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ABSTRACT 
 
The Internet of Things (IoT) forms intelligent systems, such as smart cities and factories, 

to enhance productivity and provide revolutionary and automated services to end-users 
and organisations. An IoT ecosystem requires more dynamics and heterogeneity with 

advanced privacy preservation. Federated Learning (FL)addresses the challenge of 

maintaining data privacy using a privacy-preserving sharing mechanism instead of 

transmitting raw data. However, the latest cyber threats cause privacy and security 

breaches. This study systematically analyses federated learning-based privacy-preserving 

methods in IoT systems. A standard IoT architecture with possible privacy threats is 

illustrated. Also, Federated Learning schemes and their taxonomies are discussed in a 

privacy-preserving manner, with initial experiments proving the significance of FL- 

based privacy preservation in IoT environments. This finds acceptable noise addition in 

differential privacy by keeping higher testing accuracy in different settings to enhance 

privacy preservation of federated learning. Various Federated Learning schemes, 

challenges and future research directions are covered. 
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1. INTRODUCTION 
 
The Internet of Things (IoT) represents an embedded giant network interconnected with physical 

objects and people, with its devices exchanging generated data. IoT is heavily integrated across 

many aspects of modern life, with approximately 7 billion IoT devices connected worldwide [1]. 
These devices have many uses, including as the foundation of smart cities, factories being 

integrated with smart manufacturing, the basis of smart healthcare, and increasing efficiency and 

safety in future airports. Across these application areas, Artificial Intelligence introduces a unique 

deployment for standardising and adding value to IoT. 
 

Over 250 million vehicles become globally connected; moreover, according to Telefonica 

investigation, various vehicles 90% increase from the year 2013 to the year 2020 those are 
connected to the Internet [2]. Similarly, the International Data Corporation (IDC) will expand IoT 

around the US $1.7 trillion by 2024 [3]. However, i-SCOOP reported that global IoT security 

spending will amount to $3.1 billion by 2021. By 2025, the world’s IoT devices are estimated to 
number more than 64 billion, and cost savings are the primary source of revenue for 54% of 

company IoT projects. Also, in every Gartner’s IT Hype cycle [4], predicted that IoT might hold 

market assumptions for 5-10 years. 

http://airccse.org/cscp.html
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The number of connected devices to the network is rising day by day. Hence, the overall 
architecture of IoT must satisfy the rising demand. Researchers are addressing various 

challenging issues related to the effective distribution of IoT with the active data privacy protocol. 

Several application domains are considered to solve those issues in covering the larger area and 

self-adoption. These application domains in the IoT system can be Data-centric, Location-based, 
and Hierarchical-based [5]. With recent computing and communication technology advances, 

around 7 billion IoT devices are connected worldwide [1]. They perform diverse crowd sensing 

tasks. Within 2025, the IoT nodes might take place in a single object; as a result, connected 
device numbers will rise significantly to the Internet [6]. Cisco predicted that around 500 billion 

devices will be added to the network by 2030. 

 
Managing a massive volume of IoT data from all of a network’s knobs is a tedious operation. The 

data centres’ computing efficiency and owner privacy should be considered. Artificial 

Intelligence (AI) solutions for automated self-decision-making and energy efficiency are used to 

address decision-making challenges [5]. Although clients’ data must be protected from snooping 
and meddling, security and privacy are the most essential but open concerns in IoT design. 

Authenticity and the integrity of data should be maintained on the client side. Several 

cryptographic techniques are provided for data authentication. But it retains major privacy and 
security breaches, energy consumption and bandwidth issues [7]. Effective collaboration of IoT 

devices and data uploading to the data centre process faces significant data security and privacy 

concerns in IoT networks. Given this explosive growth and increasing number of uses, there is a 
need to design a secure IoT architecture that satisfies rising demand and protects users’ data 

privacy. To solve the issues of larger areas and self-adaptation, several application domains, 

which can be data-centric, location-based or hierarchical-based, have been considered [5]. 

 
In contrast to centralised machine learning models, federated learning frameworks naturally 

encourage confidentiality and privacy because all data created on an end device does not leave 

that device. In the federated learning system, data owners are not required to make their data 
available to the central aggregator. Instead of sending raw data, this learning process uses a 

sharing model parameter that ensures data protection and privacy at a price that may be much 

higher than the accuracy loss [8]. Using Federated Learning in wireless IoT networks has several 

advantages [9], including local Machine Learning system settings can reduce power consumption 
and wireless bandwidth usage by not exchanging massive amounts of training data; local 

transmission delay can be significantly decreased by calibrating an ML model’s parameters; and 

only the local learning model variables are transferred when Federated Learning is used, and 
training data remains on the edge devices themselves, helping to maintain the privacy of the data. 

