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Abstract. The advent of 6G networks promises unprecedented advancements in
wireless communication, offering wider bandwidth and lower latency compared to
its predecessors. This article explores the evolving infrastructure of 6G networks, em-
phasizing the transition towards a more disaggregated structure and the integration
of artificial intelligence (AI) technologies. Furthermore, it explores the security, trust
and privacy challenges and attacks in 6G networks, particularly those related to the
use of AI. It presents a classification of network attacks stemming from its AI-centric
architecture and explores technologies designed to detect or mitigate these emerging
threats. The paper concludes by examining the implications and risks linked to the
utilization of AI in ensuring a robust network.
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1 Introduction

6G is the next phase in the evolution of wireless communication technologies, suc-
ceeding 5G. Compared to its predecessors, 6G will utilize higher frequency bands
enabling wider bandwidth and lower latency. This higher frequency and bandwidth
are expected to result in faster, more stable, and more reliable network connections
that will support a wide range of applications and services, enhancing 5G already
enabled transformative experiences such as virtual reality (VR) and augmented
reality (AR), and enabling new, innovative experiences like immersive extended
reality (XR), massive IoT connectivity, and digital twins (DT).

6G will require massive amounts of computing resources to make distributed,
complex, and coordinated decisions throughout the whole infrastructure, and so,
a highly heterogeneous and distributed infrastructure is needed. Cellular networks
are traditionally organized into three main parts: the Radio Access Network (RAN),
the Transport Network (TN), and the Core Network (CN). RAN serves as the vital
interface that links user devices to the cellular network, granting access to diverse
network services. It comprises base stations and other radio access nodes. TN facili-
tates seamless data transfer between RAN and CN, managing both user and control
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plane traffic. CN assumes the role of the central intelligence hub, manages user ses-
sions, mobility, and other network functions, and is responsible for connecting to
external networks, such as the internet and other cellular networks.

In the context of 6G, these networks are expected to evolve towards a more
disaggregated network structure and the boundary between the access network
and core network will blur. The roles of RAN, TN, and CN will become more
intertwined facilitating the enrichment of interactions between the three domains.
In particular, functions that were traditionally confined to one domain can now
be colocated, enhancing efficiency and communication. Moreover, the concept of
merging similar functions emerges, eliminating redundancy and streamlining the
network’s capabilities. This shift is instrumental in achieving the network flexibility
and scalability requirements of 6G.

The evolution of CN focuses on network softwarization to enhance efficiency,
flexibility, scalability, and performance. This transformation relies on key technolo-
gies like Software Defined Networking (SDN) and Network Function Virtualization
(NFV).

SDN introduces a separation of the control and data planes within network ar-
chitectures, enabling the abstraction, programming, and management of network
infrastructure through software-defined functions. It also assumes a central role in
the orchestration and management of network slicing, which is a transformative
paradigm that allows the logical partitioning of the CN into distinct and dedicated
virtual networks or slices. Each network slice is tailored to meet the specific require-
ments of designated services, enabling multiple services and applications to coexist
harmoniously on a shared physical infrastructure.

Each layer of the CN comprises a set of Network Functions (NFs). Each NF
follows a two-level service structure, with microservices acting as fine-grained com-
ponents that combine to create more comprehensive NFs. This flexibility in service
granularity enables the 6G CN to cater to a wide range of communication needs
across various application scenarios. NFV abstracts NFs from dedicated hardware
appliances, rendering them as software-based instances. This virtualization injects
a heightened degree of flexibility and efficiency into the allocation of network re-
sources, aligning perfectly with the dynamic nature of 6G services.

On the other hand, the evolution of RAN is characterized by multivendor, inter-
operable components that can be programmatically optimized through a central-
ized abstraction layer and data-driven closed-loop control [22]. 6G RAN architec-
tures are founded on disaggregated, virtualized, and software-based components,
linked via open and standardized interfaces, ensuring interoperability among differ-
ent vendors. This disaggregation strategy aligns with cloud-native principles, which
enhance network resiliency and reconfigurability.

