

David C. Wyld et al. (Eds): EDUIT, BMLI, NSEC – 2024

pp. 17-28, 2024. CS & IT - CSCP 2024 DOI: 10.5121/csit.2024.141202

ON THE EFFECT OF EXPLAINABLE AI ON

PROGRAMMING LEARNING: A CASE
STUDY OF USING GRADIENT
INTEGRATION TECHNOLOGY

Feng Hsu Wang

Department of Computer Science and Information Engineering,

Ming Chuan University, Taoyuan, Taiwan

ABSTRACT

AI-based learning technologies, especially deep learning, hold significant promise for enhancing

students’ learning experiences in educational systems. However, providing accurate predictions or

answers to students’ learning problems through high-performance deep learning models is not

sufficient for students to achieve effective learning. This study explores Explainable Artificial

Intelligence (XAI) in reducing students’ cognitive load and improving learning outcomes within

the realm of object-oriented programming education. Specifically, this study examines the

application of Gradient Integration to generate coloured code segments associated with code

errors predicted by a Performer-based deep learning classification model for debugging tasks.

Thirty-six participants took part in a controlled experiment assessing students’ cognitive load and

learning performance through the XAI system. They were randomly assigned to a control group

(N=18) and an experiment group (N=18). The independent-samples Wilcoxon-Mann-Whitney test
results revealed that the coloured code segments reduce students’ cognitive load (p=0.006) and

improve their exam scores (p=0.006) significantly. This study contributes to an appropriate

application of the XAI technique that can reduce students’ cognitive load and improve learning

outcomes in educational settings.

KEYWORDS

Explainable Artificial Intelligence, Deep Learning Technology, Human-Computer Collaborative

Learning, Programming Education

1. INTRODUCTION

Learning technologies, particularly those harnessing deep learning, hold great promise for

enriching educational experiences [1]. Nevertheless, the integration of deep learning into
education encounters challenges regarding its efficacy in supporting student learning. Simply

furnishing precise predictions or solutions to students’ learning queries through high-performing

deep learning models falls short of ensuring effective learning outcomes. The emergence of
Explainable Artificial Intelligence (XAI) addresses this issue by endowing intelligent systems

with the capability to elucidate the reasoning behind their decisions. By employing transparent

models, educators and students can gain deeper insights into the rationale guiding intelligent

agents' choices, facilitating personalized recommendations. This fosters greater trust in the
system and enables tailoring of learning experiences to individual needs. From an educational

standpoint, the integration of XAI techniques holds substantial promise for enhancing students’

learning journeys and mitigating various challenges within the educational landscape.

http://airccse.org/cscp.html
https://airccse.org/csit/V14N12.html
https://doi.org/10.5121/csit.2024.141202

18 Computer Science & Information Technology (CS & IT)

One prominent XAI technique encompasses Gradient-based methods, including saliency maps
and feature importance scores. These methodologies empower researchers and practitioners to

delve into the intricate mechanisms of deep neural networks. Through scrutinizing the gradients

of a deep-learning model concerning input features, analysts can discern the significance of each

feature in shaping the model's output. This transparency proves pivotal as it not only enhances
comprehension of the model's decision-making but also enables the detection of potential biases,

thereby fostering a more transparent and equitable utilization of deep-learning models.

Among gradient-based methods, Gradient Integration [2] is distinguished as one of the most

robust techniques for interpreting decisions made by complex machine learning models.

Providing a harmonious blend of simplicity and effectiveness, Gradient Integration emerges as an
attractive option for researchers aiming to enhance interpretability without compromising

computational efficiency. Furthermore, its visually intuitive nature makes explanations accessible

to a broader audience, including stakeholders with limited technical expertise, thus fostering

heightened trust and adoption of AI systems across diverse applications. Consequently, this study
adopts Gradient Integration as the selected XAI technology to generate color-coded segments of

code. These segments serve as a scaffolding framework to assist learners in swiftly identifying

code locations associated with the predictions of deep learning models, thus aiding in
comprehension.

