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ABSTRACT 
 
AI-based learning technologies, especially deep learning, hold significant promise for enhancing 

students’ learning experiences in educational systems. However, providing accurate predictions or 

answers to students’ learning problems through high-performance deep learning models is not 

sufficient for students to achieve effective learning. This study explores Explainable Artificial 

Intelligence (XAI) in reducing students’ cognitive load and improving learning outcomes within 

the realm of object-oriented programming education. Specifically, this study examines the 

application of Gradient Integration to generate coloured code segments associated with code 

errors predicted by a Performer-based deep learning classification model for debugging tasks. 

Thirty-six participants took part in a controlled experiment assessing students’ cognitive load and 

learning performance through the XAI system. They were randomly assigned to a control group 

(N=18) and an experiment group (N=18). The independent-samples Wilcoxon-Mann-Whitney test 
results revealed that the coloured code segments reduce students’ cognitive load (p=0.006) and 

improve their exam scores (p=0.006) significantly. This study contributes to an appropriate 

application of the XAI technique that can reduce students’ cognitive load and improve learning 

outcomes in educational settings. 
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1. INTRODUCTION 
 

Learning technologies, particularly those harnessing deep learning, hold great promise for 

enriching educational experiences [1]. Nevertheless, the integration of deep learning into 
education encounters challenges regarding its efficacy in supporting student learning. Simply 

furnishing precise predictions or solutions to students’ learning queries through high-performing 

deep learning models falls short of ensuring effective learning outcomes. The emergence of 
Explainable Artificial Intelligence (XAI) addresses this issue by endowing intelligent systems 

with the capability to elucidate the reasoning behind their decisions. By employing transparent 

models, educators and students can gain deeper insights into the rationale guiding intelligent 

agents' choices, facilitating personalized recommendations. This fosters greater trust in the 
system and enables tailoring of learning experiences to individual needs. From an educational 

standpoint, the integration of XAI techniques holds substantial promise for enhancing students’ 

learning journeys and mitigating various challenges within the educational landscape. 

http://airccse.org/cscp.html
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One prominent XAI technique encompasses Gradient-based methods, including saliency maps 
and feature importance scores. These methodologies empower researchers and practitioners to 

delve into the intricate mechanisms of deep neural networks. Through scrutinizing the gradients 

of a deep-learning model concerning input features, analysts can discern the significance of each 

feature in shaping the model's output. This transparency proves pivotal as it not only enhances 
comprehension of the model's decision-making but also enables the detection of potential biases, 

thereby fostering a more transparent and equitable utilization of deep-learning models. 

 
Among gradient-based methods, Gradient Integration [2] is distinguished as one of the most 

robust techniques for interpreting decisions made by complex machine learning models. 

Providing a harmonious blend of simplicity and effectiveness, Gradient Integration emerges as an 
attractive option for researchers aiming to enhance interpretability without compromising 

computational efficiency. Furthermore, its visually intuitive nature makes explanations accessible 

to a broader audience, including stakeholders with limited technical expertise, thus fostering 

heightened trust and adoption of AI systems across diverse applications. Consequently, this study 
adopts Gradient Integration as the selected XAI technology to generate color-coded segments of 

code. These segments serve as a scaffolding framework to assist learners in swiftly identifying 

code locations associated with the predictions of deep learning models, thus aiding in 
comprehension. 

 

On the other hand, object-oriented programming (OOP) stands as a fundamental skill in 
programming, having evolved into a paradigm widely embraced by the software industry for 

crafting robust and adaptable software solutions. Among university information-engineering 

departments, introductory courses in OOP are often perceived as challenging and intricate by 

most students. Rectifying errors within OOP code demands a substantial cognitive load alongside 
proficient programming expertise. Hence, the educational focus of this study centres on 

evaluating how explanations provided through XAI techniques, such as Gradient Integration, may 

impact students' learning experiences in OOP, considering cognitive load and learning outcomes. 
This study aims to explore the effects of employing the scaffolding framework facilitated by deep 

learning models using the Gradient Integration technique as an XAI tool to alleviate student 

cognitive load and enhance learning outcomes. Our methodology entails crafting a deep learning 

model based on the Performer architecture, augmented with an explanation module utilizing 
gradient integration to elucidate identified code errors. The incorporation of this XAI technology 

furnishes rationale for the model's predictions by visually pinpointing error locations within the 

code. Consequently, this study revolves around key research inquiries, as articulated below: 
 

(RQ1) How does the transparency mechanism for code errors, employing Gradient Integration, 

impact students' cognitive load? 
 

