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Abstract. With the proliferation of deep learning, steganography tech-
niques can now leverage neural networks to imperceptibly hide secret
information within digital media. This presents potential risks of propa-
gating malware covertly. We present an innovative deep-learning frame-
work that embeds malware within images for stealthy distribution. Our
methodology transforms malware programs into image representations
using a specialized neural network. These image representations are then
embedded seamlessly within innocuous cover images using an encoding
network. The resulting stego images appear unmodified to the naked
eye. We develop a separate network to extract the malware from stego
images. This attack pipeline allows the malware to bypass traditional
signature-based detection. We experimentally demonstrate the efficacy
of our approach and discuss its implications. Our framework achieves
high-fidelity reconstruction of embedded malware programs with mini-
mal distortions in the cover images. We also analyze the impact of loss
functions on concealment and extraction capacity. The proposed tech-
nique represents a significant advancement in AI-driven steganography.
By highlighting an intriguing attack vector, our work motivates research
into more robust defensive solutions. Our study promotes responsible
disclosure by releasing the attack implementation as open-source.

1 Introduction

As the internet has enabled rapid global sharing of data and code, it
has also given rise to major risks of malware propagation. Traditional
antivirus software relies on signature-based detection, which novel
malware strains can evade. This has led to an arms race between
malware creators and security analysts. To spread malware covertly,
attackers have increasingly leveraged steganography – the technique
of hiding secret data within ordinary content.
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Basic steganographic methods like least significant bit (LSB) em-
bedding [1] are now obsolete, as steganalysis techniques easily detect
them. Hence, there is a need for more advanced and robust steganog-
raphy that can bypass modern detection methods. Recent years have
seen the application of deep learning to steganography, but there
is still limitations in embedding capacity, imperceptibility, and ste-
ganalysis resistance [2–5].

This paper proposes an innovative deep-learning framework for
malware propagation via steganography. Our technique allows high-
capacity embedding of executable malware within digital images
while preserving visual fidelity. By transforming the malware into
image representations using a specialized neural network, we can
embed it seamlessly within innocent cover images.

This allows us to evade antivirus checks and deliver the concealed
malware to unsuspecting victims. Such potent attacks demonstrate
the need for advances in steganalysis to match increasingly sophisti-
cated steganography. Our work highlights the growing threat of AI-
enabled, malware-spreading steganographic techniques. We believe
analyzing this attack strategy will motivate further research into
more robust defensive solutions. By releasing our code and models,
we hope to encourage investigation into AI for both cyber offense
and defense.

Attack lifecycle

The interaction between the attacker and the victim (referred to as
the ’user’) includes preparing the malicious code, hiding it in an im-
age, and placing it in something tempting to convince the victim to
download it. The attacker’s main objective is to cleverly hide the
malware within images so that the alterations are practically invis-
ible to the naked eye. On the other side, we have an unsuspecting
user. This individual or system becomes the recipient of the contam-
inated model, often without their knowledge. The following steps
outline the attack scheme (see illustration in Figure 1):
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Fig. 1. Systematic illustration of the attack lifecycle, providing a comprehensive un-
derstanding of the attacker and victim’s steps. The explanation of the different steps
is detailed in Section 3

Attacker side

1. Develop the neural network model: This neural network
model has a unique capability: it can seamlessly embed malware
into images and later retrieve the hidden malware from them.

2. Embed the malicious code: The input malware (‘secret’) is
embedded as an image within another innocent image (‘cover’)
using the neural network.

3. Write an intriguing article: The article is not just informative;
it is also persuasive. It explains the workings of this special neural
network model in a way that piques curiosity and encourages
readers to explore further.
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4. Make the model and the image publicly accessible: After
creating sufficient buzz through the article, the attacker makes
this model available online. An example of such a published ar-
ticle can be found in Figure 3.

Fig. 2. Example blog post used to distribute the attack.

User side

1. Download the intriguing model: This can happen by actively
searching for and downloading the model described in the at-
tacker’s article or through an automatic update process (e.g., a
link “Download the Model Here” as appeared in the middle of
Figure 3).