On the other hand, object-oriented programming (OOP) stands as a fundamental skill in
programming, having evolved into a paradigm widely embraced by the software industry for

crafting robust and adaptable software solutions. Among university information-engineering

departments, introductory courses in OOP are often perceived as challenging and intricate by

most students. Rectifying errors within OOP code demands a substantial cognitive load alongside
proficient programming expertise. Hence, the educational focus of this study centres on

evaluating how explanations provided through XAI techniques, such as Gradient Integration, may

impact students' learning experiences in OOP, considering cognitive load and learning outcomes.
This study aims to explore the effects of employing the scaffolding framework facilitated by deep

learning models using the Gradient Integration technique as an XAI tool to alleviate student

cognitive load and enhance learning outcomes. Our methodology entails crafting a deep learning

model based on the Performer architecture, augmented with an explanation module utilizing
gradient integration to elucidate identified code errors. The incorporation of this XAI technology

furnishes rationale for the model's predictions by visually pinpointing error locations within the

code. Consequently, this study revolves around key research inquiries, as articulated below:

(RQ1) How does the transparency mechanism for code errors, employing Gradient Integration,

impact students' cognitive load?

(RQ2) To what extent does the transparency mechanism for code errors, employing Gradient

Integration, influence students' learning outcomes?

2. LITERATURE REVIEW

2.1. Deep Learning

Deep learning, a subset of artificial intelligence, harnesses multi-layer neural networks to tackle

specific learning tasks through the analysis of vast datasets. It has demonstrated success across

various domains including computer vision, speech recognition, and natural language processing.
Notably, Transformer-based deep learning models have made remarkable advancements in tasks

like image/speech recognition and machine translation [3]. However, the traditional Transformer

Computer Science & Information Technology (CS & IT) 19

architecture incurs a computational cost of O(L2) when performing attention operations on a
sequence of length L. Amidst various improved iterations of Transformer, Performer stands out

as one of the most efficient in terms of both time and space utilization [4]. Leveraging a novel

attention mechanism known as Fast Attention Via Positive Orthogonal Random Features

(FAVOR+), Performer provides scalable, low-variance, and unbiased estimation of attention
values. This is achieved through the computation of kernels represented by sets of random feature

map decompositions. Wang [5] introduced an efficient inference algorithm utilizing cached

Performer, capable of generating sequences of length L in O(L) time complexity. This
breakthrough makes it feasible to implement deep learning models even on resource-limited

computing environments. Consequently, the Performer architecture has been selected for

constructing the deep learning model in this study, considering the constraints posed by limited
hardware resources.

2.2. Explainable AI

The transparency of decision-making in neural models significantly impacts their acceptability in

educational applications [5]. Explainable AI (XAI) hence becomes crucial because it not only
aids in understanding model judgments but also improves models by facilitating bias detection

and providing new insights. Consequently, the transformation of black-box models into

transparent and interpretable ones has become essential [6][7][8][9][10][11]. Samek et al. [8]

categorized XAI methods into two types for explaining deep learning model predictions. The first
type involves developing methods that reveal what the model has learned [10], identifying

features learned by each neuron. The second type computes the sensitivity of the model's

prediction to changes in input [11], understanding how input changes affect predictions.
Montavon et al. [6] provided insights into both methods, emphasizing their contribution to a

better understanding of deep neural networks. This study focuses on the second attribution

method so that we can investigate the impact of the model's input on classification decisions.
Model attribution falls under the category of the second type of Explainable AI methods,

specifically focusing on quantifying how sensitive the model's predictions are to changes in the

input. It elucidates the model's behaviour by analysing how alterations in the input correspond to

variations in the model's predictions. For example, the Integrated Gradients [2] is an attribution
method used widely in deep learning networks. The gradient reflects the model's sensitivity to

changes in the dimensions of the input, indicating the importance of each dimensional data.

Integrated Gradients, aligning with the study's objective, will be used for analysis in this study.

2.3. AI-Based Approaches to Programming Education

AI-based approaches to programming education hold significant potential due to their ability to

effectively handle code diversity. Several studies have utilized neural networks to provide

tailored feedback on specific programming skills, such as recurrent programming [13], [14].
While the Automatic Program Repairs (APR) technique has found widespread application in the

software engineering industry, its impact on programming education remains limited. This

limitation arises from its original design for professional programmers' code, making it less

suitable for novice students [15]. Embracing a constructivist and student-cantered learning
framework, intelligent agents can perform data analysis tasks and present information in an

"intelligent" manner, facilitating students' engagement in critical thinking and uncovering the

underlying meaning and value within the data. This approach epitomizes human-machine
collaborative learning.