(RQ2) To what extent does the transparency mechanism for code errors, employing Gradient 

Integration, influence students' learning outcomes? 

 

2. LITERATURE REVIEW 
 

2.1. Deep Learning 
 
Deep learning, a subset of artificial intelligence, harnesses multi-layer neural networks to tackle 

specific learning tasks through the analysis of vast datasets. It has demonstrated success across 

various domains including computer vision, speech recognition, and natural language processing. 
Notably, Transformer-based deep learning models have made remarkable advancements in tasks 

like image/speech recognition and machine translation [3]. However, the traditional Transformer 
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architecture incurs a computational cost of O(L2) when performing attention operations on a 
sequence of length L. Amidst various improved iterations of Transformer, Performer stands out 

as one of the most efficient in terms of both time and space utilization [4]. Leveraging a novel 

attention mechanism known as Fast Attention Via Positive Orthogonal Random Features 

(FAVOR+), Performer provides scalable, low-variance, and unbiased estimation of attention 
values. This is achieved through the computation of kernels represented by sets of random feature 

map decompositions. Wang [5] introduced an efficient inference algorithm utilizing cached 

Performer, capable of generating sequences of length L in O(L) time complexity. This 
breakthrough makes it feasible to implement deep learning models even on resource-limited 

computing environments. Consequently, the Performer architecture has been selected for 

constructing the deep learning model in this study, considering the constraints posed by limited 
hardware resources. 

 

2.2. Explainable AI 
 

The transparency of decision-making in neural models significantly impacts their acceptability in 

educational applications [5]. Explainable AI (XAI) hence becomes crucial because it not only 
aids in understanding model judgments but also improves models by facilitating bias detection 

and providing new insights. Consequently, the transformation of black-box models into 

transparent and interpretable ones has become essential [6][7][8][9][10][11]. Samek et al. [8] 

categorized XAI methods into two types for explaining deep learning model predictions. The first 
type involves developing methods that reveal what the model has learned [10], identifying 

features learned by each neuron. The second type computes the sensitivity of the model's 

prediction to changes in input [11], understanding how input changes affect predictions. 
Montavon et al. [6] provided insights into both methods, emphasizing their contribution to a 

better understanding of deep neural networks. This study focuses on the second attribution 

method so that we can investigate the impact of the model's input on classification decisions. 
Model attribution falls under the category of the second type of Explainable AI methods, 

specifically focusing on quantifying how sensitive the model's predictions are to changes in the 

input. It elucidates the model's behaviour by analysing how alterations in the input correspond to 

variations in the model's predictions. For example, the Integrated Gradients [2] is an attribution 
method used widely in deep learning networks. The gradient reflects the model's sensitivity to 

changes in the dimensions of the input, indicating the importance of each dimensional data. 

Integrated Gradients, aligning with the study's objective, will be used for analysis in this study. 
 

2.3. AI-Based Approaches to Programming Education 
 
AI-based approaches to programming education hold significant potential due to their ability to 

effectively handle code diversity. Several studies have utilized neural networks to provide 

tailored feedback on specific programming skills, such as recurrent programming [13], [14]. 
While the Automatic Program Repairs (APR) technique has found widespread application in the 

software engineering industry, its impact on programming education remains limited. This 

limitation arises from its original design for professional programmers' code, making it less 

suitable for novice students [15]. Embracing a constructivist and student-cantered learning 
framework, intelligent agents can perform data analysis tasks and present information in an 

"intelligent" manner, facilitating students' engagement in critical thinking and uncovering the 

underlying meaning and value within the data. This approach epitomizes human-machine 
collaborative learning. 

 

With the advancements in deep learning technology, the capabilities of intelligent agents in terms 
of automation and autonomy are significantly enhanced [5]. As educational companions, 

intelligent agents endowed with improved automation and autonomy can effectively bolster 
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human learning experiences [16], [17], [18]. However, there remains a notable gap in research 
concerning the effectiveness of integrating deep learning technology within educational settings 

[1]. Recently, considerable attention has been directed towards employing deep learning models, 

such as ChatGPT, for generating natural language feedback on open-ended coding problems. 

