class. Since 𝑃7, is an indicator of the accuracy of the unified 
representation in a classifier. If 𝑃7, suggests that the current unified representation is accurate (signified 
by a high value of 𝑃7,) ,  we proceed with graph embedding without imposing strict MoSL constraints. 
On the contrary, if 𝑃7, indicates inaccuracies (a high value of (1	−	𝑃7,)), we leverage MoSL to enhance 
and refine the unified representation for improved performance. Algorithm 1 provides a pseudo-code for 
computing reg during training epochs 𝑡	∈	[0,	𝑇]. 

As outlined, the fundamental formula of MoSL is the optimal transport metric based on Z1 and Z2, 

𝑂𝑇	(𝑍!, 𝑍") 	= ∑ ∑ 𝑐#$𝑓,#$$∈&!#∈&" 	,                                        (4) 

where 𝑐𝑖𝑗	is the pairwise distance and 𝑓,#$ 	 is the optimal transport (structural learning) flow between 
corresponding node 𝑖	 and 𝑗. We provide a detailed computation of 𝑂𝑇	(𝑍!, 𝑍")	 and its insights 
regarding MoSL in Section 3.3. 

As a result, the objective function of the proposed method is: 

𝑚𝑖𝑛	𝐿	 ≜ 	𝐿0	+ 	𝜆	 · 	𝐿𝐴𝑀𝑜𝑆𝐿(𝑍1, 𝑍2)	,                                      (5) 

with λ ∈	(0, 1) being a hyper-parameter. 

3.3. Optimal Transport-based MoSL 
Here, we introduce the computational specifics of 𝑂𝑇	(𝑍!, 𝑍")	and provide a detailed discussion of its 
function in the proposed method. 

Computation of 𝑶𝑻	(𝒁𝟏, 𝒁𝟐). To calculate the optimal transport-based MoSL between Z1 and Z2, we 
must consider two key components specific to the problem: the distances between nodes across 
modalities and the weight assigned to each node. The first step involves establishing node 
correspondences between modalities. 

This process hinges on a distance matrix that represents the dissimilarities between nodes. The 
dimensions of this matrix depend on the number of nodes present in both modalities. We employ the 
cosine distance metric to compute 𝑐𝑖𝑗	in Eq.(4), 

𝑐-. 	= 	1	 − 	𝑐𝑜𝑠(𝓏$- , 𝓏%.) , 

= 1 −	 𝓏!$
% 𝓏"&

‖𝓏!'‖12"(1
     ∀𝑖,	𝑗	 ∈	 ℝ, 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	  (6) 
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Fig. 1: This figure shows the network construction of AMoSL in MVGNNs with a 
view number specified to two. 

 

Algorithm 1: An algorithm to compute reg 
 

Input: Exponential decay rate for the moment estimate, γ ∈	[0, 1) 
Output: reg value at training epoch t 

1 for t ∈	[0, T ) do 
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end 

Get the predicted probability of being the true class 𝑃7,from the 𝑷R 

if time step t = 0 then 
Compute: reg ← (1 − 𝑃7,)  ; 

else 
Compute: reg ← γ · reg + (1 − γ) · (1 − 𝑃7,)  ; 

end 

t ← t + 1 ; 
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where 𝓏$-∈	ℝ#)# 	 is the 𝑖-th node feature vector in Z1 and 𝓏%.∈	ℝ#)# 	 is the 𝑗-th node feature vector 
in Z2. Smaller values of 𝑐-. signify the correspondence between nodes (𝑖, 𝑗) and the intention of a 
structural learning flow between them for shared knowledge preservation. 

After successfully identifying corresponding nodes using the distance matrix, the next factor to 
consider is the node weights, which play a crucial role in determining the structural learning flow 
between these corresponding nodes. To illustrate this, let’s consider a practical example: imagine we 
have movies A, B, and C, with pairs (A, B) and (A, C) representing corresponding movies. Now, 
when recommending a movie to a user based on their preference for movie A, it makes more sense 
to prioritize the more popular (or possibly other specific merits) movie if both candidate movies have 
the same similarity to movie A. Therefore, in cases where distances are equal within a set of 
corresponding nodes, nodes with higher weights should receive a greater allocation of structural 
learning flow to their corresponding nodes, particularly if those corresponding nodes also possess 
higher weights. 