With the advancements in deep learning technology, the capabilities of intelligent agents in terms
of automation and autonomy are significantly enhanced [5]. As educational companions,

intelligent agents endowed with improved automation and autonomy can effectively bolster

20 Computer Science & Information Technology (CS & IT)

human learning experiences [16], [17], [18]. However, there remains a notable gap in research
concerning the effectiveness of integrating deep learning technology within educational settings

[1]. Recently, considerable attention has been directed towards employing deep learning models,

such as ChatGPT, for generating natural language feedback on open-ended coding problems.

This novel approach has sparked considerable interest within the education community.
Nevertheless, despite these models demonstrating high proficiency in predicting and generating

feedback in response to student queries, there's a concern that students might not derive

significant benefits from them, as they might miss out on the critical thinking skills necessary for
learning through problem-solving. Consequently, these deep learning models should provide

intelligent scaffolding that aids students' learning processes rather than merely furnishing them

with answers.

3. METHOD

To address the research inquiries, we initially construct a deep learning model utilizing the

cached Performer architecture integrated with the Integrated Gradient XAI mechanism.
Subsequently, we delineate the Integrated Gradient mechanism and the progression of the deep

learning model designed to assist learners in mastering Object-Oriented Programming (OOP)

debugging tasks. Following that, we outline the experimental design and the tools employed for
data analysis.

3.1. Integrated Gradients

Integrated Gradients [2] is an attribution method used widely in deep learning networks. An input

baseline x' (usually a vector of zeros) is required so that the Integrated Gradients algorithm can
compute gradients along a linear path from the baseline input to the original input x, according to

(1),

 (1)

where denotes the ith dimensional data of the original input, and represents the ith

dimensional data of the baseline input, represents a neural network model, and is the

gradient of on the ith dimension of the original input x. This gradient reflects the model's

sensitivity to changes in the ith dimension of the input, indicating the importance of each

dimensional data. Integrated Gradients, aligning with the study's objective, is used as the case
study for its effectiveness in supporting learning programming in this study.

3.2. The Performer-Based Encoder-Classifier Neural Network

A performer-based deep-learning model has been developed to analyse Java code, aiming to

predict error types and support students in learning Object-Oriented Programming (OOP) design
principles (see Figure 1). The Encoder is given a Java code and encodes it into a sequence of

context features. In this study, we adopted a Performer-based encoder with five attention blocks

and four parallel attention layers or heads. The Classifier is a multiple layer perceptron network

that predicts multiple error type labels, including 35 error types and the correct one.

The code attributions are generated by the Integrated Gradient method as follows. Since the

embedding layer lacks the capability to compute gradients for raw source code, the attribution
process is exclusively conducted on the embedded output derived from the embedding layer.

Computer Science & Information Technology (CS & IT) 21

Consequently, attributions of the embedded output are averaged across its embedding dimensions
for each input token, providing insight into the relevance of the code to the error predictions.

A website deployed the deep learning model was developed using the Flask package, as shown in

Figure 2. In this website, descriptions of debugging tasks are displayed in the left window, and
the sample code is displayed in the middle window for editing. Clicking the green Diagnose

button will submit the code to the server for analysis, and the predicted error types will be

displayed in the right window. Students can accept or refuse the feedback and submit his/her
decisions.

Figure 1. The encoder-classifier network utilizes Integrated Gradients to determine input attributions.

Figure 2. A screenshot showing task descriptions, student codes and system feedback.

The AI system facilitates student learning in programming by providing concise error predictions

based on the code modifications submitted by students. It empowers students to take charge of

correcting their code based on their own insights and assessments of the system's predictions. By

clicking on the error labels presented in the right-hand side window, students can investigate the
color-coded segments of code associated with each error, with deeper shades of green indicate

higher relevance (refer to Figure 3). Utilizing these color-coded segments, students analyse

pertinent sections of code and assess the predicted error descriptions to uncover underlying bugs.
This process encourages students to autonomously integrate the feedback provided by the system

into their learning journey without becoming overwhelmed by it.

22 Computer Science & Information Technology (CS & IT)

3.3. Model Development

A deep-learning model was first developed based on data collected from Java code submitted by

students for exercises, quizzes, and exams in an introductory OOP course at a university in
Taiwan. A total of 330 codes were collected and manually annotated. The codes were randomly

assigned to humans, with one code annotated by two annotators and proofread against each other.

