

David C. Wyld et al. (Eds): AdNLP, CDKP, NCO, SAI, MLT, Signal, SOFT, ICAITA, CMC - 2024

pp. 173-181, 2024. CS & IT - CSCP 2024 DOI: 10.5121/csit.2024.141015

A REVIEW OF OPTIMIZATION ALGORITHMS

IN DEEP LEARNING MODELS FOR

IMPROVING THE FORECASTING ACCURACY

IN SEQUENTIAL DATASETS WITH

APPLICATION IN THE SOUTH

AFRICANSTOCK MARKET INDEX

Sanele Makamo

Benguela Global Fund Managers

ABSTRACT

In this paper we review different popular optimization algorithms for machine learning

models, we then evaluate the model performance and convergence rates for each optimizer

using a multilayer fully connected neural networks. Using sequential dataset of index

returns (time-series data) spanning over of 20-years, we demonstrate Adam and RMSprop

optimizers can efficiently solve practical deep learning problems dealing with sequential

datasets. We use the same parameter initialization when comparing different optimization

algorithms. The hyper-parameters, such as learning rate and momentum, are searched over

a dense grid and the results are reported using the best hyper-parameter setting.

KEYWORDS

Machine learning, deep learning, neural networks, optimization algorithms, loss function.

1. INTRODUCTION

Most machine learning problems once identified and formulated can be solved as optimization

problems which makes optimization an integral component of machine learning (Sun & et. al).

Optimization algorithms form the basis on which machine learning models can learn through

experience and memory. The goal of machine learning models is to make the model’s predictions
as close as possible to the actual target values, this is known as minimization of the loss function.

The optimization algorithms aim to minimize the loss function and find the optimal values for the

parameters that result in the best performance of the model (Kabaar, 2024).

The rapid growth in the number of datasets and increase in model complexity has led to

challenges in determining the most optimal algorithm to use since each optimizer has its own
characteristics, advantages, and limitations, and their performance can differ depending on the on

the problem at hand, datasets, and the network architecture. Normally experimentation and tuning

are typically used to determine which optimal algorithm is best applicable to a particular dataset

(Kabaar, 2024).

In this paper, we review the characteristics, advantages and limitations of optimization algorithms

and we evaluate the model performance for each optimization algorithm using a 20-year time-

http://airccse.org/cscp.html
http://airccse.org/csit/V14N10.html
https://doi.org/10.5121/csit.2024.141015

174 Computer Science & Information Technology (CS & IT)

series of returns from the JSE all share index, we only focus on two deep learning models, the
recurrent neural network (RNN) and the long-short memory loss model (LSTM) with fully

connected hidden layers and dense units with activations and dropout rates to compare the

different optimization algorithms.

2. BACKGROUND

The exponential growth in the amount of data has led to the rapid growth in the use of machine

learning as a tool to provide solutions to real world problems, these includes solutions in the
fields of image recognitions used in self-driving cars, generative artificial intelligence such as

ChatGPT’s, speech recognition, machine translation, recommendation systems, predictive

analytics etc.
Neural networks (NNs) have their origin in the study field of human nervous system, known as

neurology, where researchers were curious on how the human brain and its network of

interconnected neurons work together. NNs are designed to produce computational

representations of biological neural network behaviour (Kabaar, 2024).

The architecture of the NNs work in two ways. Firstly, the neuron receives inputs from the

previous layer or directly from the input data. Each input is multiplied by a weight value, which
represents the strength or importance of that connection. The weighted inputs are then summed

together.

Secondly, after the weighted sum, an activation function is applied to introduce nonlinearity into
the output of the neuron. The activation function determines the neuron’s output value based on

the summed inputs.

In the training process, the NNs adjusts the weights of its connections to improve its

performance. An optimization algorithm is required in this process where it computes the

gradient of the loss function with respect to the network’s weights, allowing the weights to be
updated in a manner that minimizes the loss function.

NNs are capable to learn and generalize from data and with the development of deep learning,

due to latest developments in deep learning, NNs have been developed with multiple hidden
layers making them more suitable for complex artificial intelligent tasks such as image

recognition, natural language processing (NLP), machine translation etc.

