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ABSTRACT 
 
In a Retrieval Augmented Generation system, the possibility of hallucination is ever 

prevalent, as it has been increasingly common for an AI model to produce inaccurate 

generations given an input, which can become increasingly more devastating for a RAG 

system due to its node-like generation. To solve this problem, we introduced a series of self-

reflective nodes, creating a self-RAG model. To create our program, we established a 

series of nodes that utilized ChatGPT for generation as well as the Langchain python 
library and its workflow functions to piece together the nodes. A major challenge faced 

during the planning and development stages was the creation of the self-reflective nodes 

within the workflow, as these proved to be difficult to implement. To test the accuracy and 

capacity of this proposed Self-RAG model, multiple experiments were carried out and the 

result ensures a quality generation. This model should be implemented because it avoids 

misleading and inaccurate answers. 
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1. INTRODUCTION 
 

Modern day AI, while most times useful, often provides inaccurate answers to questions that 

require information that the AI model simply does not have access too. Additionally, in the event 
that the AI model does have the information necessary to answer a question, it can still produce 

an answer that is very unclear or not conducive to proper learning or communication. These 

inaccuracies in the AI responses can have great impact depending on the application, considering 
practical AI is becoming more and more prominent in many industries such as software 

development and even medical fields. “In a 2018 Deloitte survey of 1,100 US managers whose 

organizations were already pursuing AI, 63% of companies surveyed were employing machine 
learning in their businesses.” Such a problem, though seemingly small, would lead to detrimental 

effects in the long run. Software developed based on inaccurate generative AI would have 

problems in its algorithms that are hard to locate in the long run. If these problems are not 

addressed immediately, there would be more and more problems leading to the collapse of the 
system or the production of completely inaccurate output. In the medical field, the patient's life is 

dependent on such an erroneous system. 
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Included in this paper, are three related methodologies that attempt to solve the same problem 
that the methodology proposed in this essay does. These three methodologies are RQ-Rag, DR-

RAG, and VistaRAG.  

 

RQ-Rag is a RAG model that attempts to prevent hallucination by refining the query, making 
sure the model doesn’t go off track. Although this model refines the query, it is still not self - 

reflective upon the answers generated which may result in an inaccurate or unrelated answer from 

an ineffective question.  
 

DR-RAG is another RAG model designed to prevent hallucination by dynamically retrieving 

relevant information from the documents prior to answering the query. The refined documents 
are then used to answer the query, however, this poses the problem of potentially grabbing 

irrelevant or discarding relevant information to answer the query accurately.  

 

VistaRAG is a RAG system that aims to reduce inaccurate and misleading results by checking the 
generation against real life data. Such an implementation is typically used for automotive cars. 

The limitations of this system is that while there is comparison with real life data, there is no 

assurance that the real life data is correct. Furthermore, the real life data doesn’t necessarily 
reflect the particular situation one is in and thus may lead to ineffective decisions. 

 

By implementing self-RAG into the question-answering AI model, hallucination and information 
without accuracy could be erased or at the very least, decreased by a large margin. The self-RAG 

system solves this problem by checking the relevant documents and generating an answer only 

through the relevant information, as the nature of the AI model processing system is self-

reflective and able to determine if it has grabbed useless information. This eliminates the chance 
that unrelated ideas and facts are put into the final generated answer. Not only would this system 

check the relevant documents, it would also self assess the generated answers it produces. By 

double checking - or checking however many times until the model deems it’s answer 
appropriate -  the AI model could successfully locate the relevant information and generate an 

accurate answer through the information given. self-RAG serves as a better model than other 

models, like hybrid search, because even though hybrid search could better locate the relevant 

document, it does not re-asses itself to make sure the information it extracted is correct.  For 
instance, if the hybrid search model extracts deceitful information in the beginning, no matter 

how profound the generation is, the information is still useless or misleading from the start as it is 

unable to go back and grab more information that is actually useful, making the model move 
further but in the wrong direction. Thus, to ensure that the correct information is given from the 

start and processed later in the process,a  self-RAG system is the most effective solution. 