Since the GPU hardware device used in this study has limited storage, the code length was
restricted to 1000 tokens. As a result, we sorted out a total of 35 error types. However, the small

amount of code is far from the sample size required to train a neural model. Therefore, this study

adopts the code augmentation method proposed by Wang [[19]] to increase the sample size by

changing local variable names and randomly reordering statements without affecting the original
code semantics. In the end, the sample size was increased from 330 to 11200.

Figure 3. A screenshot displays an interactive session featuring error predictions and pinpointed error

locations highlighted by color-coded segments of code.

The data is divided into 80% training data and 20% testing data. The model was trained for 1,000

epochs, using 20% of the training data as validation. The training process is conducted on the

Window 10 operating system with an Intel(R) Core (TM) i9-11900K 3.50GHz processor, 128GB

RAM, and an NVIDIA RTX 3090 with 24GB RAM. We investigate the prediction performance
of the Performer-based model. The error type prediction is evaluated by binary accuracy. In

addition, feedback is collected from users to assess whether they find the code attributions

helpful, accurate, and aligned with their mental models.

3.4. Experiment Design

This study conducts a human evaluation of the system’s predictions and explanations represented

as coloured code segments. Thirty-six students enrolled in an advanced Java programming course

were invited to participate in the evaluation. Students are randomly assigned to the control group
and experiment group. Totally, 18 students (5 females and 13 males) are assigned to the control

group, while 18 students (7 females and 11 males) are assigned to the experiment group.

Both groups of students underwent a pre-test initially, with scores ranging between 0 and 5

points. Following this, they were assigned three debugging tasks of varying difficulty levels in a

randomized order, each with different levels of assistance from the system. Students in the

control group were provided solely with error type predictions from the system. Conversely,
students in the experimental group received additional assistance in the form of code error

explanations represented as coloured code segments. Subsequently, after completing each

assigned task, all students took the same post-test, with scores normalized within the range of 0 to
1.

Computer Science & Information Technology (CS & IT) 23

After completing the experiment, participants were asked to complete an eleven-item survey
using a 5-point Likert scale, as detailed in Table 1. This survey comprised two sections: one

focused on cognitive load, measuring participants perceived cognitive load arising from the

system's error predictions and explanations, and the other aimed at gathering their evaluations of

the system.

Table 1. Cognitive and system evaluation survey.

Item Description

IL1 I find the thematic content covered in this activity to be complex.

IL2
I find the code diagnostic content (error descriptions/coloured code segments)

generated by this system to be complex.

IL3
I find the object-oriented concepts and definitions covered in this activity to be
complex

EL1
The feedback display and arrangement used in this system make the content appear

unclear.
EL2 The feedback display and arrangement used in this system are helpful for my learning

EL3
The feedback display and arrangement used in this system make the content difficult

to understand

GL1
I feel that the [Error Type Prediction] feature of this system can enhance my

knowledge and understanding of object-oriented programming

GL2
In my opinion, the [Error Location Indication] feature of this system can improve my

knowledge and understanding of object-oriented programming.

GL3
Overall, this system has enhanced my knowledge and understanding of object-

oriented programming."

SO1
How does the [Error Type Prediction] feature provided by this system assist me in
learning during debugging tasks? What are its drawbacks? (open question)

SO2
How does the code error location highlighting feature provided by this system assist

my learning? What are its drawbacks? (open question)

An analysis was then conducted to gauge the internal consistency and reliability of the cognitive

load survey. The findings, presented in Table 2, revealed that the Cronbach's Alpha for Intrinsic

Cognitive Load (IL) was 0.79, for Extrinsic Cognitive Load (EL) was 0.56, and for Germane
Cognitive Load (GL) was 0.83. These values indicate a moderate level of internal consistency

across the dimensions of cognitive load.

Table 2. Reliability analysis results of the survey.

Construct Items Cronbach's Alpha

IL IL1, IL2, IL3 0.790

EL El1, EL2, El3 0.559

GL GL1, GL2, GL3 0.826

Due to the limited participant size and the observable departure from a normal distribution, the
cognitive load and learning performance of participants underwent analysis using the

independent-samples Wilcoxon-Mann-Whitney test to determine whether there is a significant

difference between the distributions of assessed scores (cognitive load and exam scores) between

the control and experiment groups. The purpose of this analysis was to investigate whether
significant differences in medians existed between the two groups of participants.