Deep learning models like the recurrent neural networks (RNNs) and convolution neural

networks (CNNs) are the two popular neural networks (NNs) which play a vital role in machine

learning. The CNNs are feedforward neural networks with convolution calculation. CNNs have
been successfully implemented in many fields such as image processing video processing and

natural language processing (NLP).

RNNs are a kind of sequentialNNs model and very active in natural language processing (NLP).
RNNs have proven to produce good results in the field of constrained optimization, in such cases

the parameters of the weights in the RNNs can be learned by optimization algorithms which can

find optimal solutions according to the trajectory of the state solution(Sun & et. al).

LSTM is a special type of Recurrent Neural Networks (RNN) with a broad range of applications

including time series analysis, document classification, speech, and voice recognition.the LSTM

can solve the long-term dependence problem of the data which can be a limitation for the RNNs.

Computer Science & Information Technology (CS & IT) 175

3. OPTIMIZATION ALGORITHMS

Gradient descent

Gradient descent is the most frequently used optimization algorithm used to minimize the loss

function of a model. It serves as the fundamental optimization for first-order optimizations
methods used in machine learning. In simpler words, gradient refers to a slope of a surface, to get

the lowest point in the surface one must continually tilt or descend the slope.

In deep learning models like neural networks, the gradient descent optimization works by

updating the network’s weights and biases in the direction opposite to the gradient of the loss

function with respect to the parameters from the objective function (Kabaar, 2024).

The advantage of this method is that the solution is global when the objective function is convex.

The disadvantage is that in each parameter update, gradients of total samples need to be

calculated, so the calculation cost is high (Sun & et. al).

Stochastic Gradient Descent

Stochastic gradient descent (SGD) is an iterative optimization algorithm normallyimplemented

for training machine learning models, it is a variant of gradient descent that randomly selects a

single training example or a mini batch of examples to compute the gradient and update the

parameters. It provides a computationally efficient way and introduces noise in the training
process, which can reduce local minima and find better global optima (due to its stochastic

nature) (Kabaar, 2024).

The advantage of this algorithm is that the calculation time for each update does not rely on the

total number of training samples, and results in saving thecomputation cost. It can improve

generalization by exposing the model to different training examples in each iteration, thereby
reducing overfitting (Kabaar, 2024).

The disadvantage is that it is difficult to choose an appropriate learning rate, and using the same

learning rate for all parameters is not effective. The learning rate will be oscillating in the later
training stage of some adaptive methods which may lead to the problem of non-converging (Sun

& et. al). This challenge of SGD is normally solved by introducing momentum: a method that

helps accelerate SGD in the relevant direction and dampens oscillations (Ruder, 2017).

Adaptative Gradient Descent (AdaGrad)

Adagrad is a gradient-based optimization that works by adapting the learning rate to the

parameters, performing larger updates for less frequent and smaller updates for frequent

parameters. Dean et al. (2012), results showed that the Adagrad vastly improved the robustness of

SGD and it well suitable for training large-scale neural networks at Google and performed good
image recognition on YouTube.

The advantage of the Adagrad’s optimizer is that it removes the need to manually tune the
learning rate whereas most optimizers use a default value of 0.01. The disadvantage of the

Adagrad optimizer is its accumulation of the squared gradients in the denominator, that is, since

every added term is positive, the accumulated sum keeps growing during training. This then leads

to the learning rate diminishing and consequently becoming infinitesimally small, at which point
the algorithm is can no longer absorb additional information (Ruder, 2017).

176 Computer Science & Information Technology (CS & IT)

Root Mean Squared Propagation (RMSProp)/AdaDelta

RMSprop and Adadelta have both been developed independently around the same time stemming

from the need to resolve Adagrad’s radically diminishing learning rates (Ruder, 2017). The
RMSprop works by adjusting the learning rate for each parameter based on the mean of the

recent squared gradients. It calculates an exponentially weighted moving average of the squared

gradients over time (Ruder, 2017).