 
Within this paper, to verify the accuracy of the proposed Self-RAG model methodology, 

experiments were performed to test its capability and accuracy. Within the first experiment 

displayed, the focal point of the experiment was to examine the accuracy of the model compared 

to how many different questions were asked. What we found from this experiment was that the 
model, at around over 3 different questions, started to become inaccurate or completely unrelated 

to any question. In the second experiment, the intention was to find the relationship between the 

intricacy of one question containing various sub-questions and the accuracy of the generation. 
What we found was that the model stayed consistently accurate, despite the complexity of the 

original question. This result piqued our interest, as in the former experiment we found the model 

to break at around 4 questions, which contradicts how the model performed in the second 
experiment. We believe the second experiment’s result occurred because the Self-RAG model 

was able to rephrase the question to be easier to answer, as opposed to the former experiment 

which included a few differing questions. 
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2. CHALLENGES 
 
In order to build the project, a few challenges have been identified as follows. 

 

2.1. The create_workflow Function 
 

One major component of the self-reflective-RAG algorithm that is presented in this paper is the 

create_workflow function. This function acts as place to ‘connect the dots,’ or nodes in this case, 
that make up the entire self-reflective-RAG model. One challenge that was faced during the 

development process was the managing of the ‘state’ parameter. Within the workflow, defined by 

the langchain library, the state is a json string that is passed around to all of the workflow 

functions, and is constantly updated to reflect the part of the process that the model is currently in. 
Managing this ‘state’ parameter was particularly difficult because all of the necessary 

information needed for the self-reflective-RAG model to function is stored in the state and is 

updated in every workflow node. Keeping the data updated was quite a task.  
 

2.2. The create_docs() Function 

 
Another significant aspect of the self-reflective-RAG algorithm is the create_docs() function 

which loads all the given webpages as resources that could be parsed into documents 

understandable by the AI model. The challenging aspect we encountered during the development 
process was creating the retriever for the documents and having it be accessible for the workflow 

functions. Originally, the creation of the retriever was it’s own node in the workflow, however, 

this would not work, as the retriever must be created with all of the documents beforehand, and 
cannot be accessed from the workflow. Eventually, the solution that we came to was to pass the 

retriever as an item in the input ‘state,’ so that it may be accessed by all necessary workflow 

nodes. 

 

2.3. The Overall Grading Process 
 

Probably the most important aspect of this project we had to consider was how the overall 

grading process of the self-reflective-RAG model worked. Originally, the relevance of each 

document was checked and documents that were graded as irrelevant were deleted. The rest of 
the relevant documents went through the final grading and generating. However, when the final 

generated answer appeared, it is evident that only the most relevant generation was used, not all 

the relevant generations that came out of the algorithm. Upon reviewing this strategy for self-
reflecting, we determined that grading the generations was a waste of time, as the algorithm 

would only grab the most relevant generation anyway. To fix this problem, we decided to include 

all generations that passed the grading to be combined into one more comprehensive generation.   

 

3. SOLUTION 
 

Taking a look at the overall structure of the self-reflective-RAG model, the three major 

components that are linked together are the workflow, the retriever for the documents, and the 
actual workflow functions themselves. The first step in the processing of the self-reflective-RAG 

model is the creation of the retriever, which involves loading all of the url’s given to the model as 

webpages and converting them into documents which can be processed but the AI model. After 
this, the documents are parsed and checked to see if they are relevant to the question. Upon 

creating the usable documents, the workflow is created, which involves setting up the flow for all 

of workflow nodes so that the data may be properly processed. After creating the workflow, the 

input state is created, which only includes the question and documents, and fed into the workflow. 
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Upon being fed into the workflow, the workflow continues to make changes with the state, and 
upon visiting every node in the state, the returned state now contains the final generation which 

can be accessed and displayed. To implement this program, we used the langchain framework. 

During our generation, the rag prompt is called from the langchain framework hub that langchain 

has made available so that we did not have to create our own prompt. The most used modules 
from the langchain library that are implemented into this project are from the langchain_openai 

library, as the ChatOpenAI module allows the program to make queries to ChatGPT within the 

workflow. 
 