24 Computer Science & Information Technology (CS & IT)

4. RESULTS

4.1. Prediction Accuracy

The loss and accuracy of the training process for the error classifier is shown in Figure 4. As seen
in the figures, the model is well-trained for training and validation data. For error prediction, the

error classifier achieves the average binary accuracy of 1.000, 0.999, and 0.999 for the training,

validation, and testing data sets, respectively. The high accuracy of error predictions shows that it
performs very well in the code analysis tasks, at least for the collected data.

4.2. Data Analysis

Table 3 and Table 4 show the descriptive statistics of the control and experiment groups,

respectively. The experiment group exhibited significantly lower first intrinsic cognitive load

(IL1) compared to the control group (U = 93.500, z = -2.299, p = 0.021, exact sig. p = 0.029;
mean rank control = 22.31, mean rank experiment = 14.69). However, there was no significant

difference between the second intrinsic cognitive load (IL2) of the control and experiment groups

(U = 135.000, z = -0.901, p = 0.368, exact sig. p = 0.406). Notably, the experiment group showed
significantly lower third intrinsic cognitive load (IL3) than the control group (U = 76.500, z = -

2.889, p = 0.004, exact sig. p = 0.006; mean rank control = 23.25, mean rank experiment = 13.75).

Figure 4. (a) Training loss and (b) training accuracy of the classifier model.

No significant differences in extrinsic cognitive load (EL1, EL2, EL3) were observed between
the control and experiment groups. Specifically, for EL1, U = 147.500, z = -0.485, p = .628

(exact sig. p = 0.650); for EL2, U = 136.500, z = -0.856, p = .392 (exact sig. p = 0.424); and for

EL3, U = 100.000, z = -2.112, p = .035 (exact sig. p = 0.051).

The study found no significant difference in the first germane cognitive load (GL1) between the

control and experimental groups (U = 155.500, z = -0.218, p = .827; exact sig. p = 0.839).
Similarly, there was no significant distinction in the germane cognitive load (GL3) between the

control and experimental groups (U = 173.000, z = 0.398, p = .691; exact sig. p = 0.743).

The pre-test scores showed no significant difference between the control group and experiment
group (U = 185.500, z = 0.768, p = .442, exact sig. p = 0.462). However, the experiment group

demonstrated significantly higher post-test scores compared to the control group (U = 247.500, z

Computer Science & Information Technology (CS & IT) 25

= 2.794, p = 0.005, exact sig. p = 0.006). The control group had a mean rank of 13.75, whereas
the experiment group had a mean rank of 23.25.

Table 3. Descriptive statistics of the control group (N=18).

Factor Minimum Maximum Mean Std. Dev.

IL1 2 5 3.56 0.784

IL2 2 4 3.17 0.857

IL3 2 5 3.67 0.686

GL1 1 4 3.22 0.878

GL2 - - - -

GL3 1 4 3.17 0.707

EL1 2 5 3.56 0.705

EL2 1 5 3.33 0.840

EL3 3 4 3.44 0.511

Pre-Test 2.00 5.00 3.28 1.074

PostT-est 0.00 0.50 0.35 0.110

Table 4. Descriptive statistics of the experiment group (N=18).

Factor Minimum Maximum Mean Std. Dev.

IL1 1 4 2.72 1.127

IL2 1 4 2.83 1.043

IL3 1 4 2.83 0.857

GL1 1 5 3.11 1.132

GL2 1 4 3.11 0.900

GL3 1 4 3.22 0.808

EL1 1 5 3.33 1.188

EL2 1 5 3.00 1.138

EL3 1 4 2.78 1.003
Pre-Test 2.00 5.00 3.50 0.9075

Post-Test 0.00 1.00 0.49 0.244

Table 5. Independent-samples Wilcoxon-Mann-Whitney test results between control group (N=18) and

experiment group (N=18).

Factor U z Asymptotic sig. p Exact sig. p

IL1 93.500 -2.299 0.021 0.029*

IL2 135.000 -0.901 0.368 0.406

IL3 76.500 -2.889 0.004** 0.006**

EL1 147.500 -0.485 0.628 0.650

EL2 136.500 -0.856 0.392 0.424

EL3 100.000 -2.112 0.035* 0.051

GL1 155.500 -0.218 0.827 0.839

GL2 - - - -

GL3 173.000 0.398 0.691 0.743

Pre-Test 185.500 0.768 0.442 0.462

Post-Test 247.500 2.794 0.005** 0.006**

*: <0.05, ** < 0.01, ***<0.001

26 Computer Science & Information Technology (CS & IT)

5. DISCUSSIONS

The cognitive load survey showed a notable decrease in the first and third intrinsic cognitive

loads, indicating effective reduction with coloured code segments. However, there was no

significant change in the second intrinsic cognitive load, suggesting minimal impact of coloured

code segments on students' intrinsic cognitive load. Likewise, no significant difference was found
in the extrinsic cognitive load, suggesting that students could manage the cognitive load of error

descriptions and coloured code segments effectively. Additionally, there was no significant

distinction in the germane cognitive load, indicating that processing error descriptions and
coloured code segments did not distinctly enhance student learning and understanding.

