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ABSTRACT 
 
We introduce a new approach of Reinforcement Learning Application for High Frequency 

Trading called Quantum Reinforcement Learning as our agent learns to react on 

‘quantum’ individual events in Limit Order Book – single Limit Order Book updates and 

single trades (and optionally single Orders if provided by Exchange). We claim that such 

level of learning granularity allows our agent to find optimal trading strategies by on-line 

modeling of Market Microstructure with a maximum rate and precision. 
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1. INTRODUCTION 
 

There are 2 main approaches in Modeling of High Frequency Trading – traditional statistical 
approaches such as Market Microstructure modeling and more recent Machine Learning 

approaches detecting such Microstructure models ‘on-line’ without statistical modeling of 

various distributions in Limit Order Book data. Machine Learning models gained popularity on 

higher frequencies for it’s dynamic nature as static statistical modeling is much more difficult on 
such trading frequencies. Machine Learning approaches can be further categorized in 2 main 

groups – supervised predictive models and unsupervised Reinforcement Learning models. 

Supervised models attempt to predict short term price spikes based on some history in Limit 
Order Book events preceding such spikes, manually marked by a supervisor from price history 

and presented to the model for further learning – typically to make 3 decisions on each tick – buy, 

sell or stay out of position. Such predictive models have some drawback of poor ability to 

generalize on unseen market data. On the other hand unsupervised Reinforcement Learning 
models allow agent to autonomously learn trading strategies by first acting randomly but then 

correcting itself trying to maximize final PnL. Such approach tends to generalize much better 

even in strongly stochastic market environment.  
 

As RL in general can be treated as an optimization approach, there is a number of research 

papers, investigating how RL can be applied for algorithmic trading. Applications of RL in 
trading can be categorized in the following groups: 

 

1. RL for optimal portfolio management [6] 

2. RL for low frequency directional trading [1, 2] 
3. RL for high frequency directional trading [3, 4] 

4. RL for Optimal Trade Execution [5] 

5. RL for Market Making [7] 
 

http://airccse.org/cscp.html
https://airccse.org/csit/V14N13.html
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Our paper is most closely related to group 3 – RL for high frequency directional trading and 
especially to recent work [4] “Deep reinforcement learning for active high frequency trading”.  

 

Typically one of the main characteristics of RL agent is a frequency of environment resampling 

and action decisions making. In above mentioned applications of RL in Finance typical frequency 
is based on fixed time intervals and usually these resampling intervals dt >> 1 second. In High 

Frequency Trading settings where latencies eg. on NYSE are now measured in nanoseconds RL 

agent should try to minimize its interval of decision making. In work [4] authors used dt = 0.1s 
and to our knowledge this interval is currently minimal in research papers devoted to applications 

of RL for HFT. In our paper we also use interval dt ~ 0.1s, however the main difference in our 

approach is that we allow our agent to make decisions not just based on regular time intervals and 
aggregated Limit Order Book information (Level 2 data) as for example in [4], rather our agent 

can make decisions based on individual Limit Order Book events – Market Orders submissions, 

Limit Orders submissions and Limit Order Cancellations (essentially Level 3 data) which 

theoretically can be done with dt close to nanoseconds which makes it more appropriate in actual 
High Frequency Trading. We use term ‘Quantum’ to specify that our agent tries to react on 

trading events with theoretically infinitely small latencies. 

 
We claim that such Quantum Reinforcement Learning can find optimal trading strategies with 

maximal precision. We then investigate three major Reinforcement learning approaches in such 

learning environment – namely Cross Entropy, Deep Q-Learning and Policy Proximal 
Optimization. As yet another contribution of the current research we have observed importance of 

high level information for making trading decisions even on such trading frequencies which to 

our knowledge has not been used in previous publications on Deep Learning applications for 

High Frequency Trading. Namely, our trading agent is analyzing both micro events in Limit 
Order Books along with higher level information represented as time series of price candlesticks 

on various frequencies up-to 15 minutes. We claim that such information is important for agent 

as in some sense HFT is itself a computerized form of well know ‘scalping’ human trading 
strategies – hence we attempt to model our agent’s behavior to closely follow ‘scalping’ which 

utilizes high level information as yet another indicator to enter positions. Eg – if there is a 

combination of 2 factors - 15 minutes based bearish trend and Limit Order Book is currently 

‘empty’ on a buy side – it’s a good indicator to enter short position. Adding lower frequency 
information also can be treated as accounting for Market state information in addition to Market 

microstructure information. Finally our models also accurately account for both maker and 

taker’s fees on each transaction which makes this work quite practical. 
 