2. Execute the model locally with the malicious image: The
code of the deep learning network, the OCR, and the stego-image
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are in the hands of the user. The user executes the code to study
deep learning, interpreting the malware code, which runs locally
on the user’s machine (e.g., “Step-by-Step Guide” in the example
blog post at Figure 3).

The article aims to present a scheme of attack using steganog-
raphy to encourage research and development of advanced tools to
protect against this attack. For this purpose, all the code for creat-
ing the neural networks and preparing the attack will be available,
subject to ethical restrictions.

Fig. 3. Example blog post used to distribute the attack.
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2 Related Work

Recent years have witnessed the popularity of internet-based code-
sharing platforms, notably Git [6], where users and programmers
exchange code globally. According to a statistical analysis by Kin-
sta [7], Git has garnered an impressive user base of approximately 100
million developers worldwide, thereby highlighting its significance in
global code-sharing activities. The platform attracts an estimated 14
million visitors daily and nearly 96.4 million daily page impressions,
further substantiating its robust utilization in the global developer
community.

As the use of code from the internet is so widespread, antivirus
software is also evolving to prevent infection by various viruses. Con-
sequently, it was suggested to hide the code in images using steganog-
raphy and machine learning methods to circumvent antivirus protec-
tions.

Steganography, an ancient practice rooted in concealing a text
within plain view, has evolved significantly over time. Its origins
can be traced back to the 15th century when the physical hiding of
messages was commonplace [8]. In the present era, modern steganog-
raphy focuses on discreetly conveying digital messages [9, 10]. Work-
ing covertly, embedding confidential information within unsuspect-
ing cover images is characteristic of steganography and presents it
as a captivating field of inquiry, particularly within the realm of
cybersecurity [11].

Steganography methods can be grouped into three categories:
traditional methods [12] that do not involve machine learning or
deep learning algorithms, methods based on Convolutional Neural
Networks (CNNs) [8, 13], and methods based on Generative Ad-
versarial Networks (GANs) [14, 15]. One traditional method, Least
Significant Bits (LSB) [1] substitution, converts secret information
into binary form and then replaces the least significant bits of the
cover image with the binary data. Another traditional method, Pixel
Value Differencing (PVD) [16], takes the difference between consec-
utive pixels to determine where to hide secret bits while maintain-
ing the consistency of the cover image. In recent years, research on
steganography has benefited from developing deep learning meth-
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ods, including CNNs and GANs, and their use in steganography and
steganalysis [2–5].

Initially, the encoder-decoder architecture was used for data com-
pression, with the encoder compressing the input into a more minia-
ture representation and the decoder accurately reconstructing the
original input. However, this architecture is not ideal for generative
models as the encoder output is not regulated. Variational Autoen-
coders (VAEs) presented in [17] address this regulation problem by
combining the encoder and decoder modules with modifications to
the penultimate layers. VAEs and Generative Adversarial Networks
(GANs) have been used for data generation, such as images and text,
and have also been applied in media steganography and creating fake
content for deception.

In a paper by Wang et al. [18], a novel approach is introduced for
stealthily transmitting malware through a neural network model.
The malware is inserted into neurons, enabling its covert delivery
with minimal or no effect on the neural network’s performance. Ad-
ditionally, the unchanged structure of the model allows it to bypass
antivirus detection.

Baluja [8] uses deep neural networks to place a color image within
another image of the same size. He utilized two full-colored images of
resolution 64×64. However, this low resolution presents a significant
challenge when the objective is to conceal an image containing code.
As such, in its original form, [8] architecture does not offer an ade-
quate solution when the goal is to hide a script code. As illustrated
in Figure 4, the secret image is not effectively hidden. Following, we
describe how we tackled this challenge and how we could hide the
malicious code using a deep neural network based on [8] idea.

3 Attack Description

The architecture we use in this study, grounded in the autoencoder
methodology, comprises three key networks: a Preparation Network,
a Hiding Network, and a Revealing Network. The Preparation Net-
work is a neural network designed for image preparation. The Hiding
Network assumes the responsibility of concealing the images. Lastly,
the Revealing Network is employed to disclose hidden or secret im-
ages.
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Fig. 4. Example of a stego image generated using the original model proposed by
Baluja et al. [8], showcasing the limited effectiveness of the model in concealing a
complex secret image at 64× 64 resolution.