Unlike the approach used in [23][31], which assigns a uniform weight to all nodes in node classification 
tasks, we incorporate two essential factors when dete3rmining node weights in graph classification 
tasks. First, we take into account each node’s feature vector. Each node is assigned a feature score 
(FS) that summarizes its feature vector, defined as FS =∑ (𝑍. ).#)#

		Second, to facilitate fusion for a 
more grounded unified representation, we assess each node’s contribution score (CS) to the unified 
representation based on the chosen fusion technique. In the case of, 

- modality-wise maximum pooling operation [28], which selects the maximum values element- 
wise from Z1 and Z2, i.e., (𝐻)3,5 	= 	𝑚𝑎𝑥	V(𝑍1	)3,5, (𝑍2	)3,5W. In this operation, we assign a 
contribution score of one to the selected element in the unified representation. Consequently, 
the total contribution score of a node in Z1 and Z2 is computed as follows: 

V𝐶𝑆6!W3 =	Z1	[(𝑍1	)3,5 ≥	(𝑍2	)3,5],						∀𝑟	 ∈ 	𝑍$	

#)#

5+$

,	 

V𝐶𝑆6"W3 =	Z1	[(𝑍1	)3,5 <	 (𝑍2	)3,5],						∀𝑟	 ∈ 	𝑍%	

#)#

5+$

,																																		(7) 

- concatenation (H = Z1||Z2) or Hadamard product (H = Z1 ⊙	Z2) operation, where all 
features are fused into the unified representation. Hence, we assign a contribution score of 
0.5 to every element. Consequently, the total contribution score of a node in Z1 and Z2 is 
equal to (𝐶𝑆)𝑟	=	∑ $

%
	

#)#
5+$ .	Still, on every feature dimension, V𝐶𝑆6!W35 +	V𝐶𝑆6!W35 = 1. 

Next, we proceed to normalize the score (CS)r of each node to the value of the feature dimension 
𝑑'# 	in the final layer of the GNN: 

									V𝐶𝑆bW3 =
():)+
#)#

                                                                   (8)

As a result, a node weight is calculated as follows: 

𝑤	 = 	𝑚𝑎𝑥e0, 𝐹𝑆	 × 	𝐶𝑆bh.																																															(9) 

Here, we employ the max(·) function to ensure non-negative weights. 
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Given the two crucial components, distances c and weights 𝑤, the optimal transport can determine 
which nodes should engage in structural learning with one another and establish the magnitude of the 
structural learning flow between them. This can be accomplished by solving a linear programming 
problem to obtain the optimal transport (structural learning) flow 𝑓k	that is disclosed in Eq.(4). Consider 
nodes 𝑖	and 𝑗	in Z1 and Z2 with weights 𝑤:	and 𝑤;	respectively, 𝑓k𝑖𝑗	 can be solved as follows:	

min	
<$(

∑ ∑ 𝑐-.𝑓-..	∈6"-	∈6!                                                    (10) 

𝑠. 𝑡				𝑓-. 	≥ 0,						 ∑ 𝑓-. ≤ 𝑤.-∈6! ,							∑ 𝑓-. ≤ 𝑤-.∈6" ,  

∑ ∑ 𝑐-.𝑓-..	∈6"-	∈6! = min{∑ 𝑤.-∈6! , ∑ 𝑤.-∈6! } .

This gives us, 𝑓k𝑖𝑗	> 0 if nodes should engage in structural learning, otherwise, 𝑓k𝑖𝑗	= 0. After obtaining the 
optimal structural learning flow 𝑓k𝑖𝑗, the optimal transport between Z1 and Z2 is calculated 𝑂𝑇	(𝑍!, 𝑍")	 
=	∑𝑖∈𝑍1	∑𝑗∈𝑍2	 𝑐𝑖𝑗𝑓k𝑖𝑗. 