As was noted above essentially our approach tends to minimize an interval of agent’s decision 

making and hence we plan to extend the applicability of our approach to other applications of RL 
in algorithmic trading – for example to High Frequency Market Making. As opposed to 

directional trading Market Maker’s main strategy is to ‘earn the spread’ and it is achieved 

typically via optimally quoting it’s bid and ask prices. Typical applications of RL for Market 

Making such as [7] suggest requoting intervals dt ~ 1s. As discussed above it could be beneficial 
to requote with minimal latency in order  to react quicker on Market events which otherwise can 

lead to a well known problem of adverse selection where Market Maker accumulates large 

inventories with losses while trading with better informed traders. In our next paper we plan to 
present results of applications of Quantum RL for high Frequency Market Making. 

 

In addition in our next plans we consider integration of the ‘news analysis’ as part of Market 
State information for RL trading agent by utilizing modern Language models such as 

GPT3/GPT4. It is assumed that such analysis would be done with relatively lower frequency yet 

it could provide an agent with more data for making accurate trading decisions.  
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2. TRADING MODEL 
 
Every Reinforcement Learning Model starts by specifying Environment States and Agent’s 

actions along with description of how Environment State changes after agents undertakes certain 

actions and which reward agent gains by choosing specific actions. 

 
Below is a description of three types of Microstructure events, that lead to the change in the 

trading environment. 

 

1 Book Level Update event. 

 

Typically most exchanges provide a Market Data channel that sends such update events: We 
represent it as a tuple (‘update_type’,’price_level_absolute’,’price_level_relative’,’size_ 

absolute’, ‘size_delta’, ‘timestamp’) 

 

update_type can be either Insert, Delete or Update. Absolute Price Size specifies actual level’s 
price and relative price’s size specifies a number of an updated level in the book (eg best ask 

would be level 0 at sell side). Size’s delta of the update specifies how much level is modified, 

absolute size specifies new size of the level after update is applied. 
 

As can be noted we also add a timestamp as a part of event information which allows agent to 

learn potentially important information from current frequency of updates. 
 

2 Trade event. 

 
This is also a common channel where exchanges broadcast information on committed trades.  

Trade occurs when exchange’s matching engine matches incoming Market order with the queued 

limit orders based on Price / Submission time priority. 

 
Trade is represented as a tuple: (‘price_absolute’,’size’, ‘trade_direction’, ‘timestamp’) 

 

3 Individual trading order 
 

Some exchanges also broadcast information on individual trading orders. In such case our model 

incorporates such events as well in the form of the following tuple: 
(‘order_type’,’price_level_absolute’,’price_level_relative’,’order_size’,’timestamp’) 

Our agent makes trading decisions upon arrival of each individual event from the above list. It 

makes such decisions by supplying it’s model’s NN (Neural Network) with a current state of 
trading environment (coded in a way, described below). 

Below is a description of the coding scheme for the environment state. 

Environment State is represented as a combination of two States: Market Microstructure State 

(State_MM) + Agent’s Positions State (State_AP). 
Let us first describe State_MM. 

In turn this state can be split into three parts: State_LOB + State_micro_structure_events + 

State_high_level_prices 
State_LOB is a current state of a Limit Order Book with 10 best sell and buy price levels with 

sizes 

+ a timestamp. 

State_micro_structure_events is represented as 3 time series of events of each type (book update, 
trade, individual order). Each time series contains a 100 of last events of corresponding type, 

coded in a way described above. 
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State_high_level_prices represents 3 time series, composed of 10 candlesticks each on the 
following time frequencies (15 minutes, 1 minute, 1 second) + 3 pairs of Support, Resistance 

Levels 

– more specifically Min and Max prices for each series. Support and Resistance levels 

information is considered to be a hint to the model to act differently if price is approaching one of 
such levels compared to times when price is in the middle of the corresponding price range. 

Candlestick information is coded as a following tuple: (‘price_open’, 

‘price_max’,’price_min’,’price_close’) 
Let us now describe State_AP – a state, representing agent’s current trading position This state is 

split into two following parts: State_Open_Position + State_Limit_Orders 

State_Open_Position represents a total current open position as an open position’s size – positive 
for buy or negative for sell. 

 

In general it would be tempting to represent State_Limit_Orders as a vector of certain length of 

orders on every book level less than vector’s length. This way agent could maintain multiple limit 
orders on different book levels. However in this work simplifying assumption was made to 

maintain only 2 limit orders for best ask and best bid assuming that maintaining a net of limit 

orders maybe beneficial only in actual trading environment where it is important to add an order 
in advance to prevent price ‘slipping’ effect. In this work however we do not analyze such effects 

and hence limit our orders to just best bid and best ask. Hence State_Limit_Orders is represented 

as a pair (‘size_best_bid’, ‘size_best_ask’). 
Now, once a Trading Environment is specified let us proceed to the description of agent’s 

possible actions and rewards for those actions. 