Our first step was enabling the model to handle high-resolution
images, specifically 256 × 256. We used the ImageNet [19] dataset
for the cover images and created a new dataset for the secret images
(namely, the code) as follows. An input random Python codes (re-
flecting the possible malware) are transformed into an image using
the Python PIL library [20]. This results in a new dataset compris-
ing 10000 images. These images called the ‘secret’, are designed to
conceal the malware within a cover image (see examples of those two
sets in Figure 5).

The secret image is fed into the Preparation Network. This net-
work transforms the color-based images into a representation with
three channels of useful features.

This transformation is achieved by applying three convolutional
layers with 3 × 3, 4 × 4, and 5 × 5 filters and three input channels
each. Additionally, three more convolutional layers are used with
the same filters but with 65 channels each. The output from these
layers, combined with the cover image, is subsequently processed by
the Hiding Network.

The architecture responsible for concealing the extracted features
from the secret within the cover image is the Hiding Network. This
process is accomplished by performing fusion operations, where the
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Fig. 5. Random Python codes example (on the left) and colored images example from
ImageNet [19] (on the right) that were used for training the Preparation Network and
the Hiding Network, respectively.

feature maps are concatenated and passed through three convolu-
tional layers, each with 68 channels. The cover image contributes
an additional three channels. This operation is repeated five times,
adding up to 15 layers. This flow is visually summarized in Figure 6.

The Revealing Network or decoder receives the stego image, which
contains the concealed secret, and reconstructs the secret from it (see
Figure 7 ). This reconstruction process involves passing the stego
image through three convolutional layers, each with three channels
(RGB). Subsequent fusion operations are performed, and the data
is passed through three layers using the previously mentioned fil-
ters. This operation is repeated four times, adding 12 layers to the
network. Finally, the decoder applies a final convolutional layer with
3x3 filters and 65 input channels to generate the reconstructed secret
image.

To extract the code from the image and execute it within the
decoder application, we employed the Tesseract OCR [21]. Both the
Revealing Network and the OCR are published to the user within
the deep-learning tutorial as plain code. Note that these codes are
neutral, identified by the anti-virus as legitimate, and would easily
execute on the user’s machine. The overall scheme of the attack
lifecycle is given in Figure 1.

Computer Science & Information Technology (CS & IT)                                    19



Fig. 6. The attacker initially takes a code represented as an image with text; the
first, preparation network extracts features from this image. Following this, the hiding
network takes in the features from the first network and the carrier image in which it
conceals these features. The output of this network is a stego image.

Tuning the stenographic success

To quantify the success of the stenographic hiding and correctly
define the parameters to achieve good hiding, an error function must
be defined that quantifies the difference between the cover, the secret,
the container, and the revealed images.

The following error function proposed by Baluja et al. [8] which
designed to minimize the difference between the cover image and the
stego image and between the secret image and the revealed secret
image. The error terms corresponding to these differences are com-
bined in a weighted sum, with the weight for the reconstruction error
of the secret image being determined by a hyperparameter, beta (β).
The error function is given by:

E(c, c′, s, s′) =
1

m · n

m∑
i=1

n∑
j=1

(c(i, j)−c′(i, j))2+β· 1

m · n

m∑
i=1

n∑
j=1

(s(i, j)−s′(i, j))2

(1)

In the above equation, c and c’ are the cover and stego images,
s and s’ are the secret and revealed secret images, and m and n are
the dimensions of the images. The term β is a weighting parameter
that determines the weight given to the reconstruction error of the
secret image.
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Fig. 7. The decoder’s functionality of taking the stego image and extracting the con-
cealed code via the Revealing network. A user-derived script subsequently takes this
revealed secret to the OCR, which identifies the covert code embedded within the im-
age, and relays it back. Following this, the script executes the hidden code.