Beyond disaggregation, the second main innovation of RAN is that it intro-
duces an open architecture (O-RAN) based on RAN Intelligent Controllers (RICs),
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which introduce programmable components designed to optimize and orchestrate
the network through data-driven closed-loop control. Equipped with AI tools and
models, RICs handle tasks such as traffic steering, interference management, QoS
management and load balancing. Additionally, RICs support third-party applica-
tions (rApps and xApps) designed to enhance RAN optimization, including policy
guidance, configuration management, and data analytics.

The third innovation of the RAN architecture is the incorporation of additional
components for managing and optimizing network infrastructure, including edge
systems and virtualization cloud platforms. Virtualization within RAN networks is
expected to reduce power consumption by dynamically scaling compute resources
according to user requirements, minimizing energy use to only what is necessary
[24].

Both RAN and CN evolve towards a fog-edge-cloud continuum architecture.
Fog-edge-cloud continuum represents a spectrum or a continuum of cloud resources
and services that extends from centralized cloud data centers to the network’s
periphery in a distributed and fog-edge computing infrastructure. This approach
involves deploying servers closer to end devices, thus reducing traffic overhead and
ensuring stringent Quality of Service (QoS). Besides improving performance, this
approach can also mitigate information leakage risks and data tampering threats,
as data is transmitted to adjacent edge servers instead of remote cloud servers.
The integration of edge computing, Multi-Access Edge Computing (MEC), and the
fog-edge-cloud continuum is poised to play a pivotal role in 6G [15,23].

On an another hand, 6G networks usually incorporate Internet of Things (IoT)
nodes, which assume critical roles in essential infrastructures. These devices facili-
tate real-time data collection, analysis, and decision-making, enhancing operational
efficiency and enabling innovative services.

One key technology to achieve the integration of these multiple components of
a 6G network is the artificial intelligence (AI) [15, 23], which enables adaptive ra-
dios and autonomous network management, thus enhancing network performance,
resource optimization, security, and customization of services [2].

AI will play a pivotal role in different aspects of 6G networks. In the context
of the radio interface, intelligent radios that integrate AI capabilities into radiofre-
quency technologies will be used [14]. This integration will enable radios to become
more adaptive, perceptive, and self-aware, allowing them to sense, understand, and
respond to changes in the radio frequency (RF) spectrum and supersee situations
of different wireless problems, like fading, interference, etc.

Besides, AI technologies will be employed to enhance the whole end-to-end com-
munications [13]. An AI algorithm can be used to train the transmitter, channel,
and receiver as an auto-encoder, so that the transmitter and receiver can be jointly
optimized. 6G systems are very complex and traditional rule based optimization
methodologies are very hard to apply. The use of AI solutions reduces the complex-
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ity associated with network management and optimization. It can use the feedback
loop between the decision maker and the physical system to automatize manage-
ment decisions and iteratively refine their actions in a closed loop based on the
system’s feedback to eventually reach optimality.

AI also plays a crucial role in making autonomous 6G networks [32]. With built-
in AI engines, the 6G system can automatically organize the network structure
and manage various resources like slices, computing power, caching, energy, and
communication. This enables the system to adapt smoothly to changing demands.
AI-based topology and resource management are essential for efficiently adjusting
resource usage based on dynamic user needs and evolving environmental conditions.

6G networks will hold massive nodes and data, paving the way for mobile data
analytics [31]. This will enable predicting user behavior and environmental circum-
stances, resulting in more personalized services, efficient resource use, and support
for emerging technologies like smart cities and virtual reality.

Finally, AI will be used to improve network security, trust, and privacy of the
infrastructure, software, and final nodes [26]. It can enhance network security by de-
tecting and preventing cyberattacks, analyzing network traffic patterns, safeguard-
ing sensitive information and identifying suspicious activity. It can also automate,
enhance, or complement various network security functions, such as response and
recovery.

This article offers a comprehensive overview of the cybersecurity challenges
present in 6G networks, addressing security, trust, and privacy concerns. It par-
ticularly delves into AI-related issues, recognizing AI as a key distinction from
previous mobile network generations, and presents a classification of network at-
tacks stemming from its AI-centric architecture. Moreover, it explores technologies
designed to detect or mitigate these emerging threats.