We assume that agent’s action can be represented as a tuple: 

(‘best_ask’,’best_bid’,’episode_close_indicator’). 
 

Specifying these delta’s instructs and agent to properly maintain his two current limit orders. 

Depending on the output from the model’s NN – he can decide to keep same order sizes or 
possibly increase some of them, or decrease or completely cancel. 

 

Episode_close_indicator when set to 1 instructs an agent to close his open position and finalize 

episode of Reinforcement Learning. 
 

Let us now describe how agent is being rewarded for actions. 

 
There are two possible ways to simulate how Book Level is being traded. It is common to assume 

market orders arrive with exponential times with some rate r and it can be possible to  estimate 

when potentially agent’s order can be consumed partly or fully. Potentially exponential arrival 
rates could be calibrated from information on Limit Order Book updates presented above (for 

details please refer to work [8]), however in this work another approach is used for estimation of 

time when agent’s order is consumed. Namely internally simulation maintains approximate 

location of agent’s order inside level’s orders FIFO and thus it is assumed that first trade, that 
consumes level’s size up-to agent’s location would also consume agent’s order. In this case 

agent’s reward is calculated as follows: 

 
R = maker_fee – trade_price*size, maker_fee > 0 

If size is positive and that is a limit buy – we assume that agent spends money to buys specified 

size, if size is negative and that is limit sell – we assume – agent is payed back for specified 
trades size. 

 

In both cases agent is rewarded with maker_fee. 
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The moment when position is filled is not directly related to trader’s current action – rather it 
depends on his previous actions and that is a typical scenario for Reinforcement Learning. 

Another scenario when agent is reward in our model is when episode is closed. In this case we 

compute reward as follows: 

 
R = taker_fee + trade_price * open_size, taker_fee < 0 

In this case when open_size is positive and episode is closed – agent sells his current position and 

gets rewarded with the sold amount. If open size is negative – agent is closing his short position 
and pays corresponding amount for that. In both cases agent pays a taker’s fee as he is using a 

market order. 

 
Finally, let us describe how environment is modified upon every step 

 

There are two changes that happen in the environment upon event’s arrival: first of all a time 

series of corresponding event’s type is shifted by 1 event in State_MM. In addition – State_MM’s 
Limit Order Book is properly updated. Finally, possible changes in State_high_level_prices state 

is monitored based on timestamp of the event – eg next second’s candlestick may be closed if 

event’s timestamp crosses previous second. In addition to that State_AP can be modified as 
follows: if agent’s action specifies changes in his limit orders – that is being done. Also if it is 

estimated that agent’s order is consumed – his limit order is updated properly as well as his open 

position. 
 

3. AGENT’S NEURAL NETWORK 
 

Depending on the Reinforcement Learning Approach used – weather it is DQN or Proximal 

Policy Optimization or Cross Entropy – output of the network differs. For DQN – it is estimated 
value of a pair (S,a) – where S is environment’s state and a is an agent’s action. Agent selects and 

action which maximizes Q(S,a). If it is Proximal Policy Optimization or Cross Entropy – output 

is a probability distribution of agent’s possible actions in a given state. In both cases however 
there is a common part of network architecture which consumes state of the environment as an 

input and is described below. 

 

LOB part of the input state is processed by 2 Linear Layers of 64 neurons each, producing output 
of length 10 

Each of 3 events time time series is processed by LSTM with 64 neurons – each producing an 

output vector of length 10 
Each of 3 candlestick time series is processed by LSTM with 64 neurons – each producing an 

output vector of length 10 

3 pairs of Support / resistance Levels are processed with single Linear Layer with 64 neurons 

with out put of length 3 
All output vectors are then concatenated to produce a single output of length 73 which is then 

processed by another Linear Layer with 64 neurons to produce either Q-value for DQN or a 

probability distribution for Proximal Policy Optimization and Cross Entropy approaches. 
 

Graphically architecture is depicted below (Figure 1): 
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Figure 1. Graph architecture 

 

4. EXPERIMENTAL SETUP AND RESULTS 
 
In order to evaluate the above Quantum RL scheme, data was collected using WebSocket 

Binance Api. Network was trained on the following parsed data from Binance exchange: 

 
It represents about 8 hours of High Frequency data (Limit Order Book combined with Trade 

History) with mean interval between events ~ 0.1s. 