This novel approach has sparked considerable interest within the education community. 
Nevertheless, despite these models demonstrating high proficiency in predicting and generating 

feedback in response to student queries, there's a concern that students might not derive 

significant benefits from them, as they might miss out on the critical thinking skills necessary for 
learning through problem-solving. Consequently, these deep learning models should provide 

intelligent scaffolding that aids students' learning processes rather than merely furnishing them 

with answers. 
 

3. METHOD 
 

To address the research inquiries, we initially construct a deep learning model utilizing the 

cached Performer architecture integrated with the Integrated Gradient XAI mechanism. 
Subsequently, we delineate the Integrated Gradient mechanism and the progression of the deep 

learning model designed to assist learners in mastering Object-Oriented Programming (OOP) 

debugging tasks. Following that, we outline the experimental design and the tools employed for 
data analysis. 

 

3.1. Integrated Gradients 
 

Integrated Gradients [2] is an attribution method used widely in deep learning networks. An input 

baseline x' (usually a vector of zeros) is required so that the Integrated Gradients algorithm can 
compute gradients along a linear path from the baseline input to the original input x, according to 

(1), 

 

 
 (1) 

where  denotes the ith dimensional data of the original input, and represents the ith 

dimensional data of the baseline input,  represents a neural network model, and  is the 

gradient of  on the ith dimension of the original input x. This gradient reflects the model's 

sensitivity to changes in the ith dimension of the input, indicating the importance of each 

dimensional data. Integrated Gradients, aligning with the study's objective, is used as the case 
study for its effectiveness in supporting learning programming in this study. 

 

3.2. The Performer-Based Encoder-Classifier Neural Network 
 

A performer-based deep-learning model has been developed to analyse Java code, aiming to 

predict error types and support students in learning Object-Oriented Programming (OOP) design 
principles (see Figure 1). The Encoder is given a Java code and encodes it into a sequence of 

context features. In this study, we adopted a Performer-based encoder with five attention blocks 

and four parallel attention layers or heads. The Classifier is a multiple layer perceptron network 

that predicts multiple error type labels, including 35 error types and the correct one. 
  

The code attributions are generated by the Integrated Gradient method as follows. Since the 

embedding layer lacks the capability to compute gradients for raw source code, the attribution 
process is exclusively conducted on the embedded output derived from the embedding layer. 
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Consequently, attributions of the embedded output are averaged across its embedding dimensions 
for each input token, providing insight into the relevance of the code to the error predictions. 

 

A website deployed the deep learning model was developed using the Flask package, as shown in 

Figure 2. In this website, descriptions of debugging tasks are displayed in the left window, and 
the sample code is displayed in the middle window for editing. Clicking the green Diagnose 

button will submit the code to the server for analysis, and the predicted error types will be 

displayed in the right window. Students can accept or refuse the feedback and submit his/her 
decisions. 

 

 
 

Figure 1.  The encoder-classifier network utilizes Integrated Gradients to determine input attributions. 

 

 
 

Figure 2.  A screenshot showing task descriptions, student codes and system feedback. 

 
The AI system facilitates student learning in programming by providing concise error predictions 

based on the code modifications submitted by students. It empowers students to take charge of 

correcting their code based on their own insights and assessments of the system's predictions. By 

clicking on the error labels presented in the right-hand side window, students can investigate the 
color-coded segments of code associated with each error, with deeper shades of green indicate 

higher relevance (refer to Figure 3). Utilizing these color-coded segments, students analyse 

pertinent sections of code and assess the predicted error descriptions to uncover underlying bugs. 
This process encourages students to autonomously integrate the feedback provided by the system 

into their learning journey without becoming overwhelmed by it. 
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3.3. Model Development 
 

A deep-learning model was first developed based on data collected from Java code submitted by 

students for exercises, quizzes, and exams in an introductory OOP course at a university in 
Taiwan. A total of 330 codes were collected and manually annotated. The codes were randomly 

assigned to humans, with one code annotated by two annotators and proofread against each other. 

Since the GPU hardware device used in this study has limited storage, the code length was 
restricted to 1000 tokens. As a result, we sorted out a total of 35 error types. However, the small 

amount of code is far from the sample size required to train a neural model. Therefore, this study 

adopts the code augmentation method proposed by Wang [[19]] to increase the sample size by 

changing local variable names and randomly reordering statements without affecting the original 
code semantics. In the end, the sample size was increased from 330 to 11200. 

 

 
 

Figure 3.  A screenshot displays an interactive session featuring error predictions and pinpointed error 

locations highlighted by color-coded segments of code. 

