
David C. Wyld et al. (Eds): DMSE, CSEIT, NeTCoM, SPM, CIoT, NCS, NLPD, ArIT, CMLA – 2024

pp. 19-26, 2024. CS & IT - CSCP 2024 DOI: 10.5121/csit.2024.141402

A SELF-REFLECTIVE RETRIEVAL

AUGMENTED GENERATION SYSTEM TO

ELIMINATE HALLUCINATION
IN LLM GENERATION

Haotong Hu1, Garret Washburn2

1Basis Bilingual School, Shenzhen, Shenzhen, China

2Computer Science Department, California State Polytechnic University,

Pomona, CA 91768

ABSTRACT

In a Retrieval Augmented Generation system, the possibility of hallucination is ever

prevalent, as it has been increasingly common for an AI model to produce inaccurate

generations given an input, which can become increasingly more devastating for a RAG

system due to its node-like generation. To solve this problem, we introduced a series of self-

reflective nodes, creating a self-RAG model. To create our program, we established a

series of nodes that utilized ChatGPT for generation as well as the Langchain python
library and its workflow functions to piece together the nodes. A major challenge faced

during the planning and development stages was the creation of the self-reflective nodes

within the workflow, as these proved to be difficult to implement. To test the accuracy and

capacity of this proposed Self-RAG model, multiple experiments were carried out and the

result ensures a quality generation. This model should be implemented because it avoids

misleading and inaccurate answers.

KEYWORDS

Rag, LLM, Self-RAG, Self-Reflective

1. INTRODUCTION

Modern day AI, while most times useful, often provides inaccurate answers to questions that

require information that the AI model simply does not have access too. Additionally, in the event
that the AI model does have the information necessary to answer a question, it can still produce

an answer that is very unclear or not conducive to proper learning or communication. These

inaccuracies in the AI responses can have great impact depending on the application, considering
practical AI is becoming more and more prominent in many industries such as software

development and even medical fields. “In a 2018 Deloitte survey of 1,100 US managers whose

organizations were already pursuing AI, 63% of companies surveyed were employing machine
learning in their businesses.” Such a problem, though seemingly small, would lead to detrimental

effects in the long run. Software developed based on inaccurate generative AI would have

problems in its algorithms that are hard to locate in the long run. If these problems are not

addressed immediately, there would be more and more problems leading to the collapse of the
system or the production of completely inaccurate output. In the medical field, the patient's life is

dependent on such an erroneous system.

http://airccse.org/cscp.html
https://airccse.org/csit/V14N14.html
https://doi.org/10.5121/csit.2024.141402

18 Computer Science & Information Technology (CS & IT)

Included in this paper, are three related methodologies that attempt to solve the same problem
that the methodology proposed in this essay does. These three methodologies are RQ-Rag, DR-

RAG, and VistaRAG.

RQ-Rag is a RAG model that attempts to prevent hallucination by refining the query, making
sure the model doesn’t go off track. Although this model refines the query, it is still not self -

reflective upon the answers generated which may result in an inaccurate or unrelated answer from

an ineffective question.

DR-RAG is another RAG model designed to prevent hallucination by dynamically retrieving

relevant information from the documents prior to answering the query. The refined documents
are then used to answer the query, however, this poses the problem of potentially grabbing

irrelevant or discarding relevant information to answer the query accurately.

VistaRAG is a RAG system that aims to reduce inaccurate and misleading results by checking the
generation against real life data. Such an implementation is typically used for automotive cars.

The limitations of this system is that while there is comparison with real life data, there is no

assurance that the real life data is correct. Furthermore, the real life data doesn’t necessarily
reflect the particular situation one is in and thus may lead to ineffective decisions.