This study discovered that error predictions generated by the deep learning model offer students

general guidance for code correction. However, relying solely on these predictions may present
challenges for students in understanding vague error descriptions and pinpointing bugs within the

code. This can impede debugging efficiency by causing cognitive overload, as noted by survey

participants,

"When I'm unsure of a mistake, error type predictions offer hints, though textual

descriptions can be challenging to grasp."
"Identifying potential errors is faster with error type predictions, but the brief descriptions

may only assist with obvious errors."

AI-generated coloured code segments have proven to reduce cognitive load during debugging
tasks by directing students' focus to relevant code areas, thus speeding up error comprehension.

However, less knowledgeable students may still encounter difficulties with coloured code.

Additionally, there is room for improvement in the perceived reliability of error predictions and
associated coloured code segments, as noted by participants in the open survey,

"It's feasible to identify errors more precisely, but occasionally it seems somewhat
inaccurate."

"I can locate the lines where the error occurred, but I'm uncertain about the nature of the

mistake."

Furthermore, the AI system provides a robust scaffolding platform for human-machine

collaborative learning. Within this framework, students utilize error predictions and color-coded

segments to quickly identify and deal with bugs in the code. Nevertheless, meaningful learning
occurs when students autonomously evaluate predictions and code segments using their own

knowledge and skills, as indicated by survey participants.

"Predicting errors can expedite root cause identification yet should not be solely relied
upon."

"Error predictions aid bug resolution, but excessive reliance on debugging systems may

backfire."
"When unsure of the error, predictions can offer helpful clues."

"I can verify if the system's suggestions match my ideas."

In brief, the AI-generated coloured code segments reduce student cognitive load and enhance

learning outcomes, as shown by experiments. This demonstrates effective integration of AI

technology in education, providing scaffolding while promoting independent learning.

Computer Science & Information Technology (CS & IT) 27

6. CONCLUSION

6.1. Implications for Education, Research and Practice

This study shows the potential of XAI techniques like Integrated Gradient [2] in reducing
student’s cognitive load and improving learning performance in educational settings. Therefore,

integration of Explainable Artificial Intelligence (XAI) in educational systems can enhance

students' learning experiences. Educators can consider incorporating XAI techniques, such as
Integrated Gradient for generating coloured code segments, to aid in reducing cognitive load and

improving learning outcomes, particularly in technical subjects like object-oriented

programming.

In addition, further exploration of XAI's role in educational settings, particularly in different

subject areas and with diverse learner populations, is warranted. Future research should

investigate additional XAI techniques and their effectiveness in reducing cognitive load and
enhancing learning outcomes across various educational contexts.

Finally, educators should receive training on how to effectively utilize XAI tools to support

students' learning processes. Implementation of XAI systems should be accompanied by thorough
evaluation and feedback mechanisms to continuously improve their efficacy in educational

practice.

6.2. Limitations and Suggestions for Future Research

The study's sample size is relatively small (N=36), which may limit the generalizability of the
findings. Discretion must be exerted to extend the results to other courses, populations, and

disciplines. The research focuses specifically on object-oriented programming education,

potentially limiting its applicability to other subjects. The duration of the experiment and its long-
term effects on learning outcomes are not addressed.

Future research should focus on conducting larger-scale studies with diverse participant groups to
validate the effectiveness of XAI techniques in various educational contexts. Additionally,

exploring the long-term effects of XAI integration on students' learning trajectories and

knowledge retention is essential. Investigating potential interactions between XAI tools and

individual differences in learning styles and preferences is also crucial. Moreover, examining
educators' and students' perceptions and experiences regarding the usability and effectiveness of

XAI systems in real-world educational settings is warranted.

ACKNOWLEDGEMENTS

This work was partly supported by the Ministry of Science and Technology, Taiwan, R.O.C.,

under Grant NSTC 112-2410-H-130-010 -.