 
The data is divided into 80% training data and 20% testing data. The model was trained for 1,000 

epochs, using 20% of the training data as validation. The training process is conducted on the 

Window 10 operating system with an Intel(R) Core (TM) i9-11900K 3.50GHz processor, 128GB 

RAM, and an NVIDIA RTX 3090 with 24GB RAM. We investigate the prediction performance 
of the Performer-based model.  The error type prediction is evaluated by binary accuracy. In 

addition, feedback is collected from users to assess whether they find the code attributions 

helpful, accurate, and aligned with their mental models. 
  

3.4. Experiment Design 
 
This study conducts a human evaluation of the system’s predictions and explanations represented 

as coloured code segments. Thirty-six students enrolled in an advanced Java programming course 

were invited to participate in the evaluation. Students are randomly assigned to the control group 
and experiment group. Totally, 18 students (5 females and 13 males) are assigned to the control 

group, while 18 students (7 females and 11 males) are assigned to the experiment group. 

  
Both groups of students underwent a pre-test initially, with scores ranging between 0 and 5 

points. Following this, they were assigned three debugging tasks of varying difficulty levels in a 

randomized order, each with different levels of assistance from the system. Students in the 

control group were provided solely with error type predictions from the system. Conversely, 
students in the experimental group received additional assistance in the form of code error 

explanations represented as coloured code segments. Subsequently, after completing each 

assigned task, all students took the same post-test, with scores normalized within the range of 0 to 
1. 
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After completing the experiment, participants were asked to complete an eleven-item survey 
using a 5-point Likert scale, as detailed in Table 1. This survey comprised two sections: one 

focused on cognitive load, measuring participants perceived cognitive load arising from the 

system's error predictions and explanations, and the other aimed at gathering their evaluations of 

the system. 
 

Table 1.  Cognitive and system evaluation survey. 

 

Item Description 

IL1 I find the thematic content covered in this activity to be complex. 

IL2 
I find the code diagnostic content (error descriptions/coloured code segments) 

generated by this system to be complex. 

IL3 
I find the object-oriented concepts and definitions covered in this activity to be 
complex 

EL1 
The feedback display and arrangement used in this system make the content appear 

unclear. 
EL2 The feedback display and arrangement used in this system are helpful for my learning 

EL3 
The feedback display and arrangement used in this system make the content difficult 

to understand 

GL1 
I feel that the [Error Type Prediction] feature of this system can enhance my 

knowledge and understanding of object-oriented programming 

GL2 
In my opinion, the [Error Location Indication] feature of this system can improve my 

knowledge and understanding of object-oriented programming. 

GL3 
Overall, this system has enhanced my knowledge and understanding of object-

oriented programming." 

SO1 
How does the [Error Type Prediction] feature provided by this system assist me in 
learning during debugging tasks? What are its drawbacks? (open question) 

SO2 
How does the code error location highlighting feature provided by this system assist 

my learning? What are its drawbacks? (open question) 

 
An analysis was then conducted to gauge the internal consistency and reliability of the cognitive 

load survey. The findings, presented in Table 2, revealed that the Cronbach's Alpha for Intrinsic 

Cognitive Load (IL) was 0.79, for Extrinsic Cognitive Load (EL) was 0.56, and for Germane 
Cognitive Load (GL) was 0.83. These values indicate a moderate level of internal consistency 

across the dimensions of cognitive load. 

 
Table 2.  Reliability analysis results of the survey. 

 
Construct Items Cronbach's Alpha 

IL IL1, IL2, IL3 0.790 

EL El1, EL2, El3 0.559 

GL GL1, GL2, GL3 0.826 

 

Due to the limited participant size and the observable departure from a normal distribution, the 
cognitive load and learning performance of participants underwent analysis using the 

independent-samples Wilcoxon-Mann-Whitney test to determine whether there is a significant 

difference between the distributions of assessed scores (cognitive load and exam scores) between 

the control and experiment groups. The purpose of this analysis was to investigate whether 
significant differences in medians existed between the two groups of participants. 
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4. RESULTS 
 

4.1. Prediction Accuracy 
 

The loss and accuracy of the training process for the error classifier is shown in Figure 4. As seen 
in the figures, the model is well-trained for training and validation data. For error prediction, the 

error classifier achieves the average binary accuracy of 1.000, 0.999, and 0.999 for the training, 

validation, and testing data sets, respectively. The high accuracy of error predictions shows that it 
performs very well in the code analysis tasks, at least for the collected data. 