Interpretation of 𝑶𝑻	(𝒁𝟏, 𝒁𝟐)	. Let 𝛱	= {(i, j) | 𝑓k𝑖𝑗	> 0} be the set of corresponding nodes that should 
engage in structural learning through the solution of 𝑂𝑇	(𝑍!, 𝑍"). The unsupervised learning objective 
of 𝑂𝑇	(𝑍!, 𝑍")	in Eq. (5) is aiming at minimizing the distances among the corresponding nodes in 𝛱. 
This is because only (i, j) ∈	𝛱	exhibit meaningful structural learning flows, as 𝑓k𝑖𝑗	 > 0. 

Moreover, minimizing 𝑂𝑇	(𝑍!, 𝑍"). can resolve the issue of two concerns in existing MVGNNs. First, 
as Z1 and Z2 are the inputs of OT, minimizing 𝑂𝑇	(𝑍!, 𝑍")	is equivalent to the minimization of distance 
between Z1 and Z2. This offers a resolution to the issue of the two modalities falling apart within a 
given feature space. Second, minimizing the distances among the nodes in 𝛱	implicitly mitigates the 
challenge of potential loss of shared knowledge between modalities. 

3.4. End-to-end Training 
The objective function in Eq. (5) is a bilevel optimization problem, where the outer-level optimization 
problem is to optimize model parameters of the graph neural network, and the inner-level one is to 
optimize the structural learning flow between corresponding nodes for computing the optimal 
transport. To optimize this challenging problem, we design an end-to-end training strategy that 
efficiently solves it using the stochastic gradient descent algorithm. Since it is a convex optimization 
problem, we can solve it with an existing convex solver efficiently in the forward pass. However, it 
is challenging to compute the gradient in the backward pass. In particular, when computing the 
gradient of the loss function L with respect to the model parameter 𝜃, we need to compute ><

?(')
>'

. 

Therefore, to enable the end-to-end	training, we need compute ><
?

>'
 efficiently. 

To address this challenge, we construct the Lagrangian function for Eq. (10) as follows:	

𝒯(𝑓(𝜃), 𝜂, 𝜈) 	= 	 𝑐,𝑓(𝜃) 	+	𝜂,𝑃(𝑓(𝜃)) 	+	𝜈,𝑄(𝑓(𝜃))	,																										(11)	 

where η > 0 and ν are dual variables, 𝑃(𝑓(𝜃))	represents the inequality constraints, and 𝑄(𝑓(𝜃)) 
denotes the equality constraints. Then, according to the KKT condition, i.e., 𝐺	 ≜ 𝒯V𝑓k(𝜃), 𝜂v, 𝑣vW		

where 	𝑓k(𝜃), 𝜂v, 	and 𝑣v	denotes the optimal solution of Eq.(11), it is easy to obtain ><
?

>'
	by taking the 

gradient of 𝐺	with respect to 𝜃, which is shown as follows: 
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><?(')
>'

=	−x >@
><?(')

y
A$ >@

>'
                                                      (12) 

where the right-hand side is easy to compute based on Eq. (11) (See Eqs.(9-10) in [41]). As a result, 
by plugging this step into the backpropagation procedure, we train our graph neural network in an 
end-to- end manner. In essence, we enable AMoSL awareness before the fusion layer, tackle the 
fusing challenges, and implicitly enhance the unified representation for better performance in the 
downstream task. 

4. EXPERIMENTS 
To evaluate the effectiveness of our proposed optimal transport-based AMoSL approach in MVGNNs, 
we conduct comprehensive experiments using six benchmark datasets for graph classification. This 
section begins by providing a summary of dataset information and implementation details for our 
experiments. Subsequently, we perform ablative studies to validate each component within our 
method design. Finally, we present a comparative analysis of our proposed method against state-of-
the-art approaches across the six benchmark datasets. 

4.1. Experimental Setup 
Datasets. We use six benchmark datasets for graph classification from TUDatasets [42]. In our 
dataset selection, we span diverse domains, including the recognition of small molecular networks 
such as MUTAG, BZR_MD, PTC_MR, and ER_MD. We also delve into the realm of computer 
vision by considering the recognition of Cuneiform signs, and we explore brain disease prediction, as 
exemplified by KKI. Detailed statistics for these datasets are provided in Table 1. 