In our research, modifications were made to this error function
that impact all three networks: Preparation Network, Hiding Net-
work, and Revealing Network. This was achieved by leveraging both
the error rates of the secret and cover images. We suggest the fol-
lowing error function:

Er(c, c
′, s, s′) =

(1− β)

m · n

m∑
i=1

n∑
j=1

(c(i, j)−c′(i, j))2+
β

m · n

m∑
i=1

n∑
j=1

(s(i, j)−s′(i, j))2

(2)

The key distinction between the two error functions is the appli-
cation of the weighting parameter, β, to the error term related to
the difference between the cover and stego images and (1−β) to the
error term related to the difference between the secret and revealed
secret images. This modification gives the attacker more control over
the relative importance of the two error terms. The flexibility to ad-
just these weights may lead to improved outcomes, depending on the
specific application or use case, as shown in our results below.

Computer Science & Information Technology (CS & IT)                                    21



Table 1. Error for different weighting parameter, β
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4 Results

Train evaluation

We initiated the training phase for our model, which consisted of a
bunch of epochs. In this context, an epoch refers to one full cycle
through the entire training dataset. We selected a batch size of 32
images, a standard choice that balances computational efficiency and
learning stability. This decision was also influenced by the capacity
of our available hardware, specifically the 16 GB of RAM.

For our experiments, we utilized cover images from ImageNet [19],
a large-scale image database commonly used in machine learning.
Alongside these, we generated an additional 10,000 images featuring
randomly arranged text that emulated a code structure. The model
was trained on these images, each with dimensions of 256x256. We
created each batch by randomly selecting 14 images as the secret
and 14 as the covers. With 164 batches in each epoch, our model
was set to run for a total of 200 epochs.

In our training process, we experimented with various values of
the weighting parameter, β, which adjusts the trade-off between hid-
ing the secret image and preserving the visual quality of the cover
image. The outcomes of these experiments were compared to identify
the most effective value.

We utilized the Adam optimizer [22], known for its effectiveness
in training deep learning models, to optimize the learning process.
Additionally, we implemented a learning rate scheduler to adjust
the learning rate during the training process dynamically. This was
based on whether the model’s validation loss plateaued, a strategy
designed to help the model converge further or potentially escape
local minima.

After several hours of running the training process, we success-
fully obtained a fully trained model. The evolution of the error func-
tion can be observed in Table 1, which charts the error against the
number of completed epochs. The first row relates to the weighted
difference between the cover and the stego images, namely

(1− β)

m · n

m∑
i=1

n∑
j=1

(c(i, j)− c′(i, j))2
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. The second row relates to the weighted difference between the
secret (i.e., the malware code) and the revealed images, namely
β

m·n
∑m

i=1

∑n
j=1(s(i, j) − s′(i, j))2. The last row indicates the whole

error function as appears in Equation 2.

Table 2. The error at the end of the training process

β weighted cover difference weighted secret difference Error function

0.25 0.00048 0.00033 0.00044

0.48 0.00058 0.00020 0.00040

0.6 0.00059 0.00016 0.00033

In the experiments, we varied the weighting parameter beta in
three different models to study its impact on steganography. Beta
was set to 0.25, 0.48, and 0.6, respectively. In Table 2, we present the
performance of the models at the end of the trained process (i.e., the
mean error values of the last batch) for each beta. (Due to the lack
of space and the similar behavior, Table 1 presents only results for
β = 0.25, 0.48, but in Table 2, the results for β = 0.6 also appear).

Visual example

To get a visual demonstration of the visibility of the stego image and
the quality of the ability to extract the code from it, Fig 8 show an
example of a particular cover image and a secret image.

In Table 3, we exhibit the model results for this example using
various values for the weighted error parameter (β). The ‘Container’
row demonstrates the resulting stego images post the encoding pro-
cess, where the secret images have been embedded into the cover
images. The ‘Revealed’ row shows the secret images posted after the
decoding process.