  

4.2. Data Analysis 
 

Table 3 and Table 4 show the descriptive statistics of the control and experiment groups, 

respectively. The experiment group exhibited significantly lower first intrinsic cognitive load 

(IL1) compared to the control group (U = 93.500, z = -2.299, p = 0.021, exact sig. p = 0.029; 
mean rank control = 22.31, mean rank experiment = 14.69). However, there was no significant 

difference between the second intrinsic cognitive load (IL2) of the control and experiment groups 

(U = 135.000, z = -0.901, p = 0.368, exact sig. p = 0.406). Notably, the experiment group showed 
significantly lower third intrinsic cognitive load (IL3) than the control group (U = 76.500, z = -

2.889, p = 0.004, exact sig. p = 0.006; mean rank control = 23.25, mean rank experiment = 13.75). 

 

 
 

Figure 4.  (a) Training loss and (b) training accuracy of the classifier model. 

  

No significant differences in extrinsic cognitive load (EL1, EL2, EL3) were observed between 
the control and experiment groups. Specifically, for EL1, U = 147.500, z = -0.485, p = .628 

(exact sig. p = 0.650); for EL2, U = 136.500, z = -0.856, p = .392 (exact sig. p = 0.424); and for 

EL3, U = 100.000, z = -2.112, p = .035 (exact sig. p = 0.051). 
 

The study found no significant difference in the first germane cognitive load (GL1) between the 

control and experimental groups (U = 155.500, z = -0.218, p = .827; exact sig. p = 0.839). 
Similarly, there was no significant distinction in the germane cognitive load (GL3) between the 

control and experimental groups (U = 173.000, z = 0.398, p = .691; exact sig. p = 0.743). 

 

The pre-test scores showed no significant difference between the control group and experiment 
group (U = 185.500, z = 0.768, p = .442, exact sig. p = 0.462). However, the experiment group 

demonstrated significantly higher post-test scores compared to the control group (U = 247.500, z 



Computer Science & Information Technology (CS & IT)                                           25 

= 2.794, p = 0.005, exact sig. p = 0.006). The control group had a mean rank of 13.75, whereas 
the experiment group had a mean rank of 23.25. 

 
Table 3.  Descriptive statistics of the control group (N=18). 

 

Factor Minimum Maximum Mean Std. Dev. 

IL1 2 5 3.56 0.784 

IL2 2 4 3.17 0.857 

IL3 2 5 3.67 0.686 

GL1 1 4 3.22 0.878 

GL2 - - - - 

GL3 1 4 3.17 0.707 

EL1 2 5 3.56 0.705 

EL2 1 5 3.33 0.840 

EL3 3 4 3.44 0.511 

Pre-Test 2.00 5.00 3.28 1.074 

PostT-est 0.00 0.50 0.35 0.110 

 
Table 4.  Descriptive statistics of the experiment group (N=18). 

 

Factor Minimum Maximum Mean Std. Dev. 

IL1 1 4 2.72 1.127 

IL2 1 4 2.83 1.043 

IL3 1 4 2.83 0.857 

GL1 1 5 3.11 1.132 

GL2 1 4 3.11 0.900 

GL3 1 4 3.22 0.808 

EL1 1 5 3.33 1.188 

EL2 1 5 3.00 1.138 

EL3 1 4 2.78 1.003 
Pre-Test 2.00 5.00 3.50 0.9075 

Post-Test 0.00 1.00 0.49 0.244 

 
Table 5.  Independent-samples Wilcoxon-Mann-Whitney test results between control group (N=18) and 

experiment group (N=18). 

 
Factor U z Asymptotic sig. p Exact sig. p 

IL1 93.500 -2.299 0.021 0.029* 

IL2 135.000 -0.901 0.368 0.406 

IL3 76.500 -2.889 0.004** 0.006** 

EL1 147.500 -0.485 0.628 0.650 

EL2 136.500 -0.856 0.392 0.424 

EL3 100.000 -2.112 0.035* 0.051 

GL1 155.500 -0.218 0.827 0.839 

GL2 - - - - 

GL3 173.000 0.398 0.691 0.743 

Pre-Test 185.500 0.768 0.442 0.462 

Post-Test 247.500 2.794 0.005** 0.006** 

 
*: <0.05, ** < 0.01, ***<0.001 
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5. DISCUSSIONS 
 
The cognitive load survey showed a notable decrease in the first and third intrinsic cognitive 

loads, indicating effective reduction with coloured code segments. However, there was no 

significant change in the second intrinsic cognitive load, suggesting minimal impact of coloured 

code segments on students' intrinsic cognitive load. Likewise, no significant difference was found 
in the extrinsic cognitive load, suggesting that students could manage the cognitive load of error 

descriptions and coloured code segments effectively. Additionally, there was no significant 

distinction in the germane cognitive load, indicating that processing error descriptions and 
coloured code segments did not distinctly enhance student learning and understanding. 