In dataset preparation, we begin with single-modality datasets 𝒢 = (𝑋, 𝐴). We use them as the first 
modality 𝒢$ = V𝑋, ℒ$(𝐴)W. To create the second modality, we take a different approach compared to 
techniques like node permutation [23] or the addition of noise [26], which are commonly used in 
MVGNNs for node classification tasks. Instead, we generate a diverse graph topology 𝒮	based on the 
Mahalanobis distances matrix (𝒟	∈	ℝ!×!) between node features with a randomly generated 
transformation matrix (𝑀	∈	ℝ#×#), and normalize it by a standard Gaussian distribution [16]. Such 

that, 𝒮	=	𝑒𝑥𝑝(−𝒟	/2), with 𝑑V𝑥- , 𝑥.W = �V𝑥- −	𝑥.W
,𝑀(𝑥- − 𝑥.), for all 𝑑V𝑥- , 𝑥.W∈	𝒟. As a result, 

the second input graph	𝒢% = V𝑋, ℒ%(𝐴, 𝒮)W	is constructed, featuring a semi-synthetic graph topology. 

Table 1: Statistics of the Datasets 

Datasets Graphs Class Avg. Vertices Features 
MUTAG 188 2 17.93 7 
BZR_MD 306 2 21.30 8 
PTC_MR 344 2 14.29 18 
ER_MD 446 2 21.33 10 
Cuneiform 267 30 21.27 3 
KKI 83 2 26.96 190 

 

Implementation Details and Configurations Input data. We adopt a data partitioning approach 
following prior studies [16][43][44]. Our methodology incorporates a 10-fold cross-validation 
technique. During training and evaluation of our proposed method, we utilize a mini-batch size of 32. 
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The data preprocessing steps are consistent with those outlined in Section 4.1. 

Network Configuration. Network Configuration: In line with the network architecture discussed in 
Section 3.1, each Graph Neural Network (GNN) in our model consists of three graph convolutional 
layers. These layers have embedding dimensions set as 𝑑'!= 16, 𝑑'"	= 64, 𝑑'# 	= 128. ReLU activation 
functions and dropout layers with a rate of 0.1 follow each convolutional layer. We employ 
a convolution operation as described in ChebNet [6], with a Chebyshev degree (𝐾) of 6, or in GCN 
[9]. The fusion layer utilizes modality-wise max pooling to generate a unified representation. In the 
compatibility learning layer, we apply a linear layer with an embedding dimension of 128, followed 
by a ReLU activation layer and a dropout layer with a rate of 0.1. The read-out layer employs graph-
level max pooling among the nodes to create the graph-level representation for class prediction.  

Parameter Tuning. We tune the moment estimate parameter γ in Algorithm 1 over the range {0.01, 0.02, 
. . . , 0.99, 1.} , and the hyperparameter λ in Eq.(5) over the values {5e-2,	1e-3,	5e-3	.	.	.	,	1e-5,	5e-5}. 

Training Configuration. We evaluate the method’s performance using classification accuracy as the 
primary metric. We employ the Adam optimizer with a learning rate of 5e-3 and train for a total of 
200 epochs (T = 200). To solve the Linear Programming (LP) problem in the optimal transport metric, 
we leverage the GPU-accelerated convex optimization solver QPTH [45] and compute gradients 
during the backward pass. 

4.2 Method Analysis 
In this section, we implement various experiments to evaluate the effectiveness of our method design 
by exploring multiple design variants and comparing the performances. 

Comparison of alternative distance metrics for AMoSL. Given that optimal transport indeed serves 
as a distance metric, we conducted a performance comparison of AMoSL when employing alternative 
distance metrics, including Manhattan distance, Euclidean distance, and cosine distance, as 
replacements for the optimal transport metric in Eq.(4). It is important to emphasize that these 
alternative distance metrics assume a constant graph topology, which leads them to solely measure the 
distance between two modalities without accounting for the identification of corresponding nodes. 
Furthermore, these alternatives operate under the assumption of a uniform structural learning flow 
between nodes, without considering feature importance or the significance of contribution to the unified 
representation. As depicted in Table 2, none of the alternative distance methods demonstrated superior 
classification performance compared to optimal transport. This comparison underscores the 
effectiveness of optimal transport as the metric for AMoSL because of its capacity to identify 
corresponding nodes and allocate the optimal structural learning flow between them. 