 
Testing was done on a different ~ 8 hours data file from Binance: The trained model was 

evaluated on the following day. 

 

We checked all three above mentioned alternative for RL – DQN, PPO and CE The best results 
of trading simulation were for DQN RL and are discussed below. PyTorch implementation is 

available on GitHub at following URL: https://github.com/akirnasov/Quantum-RL   Train and 

test data can be found in the same repository (please check for *.txt files). 
 

In order to evaluate benefits of the proposed Quantum RL approach we compare it with closest 

approach from work [4] “Deep reinforcement learning for high frequency trading”. In this work 

authors use Policy Proximal Optimization for RL implementation and they also use only Level 2 
data with 0.1 s sampling frequency. Hence in our experiments we compare learning results of 

Quantum RL approach (DQN implementation with event based trading data and lower frequency 

market state data) separately with PPO implementation and with DQN based only on Level 2 
data. 
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Figure 2. Graph reward % (Quantum RL) 

 

On the above chart (Figure 2) we plotted mean reward for the last 100 steps of education. Reward 
assumes 0.025% commission on each position’s open / close – so chart starts with -0.050% and 

then between 1M and 1.5M steps rapidly grows hitting -0.004% after around 2M steps (~12 

hours training on RTX3090).  

 
Below we provide two similar charts – in the first case for PPO implementation and in the second 

case when only using Level 2 data.   

 
 

Figure 3. Graph reward % (PPO) 

 
 

Figure 4. Graph reward % (DQN with L2 data only) 
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As we can see in both cases trading agent was not able to reach positive PnL even after 7 Mln 
steps of learning (~48 hours using RTX3090). We believe that DQN is better suitable for algo 

trading RL as it is typically used for discrete action spaces, while adding trading events to Level 

2 as well as lower frequency market state information allows our agent to make better trading 

decisions. 
 

On the next chart (Figure 5) we plot how long the position is kept on average. 

 

 
 

Figure 5. Graph poslen 

 

It can be seen that Position Length grows to around 40 ticks and stabilizes. That corresponds to 
around 4 seconds on average. That can be treated in a way, that network learned to catch short 

term spikes based on 500 previous ticks history. 

 
Finally, on the below chart (Figure 4) we plotted the PnL result of our HFT strategy on the test ~8 

hours’ time frame. It should be noted that in this case we set actual commission – 0.1% on 

Binance. 

 
As can be seen our strategy was able to generate ~ 4% PnL in ~ 8 hours and at max level it 

reached almost 8% PnL. 

 
Should be noted, that test run was done with reward function set to percentage of the price 

change from the first to the last tick. While during education reward function was set to add small 

percentage change of the current tick. That is why even though the reward graph only goes up-to 

-0.004% and with lower commission 0.025%, still – the test run goes to the positive PnL area as 
percentage change between last and first ticks is always higher than sum of percentage changes 

on every tick that can be easily derived mathematically. 

 
So, we can conclude using RTX 3090 it is possible to train network on previous day data at night 

time and then use it for profitable trading the very next day and so on. In the current setup with 

event mean interval of 0.1 s and average inference on CPU taking ~0.01s that is quite feasible to 
implement in actual HFT platform. 

 

It is also possible to add on-the fly training during next day. Eg: every M minutes weights of the 

trading Neural Network can be updated with the weights from the trainable Neural Network  that 
runs in parallel. This can be used to better account for the changing trading environment. 

Parameter M could be considered as a hyper parameter and tuned separately for each traded 

instrument. 
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Figure 6. Graph PnL% 

 

5. LIMITATIONS 
 

One of the key limitations of Quantum RL approach is a performance consideration within actual 

High Frequency Trading platform as in practice we should consider inference latency when 
making RL decisions via Neural Network. However it is not rare these days to use specialized 

hardware in High Frequency Trading such as ASIC chips (Application Specific Integration 

circuit) and GPU (Graphics Processing Units) which makes such approach quite feasible. Even 
using just modern High Performance CPUs it is still possible to apply the described approach on 

Crypto Exchanges as we have shown in the above research. Also it is possible to consider 

Attention based architectures instead of LSTM which could make inference much faster along 
with other possible optimizations for the Neural Networks including binary code optimizations.  

 

6. CONCLUSIONS 
 

In this paper we presented a novel approach called Quantum Reinforcement Learning for High 
Frequency Trading. We evaluated approach using simulation on Binance Exchange and showed 

that it can be used for profitable HFT strategies. We also provided a link to PyTorch 

implementation for interested researchers. We consider possible extensions of the proposed 
approach for High Frequency Market Making in the future plans. 
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