The visual inspection of the revealed images and the compari-
son with the original secret images give an insight into the model’s
performance. Also, the stego images, when compared to the cover
images, indicate the degree of perceptual transparency achieved in
the process. The results inferred that a beta value of 0.25 yielded
the most optimal outcome, offering a good balance between the con-

24                                      Computer Science & Information Technology (CS & IT)



Fig. 8. Cover image and secret image (malware code) examples.

Table 3. Performance of the trained models for the input images of Fig 8 with varying
beta parameters
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cealment of the secret image and the perceptual transparency of the
stego image.

Figure 9 visually represents the pixel-by-pixel difference between
an example of a Cover and a Container images, calculated using the
Mean Squared Error (MSE). This measure quantifies the discrepancy
between the corresponding pixels in both images by computing the
squared differences. Visually, we can observe that while increasing
beta, the values of the secret image stand out more in the MSE
matrix (for β = 0.6, one can actually read part of the secret code),
even though it is difficult to recognize that code in the container
image.

β = 0.25 β = 0.48 β = 0.6

Fig. 9. Visual representation of the Mean Squared Error (MSE) computed difference
between the Cover and Container images for β = 0.25, 0.48 and 0.6.

5 Antivirus Detection Efficacy

In our research, we sought to evaluate the effectiveness of modern an-
tivirus tools in detecting malware embedded within images through
steganography. For this purpose, we utilized VirusTotal [23], an ac-
claimed online multi-engine analysis service. Our methodology in-
volved submitting images containing concealed malware to VirusTo-
tal, which integrates over 70 antivirus scanners, including industry
leaders such as BitDefender, ESET-NOD32, Kaspersky, McAfee, Mi-
crosoft Defender, and Symantec.

The outcome of this evaluation was significant—none of the an-
tivirus scanners could detect the hidden malware, with each report-
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ing the files as ‘Undetected’ (see Figure 10. This result clearly indi-
cates the challenges that current antivirus technologies face against
advanced steganography techniques used for malicious purposes.

These findings point to an urgent need for the cybersecurity in-
dustry to adapt and develop more sophisticated detection methods
to effectively identify and counteract the use of steganography in
malware distribution. The apparent vulnerability of existing security
infrastructures to such stealth techniques highlights the importance
of continuous research and innovation in cybersecurity.

6 Discussion and Conclusions

In this study, we investigated the use of deep neural networks for em-
bedding and extracting secret information within images. The pri-
mary objective is to extract text from the secret image while ensuring
that the secret remains invisible in the stego image. We introduced
a novel approach that allows control over the weight distribution be-
tween cover and secret losses using beta values, enabling us to strike
a balance between successful extraction and concealment.

Through rigorous experimentation and analysis, we evaluated the
performance of our model on different beta values. The table above
summarizes the results obtained for each beta, including the cover
image, secret image, stego image, revealed secret, and the difference
between the cover and stego images.

Our findings demonstrate that by adjusting the beta value, we
can effectively control the visibility of the secret image in the stego
image. Lower beta values prioritize the cover loss, resulting in a stego
image where the secret remains hidden. On the other hand, higher
beta values assign more weight to the secret loss, allowing for the
successful extraction of the embedded text.

Furthermore, we emphasize that our focus was primarily on the
successful extraction of text from the secret image, rather than achiev-
ing a perfect representation of the secret image. This approach strikes
a balance between covert communication and maintaining the con-
fidentiality of the hidden information.

It is worth noting that for betas 0.6 and 0.48, the difference im-
age reveals parts of the embedded secret. Although not easily visible
in the stego image itself, these partial revelations in the difference
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image could potentially pose a security risk in certain scenarios. How-
ever, it is important to consider the overall objective of extracting
text from the secret image, which was successfully achieved without
compromising the secrecy of the hidden information.

By achieving the objective of extracting text from the secret im-
age while ensuring its invisibility in the stego image, our research
contributes to the field of steganography. It provides a valuable tool
for applications requiring secret communication and data hiding.

Overall, our study highlights the effectiveness of deep neural net-
works in achieving the dual objective of successfully extracting text
from the secret image and concealing the secret in the stego image.
These findings have significant implications for the development of
secure communication systems and provide a foundation for further
advancements in the field of steganography.
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