Table 2: Comparison of different distance metrics 

Datasets 
Distance Metrics 

Manhattan Euclidean cosine Optimal Transport 
MUTAG 88.9 ± 5.4 

80.0 ± 5.9 
67.8 ± 5.0 
78.1 ± 3.1 

83.5 ± 11.8 
𝟖𝟑.𝟑 ± 𝟏𝟒. 𝟑 

88.9 ± 4.9 
81.1 ± 6.8 
71.7 ± 6.2 
79.2 ± 5.3 
83.9 ± 9.1 
82.2 ± 10.2 

88.9 ± 4.9 
81.1 ± 6.4 
72.0 ± 5.1 
79.4 ± 3.9 
85.1 ± 10.3 
80.0 ± 10.9 

𝟗𝟏.𝟎 ± 𝟒.𝟏 
𝟖𝟏.𝟕 ± 𝟓.𝟖 
𝟕𝟓.𝟑 ± 𝟕.𝟗 
𝟖𝟎.𝟏 ± 𝟐.𝟗 
𝟖𝟔.𝟓 ± 𝟖.𝟑 
𝟖𝟑.𝟑 ± 𝟏𝟎.𝟐 

BZR_MD 
PTC_MR 
ER_MD 
Cuneiform 
KKI 
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The Influence of the Adaptive Effect designed in the Objective Function. We also investigate the 
influence of the adaptive effect designed in the objective function, i.e., the reg term in Eq.(3). As 
discussed in Section 3.2, the proposed optimal transport-based AMoSL is adapted to the classifier’s 
performance. However, we also explore a radical scenario where the adaptive effect is eliminated by 
setting the regularization parameter reg = 1, allowing unconditional unsupervised learning on 
structure distance. Table 3 presents the results of structure distance and model performance under this 
radical scenario. In this experiment, the network is set up to use the ChebNet graph convolution 
operation with K = 1, while other configurations remain consistent with those described in Section 
4.1. When structure distance learning is always allowed, we observe significantly small structure 
distances, which excessively emphasize the importance of minimizing distances between modalities. 
This converges the modalities too close in the feature space and hinders MVGNNs from utilizing 
complementary knowledge from modalities. As a result, none of the radical scenarios can train 
classifiers that outperform the proposed method. This underscores the significance of maintaining a 
balance between modalities, thus emphasizing the importance of the adaptive design in the proposed 
method. 

Table 3: Evaluation of the adaptive effect. We use ✗ to represent reg = 1, for methods without the 
adaptive effect, and ✓ to represent methods with the adaptive effect. 

 

AMoSL incorporates different fusion techniques. The fusion layer in MVGNNs plays a pivotal role 
in fusing representations from different modalities, enabling the method to exploit complementary 
and shared knowledge from different modalities. The resulting unified representation can be more 
informative than the individual modality-specific representations for the downstream tasks. In the 
context of our proposed method, we use a modality-wise max pooling technique, which selects the 
element-wise max present among modalities to the unified representation. We find other fusion 
techniques, such as concatenation, which effectively combines all representations along the feature 
dimension, and Hadamard product, which multiplies all representations together, are widely used in 
the domain. In this study, we do not seek to establish the correctness of using the max pooling 
technique but to understand how our approach encompasses alternative fusion techniques. As evident 
from the results presented in Table 4, our approach outperforms MVGNNs without AMoSL, 
suggesting AMoSL alongside different fusion techniques in MVGNNs can enhance the unified 

