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ABSTRACT 
 
In this paper we review different popular optimization algorithms for machine learning 

models, we then evaluate the model performance and convergence rates for each optimizer 

using a multilayer fully connected neural networks. Using sequential dataset of index 

returns (time-series data) spanning over of 20-years, we demonstrate Adam and RMSprop 

optimizers can efficiently solve practical deep learning problems dealing with sequential 

datasets. We use the same parameter initialization when comparing different optimization 

algorithms. The hyper-parameters, such as learning rate and momentum, are searched over 

a dense grid and the results are reported using the best hyper-parameter setting. 
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1. INTRODUCTION 
 
Most machine learning problems once identified and formulated can be solved as optimization 

problems which makes optimization an integral component of machine learning (Sun & et. al). 

Optimization algorithms form the basis on which machine learning models can learn through 

experience and memory. The goal of machine learning models is to make the model’s predictions 
as close as possible to the actual target values, this is known as minimization of the loss function. 

The optimization algorithms aim to minimize the loss function and find the optimal values for the 

parameters that result in the best performance of the model (Kabaar, 2024). 
 

The rapid growth in the number of datasets and increase in model complexity has led to 

challenges in determining the most optimal algorithm to use since each optimizer has its own 
characteristics, advantages, and limitations, and their performance can differ depending on the on 

the problem at hand, datasets, and the network architecture. Normally experimentation and tuning 

are typically used to determine which optimal algorithm is best applicable to a particular dataset 

(Kabaar, 2024). 
 

In this paper, we review the characteristics, advantages and limitations of optimization algorithms 

and we evaluate the model performance for each optimization algorithm using a 20-year time-
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series of returns from the JSE all share index, we only focus on two deep learning models, the 
recurrent neural network (RNN) and the long-short memory loss model (LSTM) with fully 

connected hidden layers and dense units with activations and dropout rates to compare the 

different optimization algorithms. 

 

2. BACKGROUND 
 

The exponential growth in the amount of data has led to the rapid growth in the use of machine 

learning as a tool to provide solutions to real world problems, these includes solutions in the 
fields of image recognitions used in self-driving cars, generative artificial intelligence such as 

ChatGPT’s, speech recognition, machine translation, recommendation systems, predictive 

analytics etc. 
Neural networks (NNs) have their origin in the study field of human nervous system, known as 

neurology, where researchers were curious on how the human brain and its network of 

interconnected neurons work together. NNs are designed to produce computational 

representations of biological neural network behaviour (Kabaar, 2024). 
 

The architecture of the NNs work in two ways. Firstly, the neuron receives inputs from the 

previous layer or directly from the input data. Each input is multiplied by a weight value, which 
represents the strength or importance of that connection. The weighted inputs are then summed 

together. 

 

Secondly, after the weighted sum, an activation function is applied to introduce nonlinearity into 
the output of the neuron. The activation function determines the neuron’s output value based on 

the summed inputs.  

 
In the training process, the NNs adjusts the weights of its connections to improve its 

performance. An optimization algorithm is required in this process where it computes the 

gradient of the loss function with respect to the network’s weights, allowing the weights to be 
updated in a manner that minimizes the loss function. 

 

NNs are capable to learn and generalize from data and with the development of deep learning, 

due to latest developments in deep learning, NNs have been developed with multiple hidden 
layers making them more suitable for complex artificial intelligent tasks such as image 

recognition, natural language processing (NLP), machine translation etc. 

 
Deep learning models like the recurrent neural networks (RNNs) and convolution neural 

networks (CNNs) are the two popular neural networks (NNs) which play a vital role in machine 

learning. The CNNs are feedforward neural networks with convolution calculation. CNNs have 
been successfully implemented in many fields such as image processing video processing and 

natural language processing (NLP).  

 

RNNs are a kind of sequentialNNs model and very active in natural language processing (NLP). 
RNNs have proven to produce good results in the field of constrained optimization, in such cases 

the parameters of the weights in the RNNs can be learned by optimization algorithms which can 

find optimal solutions according to the trajectory of the state solution(Sun & et. al). 
 

LSTM is a special type of Recurrent Neural Networks (RNN) with a broad range of applications 

including time series analysis, document classification, speech, and voice recognition.the LSTM 

can solve the long-term dependence problem of the data which can be a limitation for the RNNs. 
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3. OPTIMIZATION ALGORITHMS 
 
Gradient descent 

 

Gradient descent is the most frequently used optimization algorithm used to minimize the loss 

function of a model. It serves as the fundamental optimization for first-order optimizations 
methods used in machine learning. In simpler words, gradient refers to a slope of a surface, to get 

the lowest point in the surface one must continually tilt or descend the slope. 