However, Federated Learning meets the requirement for computing the IoT data [10]. 

 

1.1. Research Motivation 
 

Multi-node machine learning systems are employed to enhance performance, both by allowing for 
scalable input data volumes and by reducing the number of errors. However, such systems are not 

restricted to using raw data for input. From a privacy perspective, federated learning is a strong 

choice when considering IoT design, as it guarantees raw data’s privacy, trust, confidentiality and 
security. The data’s authenticity and integrity should be maintained on the client’s side. However, 

cloud-based applications provide Machine Learning-based predictive maintenance solutions to 

manage the high levels of heterogeneity and diversity in IoT systems. Centralised systems do 

present an architectural disadvantage from a security perspective. No matter how trusted a 
centralised server is, it still presents concerns for confidentiality, integrity and availability. 

Federated Learning paradigms might be a viable solution if direct data is not shared with a central 

server. In federated learning, devices can run the learning process while charging, connected with 
the network even if not in use and upload learnt model parameters for an update. Although 
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several cryptographic techniques, anonymisation, randomisation, perturbation, condensation etc., 
are available for privacy preservation [1][5]. 

 

Significant privacy breaches, energy consumption, and bandwidth are still issues. The effective 

collaboration of IoT devices for uploading data to a data centre for processing faces significant 
concerns regarding data security and privacy. IoT data is increasing exponentially due to its cost 

and open vulnerability. Therefore, monitoring the relevant network using IDS/IPS, SIEM tools, 

and other advanced security analytics is necessary to detect malicious activity in networks, apps 
and data. However, a Federated Learning-enabled privacy-preserving framework is capable of 

handling this challenge. 

 
Recently, all interconnected IoT devices have various protocols and platforms. Data-driven 

machine learning has been widely applied to develop inference- and decision-making in wireless 

communications and IoT systems. These ever-broadening sectors require the raw data for 

processing to transmit to central machine learning. As user privacy and data confidentiality are 
significant concerns that are not always considered feasible by different parties and organisations, 

data can be exploited by privacy attacks. Clients’ personal information would be used or abused 

for commercial or political goals without authorisation. 
 

1.2. Key Contributions 
 
Organisations that use IoT systems should incorporate data authentication, access control, attack 

resistance and client privacy in their business activities as added benefits. This necessitates 

addressing privacy issues during learning. This study presents Federated Learning-based privacy-
preserving methods in IoT systems considering the difficulties and significance of designing 

them. The primary contributions are explained as follows. 

 

– We present a standard IoT architecture, elucidating and analysing possible threats and 

providing extensive visualisations of the privacy risks of IoT networks.  

– We discuss federated learning from an IoT perspective with its classifications based on 

different dimensions.  

– We propose a federated learning-enabled privacy-preserving framework for IoT networks, 

with initial experiments demonstrating its significance. 
 

2. RECENT STUDIES RELATED TO FEDERATED LEARNING AND IOT 
 
There are several modern academic analyses evaluating IoT applications and network 

architecture. For example, the authors [11] reviewed the classification of Federated Learning and 

a cloud server design regarding security and privacy. This work explicitly discusses the 

robustness and optimisation schemes of Federated Learning and notes the research challenges and 
future directions of the field. The authors [12] noted that it categorises attacks against the privacy 

of ML paradigms. Moreover, possible reasons for privacy leakage were explained, and protective 

actions against different attacks were analysed. The authors [13] presented a novel questions-
based taxonomy analysing privacy leakage in FL. Extensive analyses of data security and privacy 

preservation standardisations were studied in [14]. Classifications of the privacy issue regarding 

the life cycles of big data and comparative evaluations of security and privacy preservation were 

also surveyed. 
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2.1. IoT and Security Perspectives 
 

The IoT is a paradigm with the express design of creating smart systems. It has significant 

implementations across several fields, including medical, smart energy, manufacturing, the 
commercial industry, and homes. IoT systems are comprised of sensors, actuators, networking, 

and cloud processing and storage. These systems can transfer data without requiring any human-

to-human or human-to-computer interaction. IoT systems have multiple known privacy issues, 
including dependency on vendors, interoperability and transparency, and lack of consent. Each of 

these needs to be addressed as IoT is projected to expand. 