By implementing self-RAG into the question-answering AI model, hallucination and information
without accuracy could be erased or at the very least, decreased by a large margin. The self-RAG

system solves this problem by checking the relevant documents and generating an answer only

through the relevant information, as the nature of the AI model processing system is self-

reflective and able to determine if it has grabbed useless information. This eliminates the chance
that unrelated ideas and facts are put into the final generated answer. Not only would this system

check the relevant documents, it would also self assess the generated answers it produces. By

double checking - or checking however many times until the model deems it’s answer
appropriate - the AI model could successfully locate the relevant information and generate an

accurate answer through the information given. self-RAG serves as a better model than other

models, like hybrid search, because even though hybrid search could better locate the relevant

document, it does not re-asses itself to make sure the information it extracted is correct. For
instance, if the hybrid search model extracts deceitful information in the beginning, no matter

how profound the generation is, the information is still useless or misleading from the start as it is

unable to go back and grab more information that is actually useful, making the model move
further but in the wrong direction. Thus, to ensure that the correct information is given from the

start and processed later in the process,a self-RAG system is the most effective solution.

Within this paper, to verify the accuracy of the proposed Self-RAG model methodology,

experiments were performed to test its capability and accuracy. Within the first experiment

displayed, the focal point of the experiment was to examine the accuracy of the model compared

to how many different questions were asked. What we found from this experiment was that the
model, at around over 3 different questions, started to become inaccurate or completely unrelated

to any question. In the second experiment, the intention was to find the relationship between the

intricacy of one question containing various sub-questions and the accuracy of the generation.
What we found was that the model stayed consistently accurate, despite the complexity of the

original question. This result piqued our interest, as in the former experiment we found the model

to break at around 4 questions, which contradicts how the model performed in the second
experiment. We believe the second experiment’s result occurred because the Self-RAG model

was able to rephrase the question to be easier to answer, as opposed to the former experiment

which included a few differing questions.

Computer Science & Information Technology (CS & IT) 19

2. CHALLENGES

In order to build the project, a few challenges have been identified as follows.

2.1. The create_workflow Function

One major component of the self-reflective-RAG algorithm that is presented in this paper is the

create_workflow function. This function acts as place to ‘connect the dots,’ or nodes in this case,
that make up the entire self-reflective-RAG model. One challenge that was faced during the

development process was the managing of the ‘state’ parameter. Within the workflow, defined by

the langchain library, the state is a json string that is passed around to all of the workflow

functions, and is constantly updated to reflect the part of the process that the model is currently in.
Managing this ‘state’ parameter was particularly difficult because all of the necessary

information needed for the self-reflective-RAG model to function is stored in the state and is

updated in every workflow node. Keeping the data updated was quite a task.

2.2. The create_docs() Function

Another significant aspect of the self-reflective-RAG algorithm is the create_docs() function

which loads all the given webpages as resources that could be parsed into documents

understandable by the AI model. The challenging aspect we encountered during the development
process was creating the retriever for the documents and having it be accessible for the workflow

functions. Originally, the creation of the retriever was it’s own node in the workflow, however,

this would not work, as the retriever must be created with all of the documents beforehand, and
cannot be accessed from the workflow. Eventually, the solution that we came to was to pass the

retriever as an item in the input ‘state,’ so that it may be accessed by all necessary workflow

nodes.

2.3. The Overall Grading Process

Probably the most important aspect of this project we had to consider was how the overall

grading process of the self-reflective-RAG model worked. Originally, the relevance of each

document was checked and documents that were graded as irrelevant were deleted. The rest of
the relevant documents went through the final grading and generating. However, when the final

generated answer appeared, it is evident that only the most relevant generation was used, not all

the relevant generations that came out of the algorithm. Upon reviewing this strategy for self-
reflecting, we determined that grading the generations was a waste of time, as the algorithm

would only grab the most relevant generation anyway. To fix this problem, we decided to include

all generations that passed the grading to be combined into one more comprehensive generation.

3. SOLUTION

Taking a look at the overall structure of the self-reflective-RAG model, the three major

components that are linked together are the workflow, the retriever for the documents, and the
actual workflow functions themselves. The first step in the processing of the self-reflective-RAG

model is the creation of the retriever, which involves loading all of the url’s given to the model as

webpages and converting them into documents which can be processed but the AI model. After
this, the documents are parsed and checked to see if they are relevant to the question. Upon

creating the usable documents, the workflow is created, which involves setting up the flow for all

of workflow nodes so that the data may be properly processed. After creating the workflow, the

input state is created, which only includes the question and documents, and fed into the workflow.