The advantage of the RMSprop is that it improves the ineffective learning rate problem in late-

stage gradient descent, the disadvantage being that in the late training stage the updateprocess
may be repeated around thelocal minimum a challenge which can be eliminated by introducing

momentum technique.

Adaptive moment estimation (Adam)

This is an optimization method for efficient stochastic optimization that only requires first-order

gradients with less memory requirement. The algorithm calculates individual adaptive learning
rates for different parameters from estimates of first and second moments of the gradients; the

name Adam is derived from adaptive moment estimation (Kingman & Lei Ba, 2015).

This optimization method was designed to combine two popular optimization methods, namely,

the Adagrad, which functions well with sparse gradients, and the RMSProp method which works

well in on-line and non-stationary settings(Kingman & Lei Ba, 2015). Also, the Adam optimizer

adds a bias-correction and momentum to RMSprop which allows it to perform slightly better than
the RMSprop at the later stage of training (Ruder, 2017).

Adam’s advantages are that the magnitudes of parameter updates are invariant to rescaling of the
gradient, its step sizes are approximately bounded by the step size hyperparameter, it does not

require a stationary objective and it normally performs a form of step size adaptation (Kingman

& Lei Ba, 2015).The method was designed for machine learning problems with large datasets

and/or high-dimensional parameter spaces.

4. DATASET AND EXPERIMENTATION

The data considered for this is the time series data of index returns over the past 20-years from
the JSE All Share Index (. JALSH) prices obtained from the eikon refinitiv platform.

We perform a 90/20 train-test-split where 90% of the data i.e., 2004/07/31 to 2021/12/31 is
reserved for training the model so that it understands the neural network representation to predict

the future values and the 10% of the data i.e., 2022/01/31 to 2023/12/31, is reserved for testing

the model’s performance on the data it has never seen before.

In simple terms in this study, we use a deep learning model to forecast T+1 return, 𝑅𝑡+1, of the

JSE all share index in a monthly time frame. This is our independent variable. We do this by

using the last 240 monthly returns of the index. This being our independent variable. In machine
learning we divide four datasets called the train-test split.

Firstly, we have the x-test dataset, which is the in-sample set of features (i.e., independent

variables) that explain the variations of the variable that you want to forecast. They are the
predictors. Secondly, we have the y-train dataset, the in-sample set of dependent variables (i.e.,

the right answers) that you want the model to calibrate its forecasting function on.

Computer Science & Information Technology (CS & IT) 177

Thirdly, we have the x-test dataset, the out-of-sample set of features that will be used as a test of

the model to see how it performs on this never-before-seen data. Lastly, we have the y-test

dataset which contains the real or actual values that the model must approach. In other words,

these are the right answers that will be compared with the model’s forecasts.

Let 𝑅𝑡+1 ∈ ℝ𝑇×1 be a logarithm return on a JSE all share market index, 𝑋𝑡 ∈ ℝ𝑇×𝑝 be a high

dimensional set of predictor variables. In this case 𝑋𝑡 is formed from the last 20-year monthly
returns series and follows a vector autoregressive model VAR(1). The predictors are extracted

from the index return series set with the dual goal of good out-of-sampleprediction and in-sample

model fit, the mean squared error (MSE) is the model performance metric used for the out-of-

sample predictor performance. In this study the model follows an autoregressive formulation:

𝑅𝑡+1 = 𝑐 + 𝛽1𝑋𝑡 + 𝛽2𝑋𝑡 + ⋯ + 𝛽𝑛𝑋𝑘 + 𝜀𝑡+1 … (1)

𝑋𝑡 = 𝑐 + 𝛽1𝑋𝑡−1 + 𝛽2𝑋𝑡−2 + ⋯ + 𝛽𝑛𝑋𝑡−𝑘 + 𝜀𝑡

Extending this to deep learning, which is a data reduction method that uses L layers of hidden

predictors which can be highly non-linear, we get the model form:In this case𝑅𝑡+1is a linear

additive combination of input variables 𝑋𝑡 and latent factors 𝐹𝑡,

𝑋𝑡 = 𝛾 + 𝛾1𝑋𝑡−1 + 𝛽𝑓𝐹𝑡 + 𝜀𝑡 … (2)