 

Several IoT architectures have been developed over time. In Figure 1, the latest is compared by 
visualising their possible privacy threats. Due to technological advances, they are continually 

upgraded. 

 

 
 

Fig.1. A comparative Architectures of IoT System with possible Privacy Threats 

 

2.2.Layers of IoT Architecture 
 
The basic IoT architecture includes the following layers:  

 
– Physical layer: This layer comprises a wide range of physical IoT devices and controllers 

responsible for sending and receiving information. Key considerations for this layer include the 
assumption that the significant scale of large-scale heterogeneous devices accommodates multiple 

open and proprietary standards for communication.  

 

– Connectivity Layer: This layer is responsible for the reliable and timely transmission of 
information from devices across a network. However, other referenced IoT architectures contain 

network layers that perform similar communications. One of the goals of connectivity in the IoT 

reference model is to enable a current network to handle communications and processing using a 
gateway.  

 

– Edge Computing layer: the primary function of this layer is to convert a high volume of 
network data into information for higher-level processing and analysis that makes it suitable for 

storage. It performs evaluation, expansion, reduction, formation, assessment, etc.  

 

– Data Accumulation layer: this layer carries data flows through it at the rate and in the order 
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dictated by the devices that generate them and switches to querybased processing. This is critical 
in linking the differences between real-time networking and non-real-time applications. 

 

– Data Abstraction layer: this layer focuses on presenting data and its storage and is responsible 

for enabling the development of more straightforward, highperformance applications in IoT 
systems. Various IoT devices continue to produce data stored for an event which can increase 

query times.  

 
– Application layer: this layer emphasizes monitoring and controlling models, programming 

patterns and the flexibility of IoT data. It is not required to run at network speeds. Moreover, 

perpendicular markets, the type of device data, and business demand influence it.  
 

– Collaboration and processes layer: The essential characteristics of an IoT system are 

communication and collaboration that involve people and processes. People use programs and 

data to meet their specific requirements. Multiple users frequently use the same program for a 
variety of objectives. This layer empowers them to collaborate and process their work to improve 

it. 

 

2.3. Security and Privacy on IoT Architecture 
 

IoT architectural concepts are based on several factors, including geographic distribution of 
devices, scale, optimisations for speed, network aims and business constraints [15]. One of the 

most popular reference architectures is the Cisco-referenced IoT architecture, which incorporates 

an IoT network’s privacy and security issues. In this model, the following layers are considered: 
identity management (software), authentication/authorisation (software), secure storage (hardware 

& software), tamper-resistant (software), secure communications (protocols and encryption), 

secure network access (hardware & protocols) and secure content (silicon). 
 

Table1. Summary of referenced IoT Architecture 

 

 
 
Table 1 summarises various referenced IoT architectures with their layers and protocol stacks, 

including a four-layered IoT cybersecurity framework and classified 6 IoT cybersecurity attacks. 

IoT architecture is a vast concept. There is no proposed uniform architecture such as IoT Forum 
Architecture with three layers including the transportation layer, Qian Xiaocong, Zhang Jidong 

architecture, Kun Han, Shurong Liu, Dacheng Zhang and Ying Han’s (2012) Architecture 

including tracking and position is discussed in [16]. 
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3. SUBEDGE INTELLIGENCE  
 
Future IoT networks will continue to develop into a converged Cloud-Edge-Terminal ecosystem 

that can support various essential artificial intelligence applications on edge computing devices, 

creating a pervasive Edge Intelligence paradigm to support the intelligent transformation of 

vertical industries and differentiated service innovations. However, privacy preservation, data 
security, and data transmission over IoT networks necessitate building artificial intelligence using 

conventional machine learning techniques in isolated edge units where the distributed data is 

assembled. In this regard, federated learning may take advantage of the computing capacity of 
edge servers and the data gathered by widely scattered edge devices, making it a potential 

solution for applications utilising edge computing and intelligence. 