20 Computer Science & Information Technology (CS & IT)

Upon being fed into the workflow, the workflow continues to make changes with the state, and
upon visiting every node in the state, the returned state now contains the final generation which

can be accessed and displayed. To implement this program, we used the langchain framework.

During our generation, the rag prompt is called from the langchain framework hub that langchain

has made available so that we did not have to create our own prompt. The most used modules
from the langchain library that are implemented into this project are from the langchain_openai

library, as the ChatOpenAI module allows the program to make queries to ChatGPT within the

workflow.

Figure 1. Overview of the solution

The purpose of the create_workflow() function is to link all of the workflow nodes together, in

order to create the whole node by node workflow. Inside of this function, all of the nodes are

defined and also fit properly into what will become the ‘workflow’ of the self-reflective-RAG
processing system.

Computer Science & Information Technology (CS & IT) 21

Figure 2. Screenshot of code 1

The image above showcases the function to create the workflow. Within the first half of the

function, all of the nodes are defined utilizing the ‘add_node’ function that is a part of the
workflow object defined at the very top of the function. To actually define the path of the

workflow, various functions are employed. To start, the ‘set_entry_point’ function is used to

define the entry point of the workflow, which is set to the grade_documents node. At the

grade_documents node, all of the documents inside fo the retriever are graded and if deemed
useless will be dropped and not used in the algorithm. After setting the entry point, all of the

edges are defined, starting with the ‘grade_documents’ to the ‘generate’ edge. Upon hitting the

generate edge, generations that seek to answer the question are created using each document.
After creating each generation, we define all the necessary nodes for generating the final answer

including nodes such as ‘transform_query,’ ‘grade_generation_v_documents,’ and

‘grade_generation_v_question.’

The intended use of the create_docs() function is to create the retriever, which loads urls that are

given by the user into webpages and converts them to documents that will be passed into the

workflow and used by the nodes. The documents would then be split into different chunks and
each chunk would be contained in the retriever.

22 Computer Science & Information Technology (CS & IT)

Figure 3. Screenshot of the calendar

Within in the create_docs function, the first thing that is done is the urls that are passed as

documents to this function are loaded by their url. After each url is loaded, the loaded docs are
then separated into sublists, so that they are in smaller chunks and easier to understood by a llm.

After this step, the text_splitter variable is initialized, and in it is stored the actual text_splitter

object specified with how big each chunk should be. The doc_splits variable stores what is

returned with the text_splitter object is called to split the docs_list. Finally, the vectorstore object
is initialized, containing the doc_splits as the documents, the “rag-chroma” model as the

collection_name, and the OpenAI Embeddings as the embedding. The vectorstore is then

returned as a retriever object to be used in the workflow. This retriever will go on to be used
solely to get relevant documents pertaining to the question that is asked to the rag system.

The unique background functions that are linked together in the create_workflow() function to
create the workflow path are what are called the workflow functions or the ‘nodes.’ These nodes

are all unique in that they each serve a different purpose in the workflow, however, each is only

allow the one parameter ‘state,’ as this standardizes the parameters and ensures all will be able to

be linked together linearly.

Computer Science & Information Technology (CS & IT) 23

Figure 4. Screenshot of code 3

The pepare_for_final_grade node is one of the several nodes used. It also appears to be the final

node in the workflow. The very first that is always done in all of the workflow nodes, is the
retrieval of the items within the state parameter that is passed between the nodes. This retrieval is

necessary as it permits the use of the generate items from the previous nodes within the current

node, wherever that may be. After retrieving these items from the state, the prompt template is

defined, which is essentially the instruction that is given to chatgpt, including some defined input
variables and where to fit them into the prompt. After, the ChatOpenAI model and the chain are

created. Finally then, the chain is invoked containing the actual input variables to be used, and

then the new state is created and returned, having been updated with the new item to be stored.

4. EXPERIMENT

4.1. Experiment 1

One potential blind spot that we have identified in the application is how long and how many

questions can be posed to our rag system. It is important that this complexity be handled
effectively, as it can generate potentially incorrect answers or waste resources.