𝐹𝑡 = 𝐹𝑊,𝑏(𝑋𝑡)

𝐹𝑊,𝑏 = 𝑓1
𝑊,𝑏 + 𝑓2

𝑊,𝑏° … °𝑓𝐿
𝑊𝐿 ,𝑏𝐿

𝑓𝑊𝐿 ,𝑏𝐿 (𝑍) = 𝑓𝑙(𝑊𝑙𝑍 + 𝑏𝑙), ∀≤ 𝑙 ≤ 𝐿

Where𝐹: ℝ𝑇×𝑝 → ℝ𝑇×1is a multivariate data reduction map represented as a deep learner.Deep

learning will estimate coefficient 𝛾and latent factors, 𝐹𝑡, jointly.Where(𝑊, 𝑏) are weights and

offsets to be trained. Here 𝜀𝑡are the usual idiosyncraticpricing errors.𝐹𝑡is constructed as a

composition of univariate semi-affine functions and our choice for activation function is the

rectified linear unit𝑅𝑒𝐿𝑈(𝑥). This led to Deep ReLU networks which are mostly used in the

application of image processing and gaming.

To train the model, we need a loss function to minimize the prediction error, the commonly used

loss function is the mean squared error (MSE) of the in-sample fit of�̂�𝑡+1

𝐿 =
1

𝑇
∑(𝑋𝑡+1 − �̂�𝑡+1)

𝑇
(𝑋𝑡+1 − �̂�𝑡+1) + 𝛼𝛾(𝛽, 𝑊, 𝑏)

𝑇

𝑡=1

… (3)

Where 𝛼𝛾(𝛽, 𝑊, 𝑏) is the regularization penalty to induce the predictor selection and avoid

model overfitting and 𝛼 controls the amount of regulation.

In our experiments, we made model choices that are consistent with previous publications in the

area; a Simple RNN and LSTM neural networks model with two fully connected hidden layers
with hidden units each and ReLU, tanh and sigmoid activation are used for this experiment with

random choices of minibatch sizes. We compare the effectiveness of optimization algorithm of

the first order methods on multi-layer neural networks trained with dropout noise.

178 Computer Science & Information Technology (CS & IT)

5. RESULTS

Model evaluation metrics:

Model evaluation deals with the algorithm’s performance in its forecasts, we evaluate the model

using the loss function, which is simply a mathematical calculation that measures the difference

between the predictions and the real (test) values. We measure this using the accuracy metrics as
defined below:

Accuracy also known as the hit ratio in finance, measures the percentage number of correct

predictions relative to the total number of predictions.

Directional accuracy refers to how accurately model predict the future movement direction of

index returns. It is measured using the confusion matrix (Tsai & Wang, 2009). A confusion
matrix shows the number of Type I and Type II errors, together with the number of correct

forecasts. In this case, a Type I error is called as a downward movement in price when an

increase is forecast (i.e. a false positive), and a Type II error is called as an upward price
movement when a decrease is forecast (i.e. a false negative). Then correct forecasts are also split

into true positives and true negatives as illustrated by the table below:

Table 1: Confusion matrix

Actual Direction

 Up Dow

Predicted Direction

Up
True
Positive

False
Positive

(Type I
error)

Down

False
Negative True

Negative (Type II
Error)

Root mean squared error (RMSE): which is the squared root of the average of the squared

differences between the predicted and actual values (MSE).

Model bias refers to the directional tendency of algorithms, often caused by structural or external

factors, where one trading direction is favored over the other, quantified by the ratio of bullish
signals to bearish signals; an ideal bias of 1.00 indicates a balanced trading system:

𝑚𝑜𝑑𝑒𝑙 𝑏𝑖𝑎𝑠 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑢𝑙𝑙𝑖𝑠ℎ 𝑠𝑖𝑔𝑛𝑎𝑙𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑒𝑎𝑟𝑖𝑠ℎ 𝑠𝑖𝑔𝑛𝑎𝑙𝑠

Computer Science & Information Technology (CS & IT) 179

Figure 1: Model performance results for Adam optimizer

Figure 2: Model performance results for rsmpop optimizer

Figure 3: Model performance results for Adagrad optimizer

Figure 4: Model performance results for Sgd optimizer

180 Computer Science & Information Technology (CS & IT)

Figure 5: Training loss/cost of the optimizers.