  

This study discovered that error predictions generated by the deep learning model offer students 

general guidance for code correction. However, relying solely on these predictions may present 
challenges for students in understanding vague error descriptions and pinpointing bugs within the 

code. This can impede debugging efficiency by causing cognitive overload, as noted by survey 

participants, 
 

"When I'm unsure of a mistake, error type predictions offer hints, though textual 

descriptions can be challenging to grasp." 
"Identifying potential errors is faster with error type predictions, but the brief descriptions 

may only assist with obvious errors." 

 

AI-generated coloured code segments have proven to reduce cognitive load during debugging 
tasks by directing students' focus to relevant code areas, thus speeding up error comprehension. 

However, less knowledgeable students may still encounter difficulties with coloured code. 

Additionally, there is room for improvement in the perceived reliability of error predictions and 
associated coloured code segments, as noted by participants in the open survey, 

 

"It's feasible to identify errors more precisely, but occasionally it seems somewhat 
inaccurate." 

"I can locate the lines where the error occurred, but I'm uncertain about the nature of the 

mistake." 

 
Furthermore, the AI system provides a robust scaffolding platform for human-machine 

collaborative learning. Within this framework, students utilize error predictions and color-coded 

segments to quickly identify and deal with bugs in the code. Nevertheless, meaningful learning 
occurs when students autonomously evaluate predictions and code segments using their own 

knowledge and skills, as indicated by survey participants. 

 

"Predicting errors can expedite root cause identification yet should not be solely relied 
upon." 

"Error predictions aid bug resolution, but excessive reliance on debugging systems may 

backfire." 
"When unsure of the error, predictions can offer helpful clues." 

"I can verify if the system's suggestions match my ideas." 

 
In brief, the AI-generated coloured code segments reduce student cognitive load and enhance 

learning outcomes, as shown by experiments. This demonstrates effective integration of AI 

technology in education, providing scaffolding while promoting independent learning.  
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6. CONCLUSION 
 

6.1. Implications for Education, Research and Practice 
 

This study shows the potential of XAI techniques like Integrated Gradient [2] in reducing 
student’s cognitive load and improving learning performance in educational settings. Therefore, 

integration of Explainable Artificial Intelligence (XAI) in educational systems can enhance 

students' learning experiences. Educators can consider incorporating XAI techniques, such as 
Integrated Gradient for generating coloured code segments, to aid in reducing cognitive load and 

improving learning outcomes, particularly in technical subjects like object-oriented 

programming. 

 
In addition, further exploration of XAI's role in educational settings, particularly in different 

subject areas and with diverse learner populations, is warranted. Future research should 

investigate additional XAI techniques and their effectiveness in reducing cognitive load and 
enhancing learning outcomes across various educational contexts. 

 

Finally, educators should receive training on how to effectively utilize XAI tools to support 

students' learning processes. Implementation of XAI systems should be accompanied by thorough 
evaluation and feedback mechanisms to continuously improve their efficacy in educational 

practice. 

 

6.2. Limitations and Suggestions for Future Research 
 

The study's sample size is relatively small (N=36), which may limit the generalizability of the 
findings. Discretion must be exerted to extend the results to other courses, populations, and 

disciplines. The research focuses specifically on object-oriented programming education, 

potentially limiting its applicability to other subjects. The duration of the experiment and its long-
term effects on learning outcomes are not addressed. 

 

Future research should focus on conducting larger-scale studies with diverse participant groups to 
validate the effectiveness of XAI techniques in various educational contexts. Additionally, 

exploring the long-term effects of XAI integration on students' learning trajectories and 

knowledge retention is essential. Investigating potential interactions between XAI tools and 

individual differences in learning styles and preferences is also crucial. Moreover, examining 
educators' and students' perceptions and experiences regarding the usability and effectiveness of 

XAI systems in real-world educational settings is warranted. 
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