For this experiment, the goal is to test how the amount of questions posed to the rag system with

the appropriate documents will affect the generation that is returned. To test this, we intend to
continue to ask differing questions, adding a question and a documen as we move along, until the

generation we receive implies an incorrect or incomplete answer. By conducting the experiment

this way, we intend to discover how the amount of questions we psoe will affect the resource
management by measuring the time and how accurate the rag system is.

24 Computer Science & Information Technology (CS & IT)

Figure 5. Figure of experiment 1

After conducting this experiment, the most surprising outcome we encountered was that the rag
system was incredibly accurate even going up to three questions! In the generation that was

provided by the rag system, all three questions were answered accurately and backed up with

factual information from the documents. We also noticed that this was done in a timely manner,

as a matter of fact, what took the longest amount of time was the actual collection of the
documents from the web. After around 3 questions is when the rag system started to drift off

target, and would fall victim to finding relevelant documetns to be irrelevant or just deemed

generations to not be relevant to the question. We predict the reason this being that the
generations that are graded are not only graded on what question that pertains to it, but also the

other questions posed, which leads to the document being graded irrelevant. Generally, there is

just too much information being passed around to be accurate.

4.2. Experiment 2

One potential blindspot in the self-rag system, is the potential that in the process of creating the

generation, important information relevant to the question is excluded. It is important that this

does not occur, as the self-rag model should answer the prompt exactly.

In this experiment, to test and see how detailed the AI model can remain when being asked

intricate questions, we will ask questions of various increasing intricacies and examine how

accurate and whether the self-rag model touches on all points relevant to the question. To conduct
this experiment, we will start with a baseline question, and continue to increase it’s intricacy by

asking for more relevant information one at a time. We will continue to test this, until either the

self-rag model becomes inaccurate or excludes information relevant to the answer. The
importance of addressing this issue is critical, as ensuring the inclusion of all data relevant to the

question is the desired outcome.

Figure 6. Figure of experiment 2

Computer Science & Information Technology (CS & IT) 25

During and after experimentation, the first thing we noticed was how consistently accurate and

encompassing the self-rag system remained despite the intricacy of the question. As a matter of

fact, we were unable to get the AI model to become inaccurate, despite the intricacy of our

questions. We believe these results were obtained and remained consistent due the components of
each question being related to the same central topic. This enables the self-rag model to not have

to switch contexts, as it previously had to do in the former experiment. We believe these results

were obtained primarily due to the nature of the self-rag system, specifically, it’s ability to reflect
on itself and reshape the question to be tailored to receive a particular response. Additionally, a

key component of the self-rag model is the ability to compare the generation with the original

question and determine if it answers the prompt accurately, which ensures the output is accurate
and all encompassing.

5. RELATED WORK

Another RAG system that aims to tackle hallucination of generative AI is the RQ-RAG system.
RQ-RAG, or Refine Query for Retrieval Augmented Generation, is a RAG system that attempts

to solve the problem of generation hallucination by spending it’s time focusing on the refining of

the question to invoke a more particular and informative answer. This solution is effective, in that
test results demonstrate accurate results, however, there is an inherent deficiency apparent in the

potential for the RQ-RAG model could refine the question in the wrong direction, producing an

output that is no longer relevant to the question asked. Moving further with this issue, there is not

any apparent way for the RQ-RAG model to look back and determine if it’s refined query is still
relevant to the original query. Compared to the RQ-RAG model, the Self-RAG model proposed

in this paper improves upon where the RQ-RAG lacks by including self-reflection in the RAG

process.

Another attempt at improving a basic RAG system is DR-RAG, a RAG model designed

specifically to dynamically retrieve all information relevant to the query. DR-RAG involves a
two-step process, of first retrieving all necessary information for answering a query from the

documents and utilizing those as the new documents for the LLM to answer the query with. One

potential problem with how the DR-RAG model discards information in an attempt to prevent

hallucination, is the possibility of discarding relevant information or even retrieving useless
information. Additionally, the DR-RAG model does not reflect on itself, and ensure there is no

hallucination or useless responses or feedback.