 

3.1. Federated Learning 
 

The fast development of IoT applications has coincided with an increase in the need for securely 
and reliably learning data in dispersed systems. For efficient data processing, various IoT 

applications are currently choosing distributed ML for which there have been recent 

advancements, i.e., Federated Learning (FL) is preferred for accessing heterogeneous data, 
privacy, security and rights without sharing data. In FL, data is collected and handled locally for 

each user or note. Updated data parameters are transferred from clients to a central aggregator for 

final aggregation. Federated Learning has many advantages over centralised learning in IoT 

systems due to its distributed storage, processing and privacy protection. 
 

TYPES OF FEDERATED LEARNING FL is a potential distributed framework adopted in many 

application settings. Also, it considers a client’s privacy, data size, computation and energy. 
State-of-the-art Federated Learning techniques for optimising resources are roughly partitioned 

into two forms: opaque (or black)-box and transparent (or white)-box forms [17]. 

 

3.2. Opaque-box method 
 

Opaque-box FL methods It has strategies for training tricks, hierarchical aggregation, client 
selection and data reimbursement. 

 

3.3. Transparent-Box Method 
 

It involves the concepts of model compression, feature blend, knowledge extraction and 

asynchronous updating.  
 

However, federated learning can be classified into three types [8].These are Horizontal Federated 

Learning, Vertical Federated Learning, and Federated Transfer Learning, as explained below. 

 
Horizontal Federated Learning In horizontal federated learning, client datasets with the same 

feature spaces across all devices are employed. In Sample-Partitioned Federated Learning, the 

overlapping features from data samples maintained by different participants are used to train a 
model collaboratively. This provides a simple yet more effective solution than the standard 

centralised learning paradigm for preventing private local data from being leaked. 

 
Vertical Federated Learning In Vertical Federated Learning, different datasets with different 

feature spaces jointly train a global model. This feature-partitioned Federated Learning is a 

method for cooperatively training a model using data samples with non-overlapping or partially 

overlapping features maintained by many participants. 
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Federated transfer learning This improves statistical models in a data federation by sharing 
knowledge without violating user privacy and allowing complementary knowledge to be 

transported across the network. It is a predictive model that predicts labels for unlabelled samples 

using feature representations from aligned samples. 

 
1. Centralised federated learning A central server organises all the participating nodes using an 

algorithm during this process. The server is responsible for client selection at the start of 

the training operation and collecting the model’s aggregated updates. The server may 
become a system bottleneck because all the chosen nodes must submit updates to a single 

entity. 

2. Decentralised federated learning In this process, the clients select themselves to receive the 
global model. This avoids the collapse of a particular point during a model exchange 

because the model’s updates are transferred only between connecting nodes without the 

involvement of a central server. However, the network’s topology may influence the 

performance of this learning process. 
3. Heterogeneous federated learning In it, IoT devices act as heterogeneous clients. 

Researchers are now working on the HeteroFL framework for addressing heterogeneous 

clients with varying computational and communication capabilities. In this process, 
heterogeneous local models can be trained with ongoing computational difficulties while a 

global model is generated. 

 

4. FEDERATED LEARNING IN IOT RELATED STUDY AND CHALLENGES 
 
Federated learning approaches have needed to adapt to use within IoT architectures. This is 

necessary given the constraints inherent in IoT environments, including transfer cost, latency, 

privacy and incompatibility [18]. Although Federated Learning is an efficient distributed learning 
process for privacy preservation, it does have limitations, specifically as it creates performance 

and security points of failure as it relies on a single centralised server. Furthermore, it uses 

intelligent IoT devices with high-functioning designs to decrease the number of communication 
rounds during a model’s training where limited IoT devices are not feasible [19]. Typical 

distributed learning systems offer several advantages. A summary view of the Federated learning 

frameworks with advantages from an IoT perspective is presented in Table 2. 

 
Table 2. Federated Learning frameworks in IoT perspective. 
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They have non-independent, identically distributed (Non-IID) training data requiring less IoT 
device communication to preserve privacy. Table 2 presents a summary of Federated Learning 

Personalised frameworks with their advantages and disadvantages in terms of the IoT. Also, while 

most current research focuses on Federated Learning’s convergence time rather than its 

trustworthy global aggregation, an edge aggregator is expected to improve the trustworthiness of 
its framework without compromising the model’s accuracy. 