Figure 6: forecast result of the JSE All Share Index using the LSTM with adam optimizer.

Intepretation of results:

The LSTM model (figure 1) achieved its best results with a train-test-split of 90%, 164 hidden

layers, Adam optimizer, batch size of 127, and 555 epochs. The model showed high accuracy on
the training data (100%) and reasonable accuracy on the test data (70.83%), with low root mean

square error (RMSE) on both sets. The model bias of 1.0 indicates a balanced trading system,

while the directional accuracy of 73.91% suggests a slightly favorable direction in predictions.

The results were similar with the RMSprop (figure 2) optimizer with a difference in hyper-
parameter setting.

The Adagrad and SGD (figure 3 & 4) optimizers did not do quite well when dealing with the
index returns as the dataset. In figure 5, the adam converges at a faster rate and has a better

performance, much better than the adagrad and sgd by wide margin.

In summary, Adam performed equal or slightly better than RMSProp, regardless of hyper-

parameter setting and better than the adagrad and sgd by a wide margin. The RMSprop and Adam

are similar algorithms that do well in handling sequential datasets. As Kingman & Lei Ba (2019)

Computer Science & Information Technology (CS & IT) 181

showed that Adam slightly outperforms the RMSprop towards the end of theoptimization as
gradients become sparser due to its bias-correction technique.

The model using adagrad and sgd might require further tuning of hyper-parameters to achieve

good model performance. In figure 6, shows the forecast result of the JSE All Share Index
showing the in and out sample predictions and a 12-month ahead forecast from the multilayer NN

model.

6. CONCLUSION

We have compared and reviewed the characteristics, advantages, and limitations of optimization

algorithms. The results showed that the Adam optimizer together with the RMSprop are well

suited for handling sequential data like the time-series of index returns with minimum tuning and
hyper-parameter as both optimizations minimize the training cost. In ending, Adam is likely the

best overall choice when dealing with sequential datasets.

REFERENCES

[1] Dean J, Corrado G.S, Monga R., Chen K.,Le D.M, Mao M.Z., Ranzato M.A., Senior A., Tucker P.,

Yang K., and NgA.Y., (2012) Large Scale Distributed Deep Networks. NIPS 2012: Neural

Information Processing Systems, pages1–11.

[2] Kingma D.P., and Lei Ba J., Adam, (2015) A Method for Stochastic Optimization. International

Conference on Learning Representations, pages 1–13.

[3] Kaabar S., (2024) Deep Learning for finance:Creating Machine and Deep Learning Models for
Trading in Python. O’Reilly Media, Inc.

[4] Ruder S., (2017) An overview of gradient descent optimization algorithms. Insight Centre for Data

Analytics, NUI Galway Aylien Ltd., Dublin.

[5] Shaziya H., Zaheer R., (2019)A Study of the Optimization Algorithms in Deep Learning.

International Conference on Inventive Systems and Control (ICISC 2019).

[6] Sun S, Cao Z., Zhu H., and Zhao J., (2019) A Survey of Optimization Methods from a Machine

Learning Perspective. https://doi.org/10.48550/arXiv.1906.06821.

[7] Tsai, C., and Wang S., (2009). Stock price forecasting by hybrid machine learning techniques.

Proceedings of the International Multiconference of Engineers and Computer Scientists. Vol. 1. 755,

p. 60.

AUTHORS

Sanele Makamo (Quantitative Risk Analyst) is a quant risk analyst with over 7 years’ experience in the

South African and Global financial markets. He holds a BSc Mathematics and Statistics degree; he is

currently pursuing his postgraduate studies in financial mathematics and intends to complete his master’s in

risk analytics by year 2025. His research interests focusis in using machine learning models for solving

problems in risk analytics. He currently has more than 15 published research papers.

© 2024 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

https://airccse.org/