VistaRag is a RAG system that works specifically for automotive driving. Different from the

Self-RAG system that checks its generated answers by looking back at itself, the VistaRag

system compares the generated answers to real world data, typically stored in a database. The

issue that arises when the VistaRag model is employed in use is the possibility of the RAG model
still hallucinating. The comparison to the real world data, while still effective, is not enough to

ensure the accuracy of the prediction. However, a self reflective check, while still having the

possibility to hallucinate, will add an extra layer of caution for the model.

6. CONCLUSIONS

During and after the development of the Self-RAG methodology seen in this paper, there are

some apparent concerns that have to do with the safety and potential accuracy of the node system.
After reflecting on how the documents are essentially web pages that can be loaded into the

model, there then becomes the possibility of using the Self-RAG system for dangerous things, as

well as prompt injection vulnerabilities. If given more time, we intend to remedy by establishing

26 Computer Science & Information Technology (CS & IT)

the node that verifies the documents as well as the question before proceeding with the generation.
Since in the current Self-RAG methodology, there is only validation that the answer generated

answers the question, not that the generated answer aligns with the documents uploaded, this

could lead to misleading answers or inappropriate contents.

This concludes the deep-dive on the presented Self-RAG methodology. Throughout all of the

effort that went into research and development, I learned a lot about the Self-RAG system as well

as systemic AI. Thank you for reading.

REFERENCES

[1] Asai, Akari, et al. "Self-rag: Learning to retrieve, generate, and critique through self-reflection."

arXiv preprint arXiv:2310.11511 (2023).

[2] Asai, Akari, et al. "Self-RAG: Self-reflective Retrieval Augmented Generation." NeurIPS 2023

Workshop on Instruction Tuning and Instruction Following. 2023.

[3] Pandya, Keivalya, and Mehfuza Holia. "Automating Customer Service using LangChain: Building

custom open-source GPT Chatbot for organizations." arXiv preprint arXiv:2310.05421 (2023).

[4] Davenport, Thomas, and Ravi Kalakota. "The potential for artificial intelligence in healthcare."

Future healthcare journal 6.2 (2019): 94.

[5] Jeong, Minbyul, et al. "Improving Medical Reasoning through Retrieval and Self-Reflection with

Retrieval-Augmented Large Language Models." arXiv preprint arXiv:2401.15269 (2024).

[6] Jeong, Minbyul, et al. "Improving Medical Reasoning through Retrieval and Self-Reflection with
Retrieval-Augmented Large Language Models." arXiv preprint arXiv:2401.15269 (2024).

[7] Chan, Chi-Min, et al. "RQ-RAG: Learning to Refine Queries for Retrieval Augmented Generation."

arXiv preprint arXiv:2404.00610 (2024).

[8] Jiang, Zhengbao, et al. "Active retrieval augmented generation." arXiv preprint arXiv:2305.06983

(2023).

[9] Hei, Zijian, et al. "DR-RAG: Applying Dynamic Document Relevance to Retrieval-Augmented

Generation for Question-Answering." arXiv preprint arXiv:2406.07348 (2024).

[10] Salemi, Alireza, and Hamed Zamani. "Evaluating Retrieval Quality in Retrieval-Augmented

Generation." arXiv preprint arXiv:2404.13781 (2024).

[11] Yu, Hao, et al. "Evaluation of Retrieval-Augmented Generation: A Survey." arXiv preprint

arXiv:2405.07437 (2024).

[12] Yan, Shi-Qi, et al. "Corrective Retrieval Augmented Generation." arXiv preprint arXiv:2401.15884
(2024).

[13] Zhao, Penghao, et al. "Retrieval-Augmented Generation for AI-Generated Content: A Survey." arXiv

preprint arXiv:2402.19473 (2024).

[14] Alkaissi, Hussam, and Samy I. McFarlane. "Artificial hallucinations in ChatGPT: implications in

scientific writing." Cureus 15.2 (2023).

[15] Jeong, Cheonsu. "Generative AI service implementation using LLM application architecture: based

on RAG model and LangChain framework." Journal of Intelligence and Information Systems 29.4

(2023): 129-164.

© 2024 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

https://airccse.org/

	Abstract
	In a Retrieval Augmented Generation system, the possibility of hallucination is ever prevalent, as it has been increasingly common for an AI model to produce inaccurate generations given an input, which can become increasingly more devastating for a R...
	Keywords