 
In deep learning models like neural networks, the gradient descent optimization works by 

updating the network’s weights and biases in the direction opposite to the gradient of the loss 

function with respect to the parameters from the objective function (Kabaar, 2024). 
 

The advantage of this method is that the solution is global when the objective function is convex. 

The disadvantage is that in each parameter update, gradients of total samples need to be 

calculated, so the calculation cost is high (Sun & et. al). 
 

Stochastic Gradient Descent 

 
Stochastic gradient descent (SGD) is an iterative optimization algorithm normallyimplemented 

for training machine learning models, it is a variant of gradient descent that randomly selects a 

single training example or a mini batch of examples to compute the gradient and update the 

parameters. It provides a computationally efficient way and introduces noise in the training 
process, which can reduce local minima and find better global optima (due to its stochastic 

nature) (Kabaar, 2024). 

 
The advantage of this algorithm is that the calculation time for each update does not rely on the 

total number of training samples, and results in saving thecomputation cost. It can improve 

generalization by exposing the model to different training examples in each iteration, thereby 
reducing overfitting (Kabaar, 2024). 

 

The disadvantage is that it is difficult to choose an appropriate learning rate, and using the same 

learning rate for all parameters is not effective. The learning rate will be oscillating in the later 
training stage of some adaptive methods which may lead to the problem of non-converging (Sun 

& et. al). This challenge of SGD is normally solved by introducing momentum: a method that 

helps accelerate SGD in the relevant direction and dampens oscillations (Ruder, 2017). 
 

Adaptative Gradient Descent (AdaGrad) 

 
Adagrad is a gradient-based optimization that works by adapting the learning rate to the 

parameters, performing larger updates for less frequent and smaller updates for frequent 

parameters. Dean et al. (2012), results showed that the Adagrad vastly improved the robustness of 

SGD and it well suitable for training large-scale neural networks at Google and performed good 
image recognition on YouTube. 

 

The advantage of the Adagrad’s optimizer is that it removes the need to manually tune the 
learning rate whereas most optimizers use a default value of 0.01. The disadvantage of the 

Adagrad optimizer is its accumulation of the squared gradients in the denominator, that is, since 

every added term is positive, the accumulated sum keeps growing during training. This then leads 

to the learning rate diminishing and consequently becoming infinitesimally small, at which point 
the algorithm is can no longer absorb additional information (Ruder, 2017). 
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Root Mean Squared Propagation (RMSProp)/AdaDelta 

 

RMSprop and Adadelta have both been developed independently around the same time stemming 

from the need to resolve Adagrad’s radically diminishing learning rates (Ruder, 2017). The 
RMSprop works by adjusting the learning rate for each parameter based on the mean of the 

recent squared gradients. It calculates an exponentially weighted moving average of the squared 

gradients over time (Ruder, 2017). 
 

The advantage of the RMSprop is that it improves the ineffective learning rate problem in late-

stage gradient descent, the disadvantage being that in the late training stage the updateprocess 
may be repeated around thelocal minimum a challenge which can be eliminated by introducing 

momentum technique. 

 

Adaptive moment estimation (Adam) 
 

This is an optimization method for efficient stochastic optimization that only requires first-order 

gradients with less memory requirement. The algorithm calculates individual adaptive learning 
rates for different parameters from estimates of first and second moments of the gradients; the 

name Adam is derived from adaptive moment estimation (Kingman & Lei Ba, 2015). 

 
This optimization method was designed to combine two popular optimization methods, namely, 

the Adagrad, which functions well with sparse gradients, and the RMSProp method which works 

well in on-line and non-stationary settings(Kingman & Lei Ba, 2015). Also, the Adam optimizer 

adds a bias-correction and momentum to RMSprop which allows it to perform slightly better than 
the RMSprop at the later stage of training (Ruder, 2017). 

 

Adam’s advantages are that the magnitudes of parameter updates are invariant to rescaling of the 
gradient, its step sizes are approximately bounded by the step size hyperparameter, it does not 

require a stationary objective and it normally performs a form of step size adaptation (Kingman 

& Lei Ba, 2015).The method was designed for machine learning problems with large datasets 

and/or high-dimensional parameter spaces. 
 

4. DATASET AND EXPERIMENTATION 
 

The data considered for this is the time series data of index returns over the past 20-years from 
the JSE All Share Index (. JALSH) prices obtained from the eikon refinitiv platform.  