 
 

Figure 1. Overview of the solution 

 
The purpose of the create_workflow() function is to link all of the workflow nodes together, in 

order to create the whole node by node workflow. Inside of this function, all of the nodes are 

defined and also fit properly into what will become the ‘workflow’ of the self-reflective-RAG 
processing system. 
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Figure 2. Screenshot of code 1 

 

The image above showcases the function to create the workflow. Within the first half of the 

function, all of the nodes are defined utilizing the ‘add_node’ function that is a part of the 
workflow object defined at the very top of the function. To actually define the path of the 

workflow, various functions are employed. To start, the ‘set_entry_point’ function is used to 

define the entry point of the workflow, which is set to the grade_documents node. At the 

grade_documents node, all of the documents inside fo the retriever are graded and if deemed 
useless will be dropped and not used in the algorithm. After setting the entry point, all of the 

edges are defined, starting with the ‘grade_documents’ to the ‘generate’ edge. Upon hitting the 

generate edge, generations that seek to answer the question are created using each document. 
After creating each generation, we define all the necessary nodes for generating the final answer 

including nodes such as ‘transform_query,’ ‘grade_generation_v_documents,’ and 

‘grade_generation_v_question.’ 
 

The intended use of the create_docs() function is to create the retriever, which loads urls that are 

given by the user into webpages and converts them to documents that will be passed into the 

workflow and used by the nodes. The documents would then be split into different chunks and 
each chunk would be contained in the retriever.  
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Figure 3. Screenshot of the calendar 

 

Within in the create_docs function, the first thing that is done is the urls that are passed as 

documents to this function are loaded by their url. After each url is loaded, the loaded docs are 
then separated into sublists, so that they are in smaller chunks and easier to understood by a llm. 

After this step, the text_splitter variable is initialized, and in it is stored the actual text_splitter 

object specified with how big each chunk should be. The doc_splits variable stores what is 

returned with the text_splitter object is called to split the docs_list. Finally, the vectorstore object 
is initialized, containing the doc_splits as the documents, the “rag-chroma” model as the 

collection_name, and the OpenAI Embeddings as the embedding. The vectorstore is then 

returned as a retriever object to be used in the workflow. This retriever will go on to be used 
solely to get relevant documents pertaining to the question that is asked to the rag system. 

 

The unique background functions that are linked together in the create_workflow() function to 
create the workflow path are what are called the workflow functions or the ‘nodes.’ These nodes 

are all unique in that they each serve a different purpose in the workflow, however, each is only 

allow the one parameter ‘state,’ as this standardizes the parameters and ensures all will be able to 

be linked together linearly.  
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Figure 4. Screenshot of code 3 

 

The pepare_for_final_grade node is one of the several nodes used. It also appears to be the final 

node in the workflow. The very first that is always done in all of the workflow nodes, is the 
retrieval of the items within the state parameter that is passed between the nodes. This retrieval is 

necessary as it permits the use of the generate items from the previous nodes within the current 

node, wherever that may be. After retrieving these items from the state, the prompt template is 

defined, which is essentially the instruction that is given to chatgpt, including some defined input 
variables and where to fit them into the prompt. After, the ChatOpenAI model and the chain are 

created. Finally then, the chain is invoked containing the actual input variables to be used, and 

then the new state is created and returned, having been updated with the new item to be stored.  
 

4. EXPERIMENT 
 

4.1. Experiment 1 
 

One potential blind spot that we have identified in the application is how long and how many 

questions can be posed to our rag system. It is important that this complexity be handled 
effectively, as it can generate potentially incorrect answers or waste resources. 

 

For this experiment, the goal is to test how the amount of questions posed to the rag system with 

the appropriate documents will affect the generation that is returned. To test this, we intend to 
continue to ask differing questions, adding a question and a documen as we move along, until the 

generation we receive implies an incorrect or incomplete answer. By conducting the experiment 

this way, we intend to discover how the amount of questions we psoe will affect the resource 
management by measuring the time and how accurate the rag system is. 
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Figure 5. Figure of experiment 1 

 

After conducting this experiment, the most surprising outcome we encountered was that the rag 
system was incredibly accurate even going up to three questions! In the generation that was 

provided by the rag system, all three questions were answered accurately and backed up with 

factual information from the documents. We also noticed that this was done in a timely manner, 

as a matter of fact, what took the longest amount of time was the actual collection of the 
documents from the web. After around 3 questions is when the rag system started to drift off 

target, and would fall victim to finding relevelant documetns to be irrelevant or just deemed 

generations to not be relevant to the question. We predict the reason this being that the 
generations that are graded are not only graded on what question that pertains to it, but also the 

other questions posed, which leads to the document being graded irrelevant. Generally, there is 

just too much information being passed around to be accurate. 