Datasets Fusion 
Techniques 

Distance Accuracy 
✗ ✓ ✗ ✓ 

MUTAG 
max 

concat 
3.75 
4.87 

14.73 
11.35 

89.4 ± 6.2 
91.0 ± 5.8 

91.0 ± 4.1 
91.5 ± 4.8 

BZR_MD 
max 

concat 
4.00 
4.44 

14.14 
12.55 

81.1 ± 6.4 
81.1 ± 6.0 

81.7 ± 5.8 
82.4 ± 7.0 

PTC_MR max 
concat 

24.25 
4.76 

29.96 
37.84 

72.0 ± 5.5 
71.1 ± 4.7 

75.3 ± 7.9 
71.6 ± 6.0 

ER_MD max 
concat 

3.19 
3.75 

13.39 
11.32 

78.3 ± 4.4 
78.7 ± 4.2 

80.1 ± 2.9 
79.6 ± 5.0 

Cuneiform 
max 

concat 
24.92 
20.11 

30.83 
14.70 

84.6 ± 11.3 
86.5 ± 6.5 

86.5 ± 8.3 
88.0 ± 8.3 

KKI max 
concat 

13.96 
11.26 

35.86 
37.35 

82.2 ± 12.4 
84.4 ± 11.3 

83.3 ± 10.2 
85.6 ± 13.2 
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representation to a more accurate classifier. 

Table 4: Comparison of different fusion techniques. We compare methods with/without 
the proposed optimal transport-based AMoSL under different fusion techniques. The 

performance differences that exceed 1% are denoted with a single asterisk (*), while those 
surpassing the 2% threshold are marked with a double asterisk (**). 

 
Datasets With 

AMoSL? 

 Fusion Techniques  
max-pooling   concatenation          Hadamard Product 

MUTAG ✗ 
✓ 

93.62 ± 4.58 91.52 ± 5.33 94.15 ± 4.96 
94.74 ± 4.70* 93.62 ± 5.15** 94.15 ± 4.37 

BZR_MD ✗ 
✓ 

72.16 ± 4.67 72.85 ± 7.35 71.87 ± 7.88 
74.79 ± 4.50** 75.19 ± 6.60** 74.91 ± 6.44** 

PTC_MR ✗ 
✓ 

80.56 ± 4.01 79.85 ± 2.96 78.03 ± 4.15 
81.60 ± 3.43* 81.65 ± 4.18* 80.56 ± 3.76** 

ER_MD ✗ 
✓ 

81.38 ± 7.32 80.73 ± 5.78 79.71 ± 5.20 
82.62 ± 7.50* 83.31 ± 7.01** 82.02 ± 5.61** 

Cuneiform ✗ 
✓ 

88.33 ± 6.20 88.75 ± 5.25 87.22 ± 6.75 
89.49 ± 5.96* 89.86 ± 5.30* 88.75 ± 5.99* 

KKI ✗ 
✓ 

81.11 ± 12.20 81.11 ± 14.95 82.22 ± 11.33 
86.67 ± 12.96** 83.33 ± 12.42** 87.78 ± 10.48** 

 
4.3. Comparison with State-of-the-art Methods 
The experimental results for graph classification are presented in Table 5. We observe that our method 
consistently outperforms all baseline methods across all datasets. In the following, we analyze the 
results in two scenarios, providing further evidence for the effectiveness of the proposed method. 

Comparison with single-view methods. First, we evaluate the performance of ChebNet and GCN, 
both renowned as foundational methods in the GNN domain. Their popularity arises from the 
simplicity of construction and efficient learning, especially in the case of GCN. Our findings 
demonstrate that the classification accuracy achieved by ChebNet and GCN in learning either the 1st 
or 2nd modality comparable with that of other methods, namely GIN and InfoGraph when handling 
the 1st modality. This highlights our rationale for selecting ChebNet and GCN as the base methods 
in the GNN component of our proposed method. 

Second, we compare our method with single-view methods. Our observations indicate that the 
classifiers trained by our methods, ChebNet-MVGNN+AMoSL and GCN-MVGNN+AMoSL, 
consistently outperform those of the single-view methods. This evidence strongly suggests that a 
unified representation, as trained by our approach, is better for meeting downstream tasks compared 
to modality-specific single-view representations. 