 

5. PRIVACY PRESERVATION 
 
Privacy preservation is essential for users, clients and service providers. Data may be sourced 

from the IoT, social networks, intelligent business applications, databases, documents, the 

Internet, etc. Such information can include personal or private information derived from it. To 

protect digital asset privacy, cyber security mechanisms are defined as Privacy preservation. 
There are several techniques used to ensure aspects of privacy preservation, and these broadly are 

partitioned into several categories[20]: encryption; perturbation; authentication; differential 

privacy (DP); data distribution; anonymisation (K-anonymity, l-diversity, t-closeness etc.); 
randomisation; Multidimensional Sensitivity Based Anonymisation (MDSBA); condensation; 

cryptographic techniques; and combined lightweight artificial intelligence. 

 
A wide range of research is being undertaken to provide new frameworks and schemes and 

enhance privacy preservation. 

 

Edge intelligence has brought several advantages to IoT infrastructure, including mechanisms to 
preserve privacy using federated learning. Federated learning was developed to enhance the 

intelligent privacy preservation of end-users sensitive information in edge nodes. According to 

their objectives, existing federated learning-based privacy-preserving methods are classified into 
two main categories:  

 

1) data privacy and 2) content privacy[21]. Homomorphic encryption (HE) and secure multiparty 
computing (SMC) are essential for preventing direct access to users’ data and establishing data 

privacy. On the other hand, to ensure content privacy, researchers modify the original data using 

several methods such as DP[22], generalisation and perturbation. 
 
Differential privacy There are approaches in which an eavesdropper or data analyst does not 

determine whether a specific individual’s sensitive data is employed in a computation[23]. In 

contrast, privacy-preservation techniques are strongly motivated by Differential privacy. There 
are several reasons DP is increasing in popularity, including: 

 

1. the ability for DP to protect any individual’s sensitive information without determining an 

attacker’s intention; and 
2. DP is not concerned with what an attacker knows about datasets. Also, data analysts may 

use those datasets because individual information remains protected. 

 
Differential privacy can be described as protecting an individual’s sensitive private information 

through a process that takes that information as input and returns the processed output. DP can be 

achieved through statistical computation, anonymisation techniques, ML, or other methods. It 
might add randomness and/or noises or remove information. Based on our observations, DP can 

be classified as local and global differential privacy, as shown in Figure 2. This figure also 

describes the key features of both differential privacy types. 
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Fig. 2. Differential privacy model with characteristics 

 

Local Differential Privacy A local differential privacy model can be defined as an aggregator that 
cannot retrieve actual data, with every client individually using a differentially private mechanism 

for its data. In this model, every user sends only anonymised data to the aggregator. After 

collecting the anonymised data, the aggregator may compute and disseminate statistics. 
RAPPOR, a system created to capture differential privacy data in Google Chrome, is perhaps the 

most recent and well-known example of this approach. Apple uses it to collect data on the iOS 

keyboard. The benefit of this technique is that it eliminates the requirement for trust because users 
secure their data. Therefore, even if the aggregator is malicious, data remains safe. This model is 

suitable if trust is challenging to obtain, but it has a significant limitation in that anonymising user 

data produces a final dataset that contains considerable noise levels. However, practical 

applications frequently use high values of ϵ to overcome this difficulty. 

 

Global Differential Privacy A global DP model can be defined as one in which only the central 

aggregator can read the true data. The aggregator might be a facility or a research association 
collecting information about individuals. In this model, the aggregator collects real data without 

noise and transforms it using a differential privacy mechanism. It has the one significant 

advantage of accuracy because, as a DP mechanism is applied only once at the end, combining 
more noise is unnecessary to obtain a better result with minimal ϵ. However, a primary concern 

regarding this model is that the central aggregator needs to be trusted; otherwise, all the data can 

be hacked and leaked. The US Census is arguably the best-known real-world illustration of global 

differential privacy. 

 

6. PRIVACY PRESERVATION IN FEDERATED LEARNING IOT PERSPECTIVE 
 

FL was developed to improve the privacy preservation of end-users sensitive information. 
According to the objects to be protected, existing FL-based privacy preserving methods are 

classified into two categories: 1) data privacy and 2) content privacy [24]. Homomorphic 

encryption and secure multi-party computing are essential features for preventing direct access to 

users’ data to establish data privacy. On the other hand, to ensure content privacy, researchers 
modify the original data using several methods, such as DP, generalisation and perturbation. 
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Table 3. Federated Learning Personalized Schemes in Terms of IoT. 

 

 
 
Unauthenticated IoT nodes with anaemic behaviour might cause harm to the global network. A 

lightweight fingerprint Federated Learning approach isolates related devices and eliminates 

hidden or illegal ones from the web. It is also capable of identifying spoofed devices. Federated 
Learning protects privacy in IoT networks by avoiding raw data-sharing in a model’s training. 