 

We perform a 90/20 train-test-split where 90% of the data i.e., 2004/07/31 to 2021/12/31 is 
reserved for training the model so that it understands the neural network representation to predict 

the future values and the 10% of the data i.e., 2022/01/31 to 2023/12/31, is reserved for testing 

the model’s performance on the data it has never seen before.  

 

In simple terms in this study, we use a deep learning model to forecast T+1 return, 𝑅𝑡+1, of the 

JSE all share index in a monthly time frame. This is our independent variable. We do this by 

using the last 240 monthly returns of the index. This being our independent variable. In machine 
learning we divide four datasets called the train-test split. 

 

Firstly, we have the x-test dataset, which is the in-sample set of features (i.e., independent 

variables) that explain the variations of the variable that you want to forecast. They are the 
predictors. Secondly, we have the y-train dataset, the in-sample set of dependent variables (i.e., 

the right answers) that you want the model to calibrate its forecasting function on. 



Computer Science & Information Technology (CS & IT)                                    177 

 
 

 
Thirdly, we have the x-test dataset, the out-of-sample set of features that will be used as a test of 

the model to see how it performs on this never-before-seen data. Lastly, we have the y-test 

dataset which contains the real or actual values that the model must approach. In other words, 

these are the right answers that will be compared with the model’s forecasts. 
 

Let 𝑅𝑡+1 ∈  ℝ𝑇×1 be a logarithm return on a JSE all share market index, 𝑋𝑡 ∈  ℝ𝑇×𝑝 be a high 

dimensional set of predictor variables. In this case 𝑋𝑡 is formed from the last 20-year monthly 
returns series and follows a vector autoregressive model VAR(1). The predictors are extracted 

from the index return series set with the dual goal of good out-of-sampleprediction and in-sample 

model fit, the mean squared error (MSE) is the model performance metric used for the out-of-

sample predictor performance. In this study the model follows an autoregressive formulation: 
 

𝑅𝑡+1 = 𝑐 + 𝛽1𝑋𝑡 +  𝛽2𝑋𝑡 + ⋯ + 𝛽𝑛𝑋𝑘 + 𝜀𝑡+1 … (1) 

𝑋𝑡 = 𝑐 + 𝛽1𝑋𝑡−1 + 𝛽2𝑋𝑡−2 + ⋯ + 𝛽𝑛𝑋𝑡−𝑘 + 𝜀𝑡 
 

Extending this to deep learning, which is a data reduction method that uses L layers of hidden 

predictors which can be highly non-linear, we get the model form:In this case𝑅𝑡+1is a linear 

additive combination of input variables 𝑋𝑡 and latent factors 𝐹𝑡, 
 

𝑋𝑡 = 𝛾 + 𝛾1𝑋𝑡−1 + 𝛽𝑓𝐹𝑡 + 𝜀𝑡 … (2) 

𝐹𝑡 = 𝐹𝑊,𝑏(𝑋𝑡) 

𝐹𝑊,𝑏 = 𝑓1
𝑊,𝑏 + 𝑓2

𝑊,𝑏° … °𝑓𝐿
𝑊𝐿 ,𝑏𝐿  

𝑓𝑊𝐿 ,𝑏𝐿 (𝑍) = 𝑓𝑙(𝑊𝑙𝑍 + 𝑏𝑙), ∀≤ 𝑙 ≤ 𝐿 

 

Where𝐹: ℝ𝑇×𝑝 → ℝ𝑇×1is a multivariate data reduction map represented as a deep learner.Deep 

learning will estimate coefficient 𝛾and latent factors, 𝐹𝑡, jointly.Where(𝑊, 𝑏) are weights and 

offsets to be trained. Here  𝜀𝑡are the usual idiosyncraticpricing errors.𝐹𝑡is constructed as a 

composition of univariate semi-affine functions and our choice for activation function is the 

rectified linear unit𝑅𝑒𝐿𝑈(𝑥). This led to Deep ReLU networks which are mostly used in the 

application of image processing and gaming.  

 
To train the model, we need a loss function to minimize the prediction error, the commonly used 

loss function is the mean squared error (MSE) of the in-sample fit of�̂�𝑡+1 

𝐿 =
1

𝑇
∑(𝑋𝑡+1 − �̂�𝑡+1)

𝑇
(𝑋𝑡+1 − �̂�𝑡+1) + 𝛼𝛾(𝛽, 𝑊, 𝑏)

𝑇

𝑡=1

… (3) 

 

Where 𝛼𝛾(𝛽, 𝑊, 𝑏) is the regularization penalty to induce the predictor selection and avoid 

model overfitting and 𝛼 controls the amount of regulation. 
 