Comparison with multi-view methods. To demonstrate the effectiveness of the proposed Adaptive 
Modality-wise Structural Learning (AMoSL), we conduct a comparative analysis against other Multi-
View Graph Neural Networks (MVGNNs), namely Multigraph and MVAGC. We categorize the 
compared methods into two groups: ChebNet-like and GCN-like, aligning with the respective graph 
convolution operation employed. Our results consistently indicate that AMoSL outperforms both 
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Multigraph and MVAGC. This performance improvement ranges from 0.4% in the Cuneiform dataset 
using GCN-like methods to a substantial 5% increase in classification accuracy for the KKI dataset 
using ChebNet-like methods. These findings provide strong evidence that AMoSL significantly 
enhances the unified representation compared to methods lacking this adaptive modality-wise 
structural learning component. 

It’s noteworthy that most existing studies in this domain predominantly focus on brain networks, and 
unfortunately, we lacked access to domain-specific data and code resources to perform a 
comprehensive comparison in that specific context. 

Table 5: Graph Classification Results in terms of 10-fold Average Accuracy 

 
5. CONCLUSION 
This paper introduces a novel approach for Multi-view Graph Neural Networks (MVGNNs), centered 
around optimal transport-based AMoSL. It encompasses both network construction and objective 
function design, aiming to tackle the complex challenges posed by fusing, particularly in scenarios 
with unclear inter-modality correlations, in terms of labeling variability and node correspondence 
neglect. Our approach jointly trains graph embedding and MoSL, leveraging an efficient optimization 
technique that facilitates end-to-end training. We conduct a comprehensive evaluation of the design 
within our proposed method, and the results demonstrate its superiority in training improved graph 
classifiers compared to existing approaches. 
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Method 
Datasets 

MUTAG BZR_MD PTC_MR ER_MD Cuneiform KKI 

GIN (1st modality)[12] 90.5 ± 7.4 66.3 ± 11.3 71.5 ± 8.2 68.1 ± 6.1 - 80.6 ± 17.6 

InfoGraph (1st modality)[46] 91.4 ± 0.1 79.4 ± 0.1 72.1 ± 0.1 78.2 ± 0.1 88.4 ± 0.1 65.6 ± 0.2 

ChebNet (1st modality) [6] 91.5 ± 5.8 78.7 ± 6.5 70.4 ± 5.0 78.0 ± 4.4 87.0 ± 5.1 78.9 ± 12.6 
ChebNet (2nd modality) [6] 92.6 ± 4.8 79.0 ± 8.7 69.0 ± 4.9 76.9 ± 4.6 87.9 ± 5.1 81.1 ± 13.2 
ChebNet-Multigraph [43] 93.1 ± 4.7 81.6 ± 7.2 73.6 ± 2.7 79.6 ± 4.2 88.7 ± 6.0 83.3 ± 11.4 
ChebNet-MVAGC [16] 93.6 ± 4.6 81.4 ± 7.3 72.2 ± 4.7 80.6 ± 4.0 88.3 ± 6.2 81.1 ± 12.2 
ChebNet-MVGNN+AMoSL 94.7 ± 4.7 82.6 ± 7.5 74.8 ± 4.5 81.2 ± 3.4 9.5 ± 6.0 86.7 ± 12.9 

GCN (1st modality) [9] 89.9 ± 4.9 79.3 ± 6.5 73.4 ± 6.8 79.8 ± 4.2 88.7 ± 6.5 82.2 ± 11.3 
GCN (2nd modality) [9] 89.9 ± 4.9 78.7 ± 6.8 72.6 ± 7.8 79.8 ± 3.1 88.7 ± 5.6 78.9 ± 16.1 
GCN-Multigraph [43] 91.5 ± 3.4 79.4 ± 7.3 74.3 ± 4.7 79.0 ± 4.0 88.4 ± 5.4 81.1 ± 12.2 
GCN-MVAGC [16] 91.0 ± 4.1 79.7 ± 5.4 72.2 ± 5.6 81.0 ± 4.1 89.1 ± 5.4 84.4 ± 10.2 
GCN-MVGNN+AMoSL 91.5 ± 4.2 82.7 ± 6.5 74.6 ± 7.3 82.5 ± 3.3 89.5 ± 4.9 85.6 ± 10.0 
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