 

4.2. Experiment 2 
 
One potential blindspot in the self-rag system, is the potential that in the process of creating the 

generation, important information relevant to the question is excluded. It is important that this 

does not occur, as the self-rag model should answer the prompt exactly.  
 

In this experiment, to test and see how detailed the AI model can remain when being asked 

intricate questions, we will ask questions of various increasing intricacies and examine how 

accurate and whether the self-rag model touches on all points relevant to the question. To conduct 
this experiment, we will start with a baseline question, and continue to increase it’s intricacy by 

asking for more relevant information one at a time. We will continue to test this, until either the 

self-rag model becomes inaccurate or excludes information relevant to the answer. The 
importance of addressing this issue is critical, as ensuring the inclusion of all data relevant to the 

question is the desired outcome. 

 

 
 

Figure 6. Figure of experiment 2 
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During and after experimentation, the first thing we noticed was how consistently accurate and 

encompassing the self-rag system remained despite the intricacy of the question. As a matter of 

fact, we were unable to get the AI model to become inaccurate, despite the intricacy of our 

questions. We believe these results were obtained and remained consistent due the components of 
each question being related to the same central topic. This enables the self-rag model to not have 

to switch contexts, as it previously had to do in the former experiment. We believe these results 

were obtained primarily due to the nature of the self-rag system, specifically, it’s ability to reflect 
on itself and reshape the question to be tailored to receive a particular response. Additionally, a 

key component of the self-rag model is the ability to compare the generation with the original 

question and determine if it answers the prompt accurately, which ensures the output is accurate 
and all encompassing.   

 

5. RELATED WORK 
 

Another RAG system that aims to tackle hallucination of generative AI is the RQ-RAG system.  
RQ-RAG, or Refine Query for Retrieval Augmented Generation, is a RAG system that attempts 

to solve the problem of generation hallucination by spending it’s time focusing on the refining of 

the question to invoke a more particular and informative answer. This solution is effective, in that 
test results demonstrate accurate results, however, there is an inherent deficiency apparent in the 

potential for the RQ-RAG model could refine the question in the wrong direction, producing an 

output that is no longer relevant to the question asked. Moving further with this issue, there is not 

any apparent way for the RQ-RAG model to look back and determine if it’s refined query is still 
relevant to the original query. Compared to the RQ-RAG model, the Self-RAG model proposed 

in this paper improves upon where the RQ-RAG lacks by including self-reflection in the RAG 

process. 
 

Another attempt at improving a basic RAG system is DR-RAG, a RAG model designed 

specifically to dynamically retrieve all information relevant to the query. DR-RAG involves a 
two-step process, of first retrieving all necessary information for answering a query from the 

documents and utilizing those as the new documents for the LLM to answer the query with. One 

potential problem with how the DR-RAG model discards information in an attempt to prevent 

hallucination, is the possibility of discarding relevant information or even retrieving useless 
information. Additionally, the DR-RAG model does not reflect on itself, and ensure there is no 

hallucination or useless responses or feedback.  

 
VistaRag is a RAG system that works specifically for automotive driving. Different from the 

Self-RAG system that checks its generated answers by looking back at itself, the VistaRag 

system compares the generated answers to real world data, typically stored in a database. The 

issue that arises when the VistaRag model is employed in use is the possibility of the RAG model 
still hallucinating. The comparison to the real world data, while still effective, is not enough to 

ensure the accuracy of the prediction. However, a self reflective check, while still having the 

possibility to hallucinate, will add an extra layer of caution for the model. 
 

6. CONCLUSIONS 
 

During and after the development of the Self-RAG methodology seen in this paper, there are 

some apparent concerns that have to do with the safety and potential accuracy of the node system. 
After reflecting on how the documents are essentially web pages that can be loaded into the 

model, there then becomes the possibility of using the Self-RAG system for dangerous things, as 

well as prompt injection vulnerabilities. If given more time, we intend to remedy by establishing 
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the node that verifies the documents as well as the question before proceeding with the generation. 
Since in the current Self-RAG methodology, there is only validation that the answer generated 

answers the question, not that the generated answer aligns with the documents uploaded, this 

could lead to misleading answers or inappropriate contents. 

 
This concludes the deep-dive on the presented Self-RAG methodology. Throughout all of the 

effort that went into research and development, I learned a lot about the Self-RAG system as well 

as systemic AI. Thank you for reading. 
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