REFERENCES

[1] X. Chen, H. Xie, D. Zou, and G.-J. Hwang, “Application and theory gaps during the rise of Artificial

Intelligence in Education,” Computers and Education: Artificial Intelligence, vol. 1, 100002.

[2] M., Sundararajan, A. Taly, and Q Yan, “Axiomatic attribution for deep networks,” arXiv:1703.01365,
2017.

[3] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser and I.

Polosukhin, “Attention is all you need,” presented at the 31st Conference on Neural Information

Processing Systems, Long Beach, CA, USA, 2017.

28 Computer Science & Information Technology (CS & IT)

[4] K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlos, P. Hawkins, J. Davis, A.

Mohiuddin, L. Kaiser, D. Belanger, L. Colwell, and A. Weller, “Rethinking attention with

performers,” presented at the Ninth International Conference on Learning Representations, 2021.

[5] F. H. Wang, “A feasible study of a deep learning model supporting human-machine collaborative

learning of object-oriented programming,” IEEE Transactions on Learning Technologies, 1-15,
10.1109/TLT.2022.3226345, 2022.

[6] G. Montavon, W. Samek, and K.-R. Muller, “Methods for interpreting and understanding deep neural

networks,” arXiv preprint arXiv:1706.07979, 2017.

[7] W. Samek, T. Wieg and, K.-R. Müller, “Explainable artificial intelligence: understanding,

visualizing and interpreting deep learning models,” arXiv preprint arXiv:1708.08296, 2017.

[8] D.-V. Finale, and K. Been, “Towards a rigorous science of interpretable machine learning,” arXiv

preprint arXiv:1702.08608, 2017.

[9] L. M. Zintgraf, T. S. Cohen, T. Adel, and M. Welling, “Visualizing deep neural network decisions:

prediction difference analysis,” arXiv preprint arXiv:1702.04595, 2017.

[10] A., Nguyen, J. Yosinski, J. Clune, “Multifaceted feature visualization: uncovering the different types

of features learned by each neuron in deep neural networks,” arXiv preprint arXiv:1602.03616, 2016.

[11] G. Montavon, S. Bach, A. Binder, W. Samek, and K.-R. Muller, “Explaining nonlinear classification
decisions with deep Taylor decomposition,” Pattern Recognition, vol. 65, pp. 211–222, 2017.

[12] V. J. Shute, “Focus on formative feedback,” Review of Educational Research, vol.78, no. 1, pp. 153–

189, 2008.

[13] W. L. Johnson, and E. Soloway, “Intention-based diagnosis of novice programming errors,”

presented at AAAI Conference, pp. 162–168, 1984.

[14] F. H. Wang, “An efficient performer-based model for automatic feedback generation for teaching

object-oriented programming,” presented at the 13th annual International Conference on Education

and New Learning Technologies, 2022.

[15] A.Vizcaíno, “A simulated student can improve collaborative learning,” Int. J. of Artificial

Intelligence in Education, vol. 15, pp. 3–40, 2005.

[16] G. J. Hwang, H. Xie, B. W. Wah, and D. Gašević, “Vision, challenges, roles and research issues of
artificial intelligence in education,” Computers & Education: Artificial Intelligence, vol. 1, pp. 1–5,

2020.

[17] G. J. Hwang and C.-Y. Chang, “A review of opportunities and challenges of chatbots in education,”

Interactive Learning Environments, pp. 1-14, 2021.

[18] M. B. Magolda, “Learning partnerships model: A framework for promoting self-authorship,” In M. B.

Magolda & P. M. King (Eds.), Learning partnerships: Theory and models of practice to educate for

self-authorship (pp. 37–62). Sterling, VA: Stylus, 2004.

[19] F. H. Wang, “A semantics-preserving approach to augmentation of Java codes for training deep

learning classification models,” presented at the 25th TANET, Taiwan, 2019.

AUTHOR

F. H. Wang received MS and Ph.D. in computer science and information engineering from

National Taiwan University, Taiwan, in 1988 and 1993, respectively. He joined the

Graduate School of Information Science and Engineering, Ming Chuan University, Taiwan,

in 1995, where he is currently a professor. His research interests include deep learning
technology, educational technology, and pedagogy research.

© 2024 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

https://airccse.org/

	Abstract
	Keywords
	Explainable Artificial Intelligence, Deep Learning Technology, Human-Computer Collaborative Learning, Programming Education