In our experiments, we made model choices that are consistent with previous publications in the 

area; a Simple RNN and LSTM neural networks model with two fully connected hidden layers 
with hidden units each and ReLU, tanh and sigmoid activation are used for this experiment with 

random choices of minibatch sizes. We compare the effectiveness of optimization algorithm of 

the first order methods on multi-layer neural networks trained with dropout noise. 
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5. RESULTS 
 

Model evaluation metrics: 
 
Model evaluation deals with the algorithm’s performance in its forecasts, we evaluate the model 

using the loss function, which is simply a mathematical calculation that measures the difference 

between the predictions and the real (test) values. We measure this using the accuracy metrics as 
defined below: 

 

Accuracy also known as the hit ratio in finance, measures the percentage number of correct 

predictions relative to the total number of predictions.  
 

Directional accuracy refers to how accurately model predict the future movement direction of 

index returns. It is measured using the confusion matrix (Tsai & Wang, 2009). A confusion 
matrix shows the number of Type I and Type II errors, together with the number of correct 

forecasts. In this case, a Type I error is called as a downward movement in price when an 

increase is forecast (i.e. a false positive), and a Type II error is called as an upward price 
movement when a decrease is forecast (i.e. a false negative). Then correct forecasts are also split 

into true positives and true negatives as illustrated by the table below: 

 

Table 1: Confusion matrix 
 

 

Actual Direction 

 

  Up Dow 

Predicted Direction 

Up 
True 
Positive 

False 
Positive  

(Type I 
error) 

Down 

False 
Negative True 

Negative (Type II 
Error) 

 

Root mean squared error (RMSE): which is the squared root of the average of the squared 

differences between the predicted and actual values (MSE). 

 
Model bias refers to the directional tendency of algorithms, often caused by structural or external 

factors, where one trading direction is favored over the other, quantified by the ratio of bullish 
signals to bearish signals; an ideal bias of 1.00 indicates a balanced trading system: 

 

𝑚𝑜𝑑𝑒𝑙 𝑏𝑖𝑎𝑠 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑢𝑙𝑙𝑖𝑠ℎ 𝑠𝑖𝑔𝑛𝑎𝑙𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑒𝑎𝑟𝑖𝑠ℎ 𝑠𝑖𝑔𝑛𝑎𝑙𝑠
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Figure 1: Model performance results for Adam optimizer 

 

 
 

Figure 2: Model performance results for rsmpop optimizer 

 

 
 

Figure 3: Model performance results for Adagrad optimizer 
 

 
 

Figure 4: Model performance results for Sgd optimizer 
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Figure 5: Training loss/cost of the optimizers. 

 

 
 

Figure 6: forecast result of the JSE All Share Index using the LSTM with adam optimizer. 

Intepretation of results: 

 

The LSTM model (figure 1) achieved its best results with a train-test-split of 90%, 164 hidden 

layers, Adam optimizer, batch size of 127, and 555 epochs. The model showed high accuracy on 
the training data (100%) and reasonable accuracy on the test data (70.83%), with low root mean 

square error (RMSE) on both sets. The model bias of 1.0 indicates a balanced trading system, 

while the directional accuracy of 73.91% suggests a slightly favorable direction in predictions. 

The results were similar with the RMSprop (figure 2) optimizer with a difference in hyper-
parameter setting.  

 

The Adagrad and SGD (figure 3 & 4) optimizers did not do quite well when dealing with the 
index returns as the dataset. In figure 5, the adam converges at a faster rate and has a better 

performance, much better than the adagrad and sgd by wide margin. 

 
In summary, Adam performed equal or slightly better than RMSProp, regardless of hyper-

parameter setting and better than the adagrad and sgd by a wide margin. The RMSprop and Adam 

are similar algorithms that do well in handling sequential datasets. As Kingman & Lei Ba (2019) 
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showed that Adam slightly outperforms the RMSprop towards the end of theoptimization as 
gradients become sparser due to its bias-correction technique. 

 

The model using adagrad and sgd might require further tuning of hyper-parameters to achieve 

good model performance. In figure 6, shows the forecast result of the JSE All Share Index 
showing the in and out sample predictions and a 12-month ahead forecast from the multilayer NN 

model. 

 

6. CONCLUSION 
 

We have compared and reviewed the characteristics, advantages, and limitations of optimization 

algorithms. The results showed that the Adam optimizer together with the RMSprop are well 

suited for handling sequential data like the time-series of index returns with minimum tuning and 
hyper-parameter as both optimizations minimize the training cost. In ending, Adam is likely the 

best overall choice when dealing with sequential datasets. 
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