However, sensitive information still faces data leakage from the model’s updates. Traditional 

cryptographic methods are inappropriate for solving this problem in distributed IoT settings. Ho-
momorphic encryption enables the discovery of possible cryptographic solutions for a distributed 

model’s transmission. 

 

The complicated heterogeneity of IoT systems poses significant challenges for conventional 
Federated Learning. Researchers are trying to find an intelligent way of solving this heterogeneity 

issue in cloud-edge architectures by providing personalised Federated Learning frameworks [22] 

with new trends of different types for privacy preservation. This literature review introduces a 
new privacy paradigm 

 

 
 

Fig. 3. Summary of IoT-related security and privacy attack issues PTCIA 
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called PTCIA (privacy, trust, confidentiality, integrity and availability) for attacks in IoT 
networks. Its concept combines Data confidentiality, Privacy, and Trust - collectively known as 

DPT [25] and Confidentiality, Integrity, and Availability - the ”CIA triad” [26]. The proposed 

privacy threat paradigm PTCIA (Privacy, Trust, Confidentiality, Integrity, Availability) and their 

threat actions in federated learning from an IoT perspective are shown in Figure 3. 
 

 
 

Fig. 4. Test set accuracy vs. communication rounds with MNIST dataset by tuning Hyperparameters of 

Federated Learning and Privacy Preservation 

 

Federated learning models with differential privacy are implemented and evaluated on the 

MNIST dataset (Modified National Institute of Standards and Technology database) with 

different IoT client numbers C=(10, 50) in both iid and Non-iid with different δ=(0.0001, 0.001) 
noise variation in various iteration I=(150, 200), Learning rate η=(0.1, 0.01), and batch size 

B=(64, 128) in Figure 4. Here we can see that δ=0.001 noise addition in the same IoT client 

number got almost 90% 

 

7. RESEARCH CHALLENGES AND FUTURE DIRECTIONS 

 

Privacy preservation is linked to categorising various privacy threat issues, such as PTCIA, and 

their operations in recent research. Heterogeneity data is generated from questions about an IoT 
system’s node authentication and confidentiality problems related to integrity attacks that illegally 

sniff, steal, and/or modify the original data. The following paragraphs discuss the open challenges 

related to the security and privacy of federated learning in IoT networks. 
 

– Distributed Federated Learning in Edge Computing requires parameter exchanges among the 

edge nodes that consume bandwidth which the Distributed Hierarchical Tensor Deep 
Computation Model tried to prove using the STL-10 dataset. However, it still faces many 

challenges in real-world applications where Federated Learning relies on a server for the 

aggregation of a local model. This model has a scalability issue, and Federated Learning has a 

few constraints, such as slow and unstable communication and varying heterogeneous resources. 
Consensus-based algorithms can be applied to overcome these issues. A deep Federated Learning 

framework ensures the privacy and ownership of users’ sensitive healthcare data and performs 

better using the Atlas Dermatology dataset. However, it is unsuitable for data-sharing as it 
increases a model’s conversion time.  

 

– Handling communication delays between federated learning clients and the central server 

aggregating their models is still under-explored. To overcome this problem, an edge computing-
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based joint client selection and networking scheme for vehicular IoT can be applied. However, it 
needs to hold raw data locally in federated settings. 

 

– Responding to the challenges of long training times and the consumption of a considerable 

amount of communication resources, the researcher proposed resource-efficient federated 
learning with hierarchical aggregation (RFL-HA) methods [27]. Although they are usually 

suitable for only static networks, they could be extended to dynamic ones. 

 
Module-based neural-structure-aware resource management has been proposed to conduct 

resource optimisation. However, this framework supports only model partitioning in terms of 

width, depth, and kernel size. Therefore, sub-model structures that are flexible in these aspects 
can be implemented. 

 

8. CONCLUSION 
 

This paper has discussed Comparative referenced IoT architectures with the categorised PTCIA 
privacy attack paradigm. It presented an overall summary of Federated learning (FL) and its 

categories and investigated the potential privacy threat of federated learning from an IoT 

perspective. Finally, several recent research challenges and their causes were described, and 
recommendations for solving them were provided. Dispersed federated learning will be a crucial 

strategy for future IoT applications involving many end devices. 
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