Existing literature [1, 19, 26, 28] examines general network attacks in 6G net-
works without exploring the implications and risks linked to the utilization of AI in
ensuring a robust network across the three crucial dimensions: security, trust, and
privacy.

2 Security challenges and attacks

The security landscape of 6G networks is shaped by several critical factors. Next,
we will examine the main challenges and attacks faced by 6G networks.

2.1 Security challenges in 6G

The security challenges of 6G networks are driven by the fog-edge-cloud continuum
architecture of the network, the increasing softwarization and virtualization, the
use of interoperable multivendor components and IoT devices, and the massive
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connectivity and mobility inherent in 6G, which expand the threat surface [1, 29].
Following we outline the main ones:

– Physical tampering: The 6G network is highly vulnerable to physical tamper-
ing of nodes. Deploying MEC at the edge with lightweight devices compromises
both the integrity of the devices and the data they process. Moreover, relying
on IoT systems to gather data from critical infrastructures exposes networks to
threats like resource exhaustion, insecure communication, and physical intrusion
due to their limited security controls and computational capacity.

– OS and Protocol Heterogeneities: The heterogeneous cloud/edge infras-
tructure in 6G networks lacks standardization, presenting interoperability chal-
lenges for security mechanisms. This complexity may result in disparate nodes
utilizing outdated algorithms or inadequate key lengths, hindering secure com-
munication agreements.

– User interfaces: Limited user interface in many end devices (IoT, gadgets),
hampers threat awareness and response.

– Weak computation power: Edge devices at the periphery lack robust defense
mechanisms.

– Security protocols: The computational demands of traditional security so-
lutions may not meet the efficiency required for 6G networks, particularly in
low-latency, high-speed communications.

– MEC containerization: MEC utilizes containerization for seamless integra-
tion into current environments. However, in resource-constrained setups, con-
tainers may run on compromised hosts or dishonestly consume significant re-
sources, incapacitating other containers.

– SDN constraints: The decoupling of the control and data planes in SDN in-
troduces vulnerabilities that attackers can exploit. SDN switches, with limited
memory, are vulnerable to resource saturation attacks, while the centralized
controller is a prime target for malicious actors, potentially compromising net-
work performance and integrity. Moreover, SDN switches heavily rely on the
controller for decision-making, posing the risk of overloading and causing net-
work disruptions.

– Complex security enforcement: Security in edge computing is complicated
due to the frequent mobility of network entities across different administra-
tive domains. Besides, it requires fine granularity in access control that current
models often overlook.

– Open interfaces: RAN promotes the use of open interfaces, which expands
the attack surface and exposes the system to third-party code.

– Multi-vendor interoperability: The involvement of multiple vendors and
service providers can lead to inconsistent security implementation, patch man-
agement processes, and varying levels of security expertise among them.
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– Powerful attacks: Adversaries, including AI-driven entities, possess significant
power and have a very large attack surface, capable of orchestrating intelligent,
widespread, and prevalent attacks.

Table 1 provides a summary of the security challenges and identifies their as-
sociations with the architecture 6G features. Challenges linked to edge/cloud are
those where security vulnerabilities stem from the execution of network functions,
both in the RAN or in the CN.

Table 1. Components related to security challenges

Challenges IoT devices Edge/Cloud Virtualizat. Multivendor Massive

Physical tampering x x

Heterogeneities x x

User interface x

Computational power x

Security protocols x

Containers x x

SDN constraints x

Complex sec. enforce. x x x

Open interfaces x

Interoperable x

Powerful attacks x

2.2 Security attacks in 6G

Security attacks on AI systems in a 6G network can be classified into: (1) Poisoning
attacks, which contaminate the system’s training phase, and (2) Evasion attacks,
occurring during the operational phase, in which the adversary attempts to evade
the system.

In the case of poisoning attacks, they can be divided into three main groups
[20]: (1) data poisoning, which involves altering training data or input objects to
deceive machine learning algorithms; (2) algorithm poisoning, aiming to influence
the distributed learning process by manipulating weights in local learning models;
and (3) model poisoning, where the deployed model is replaced with a malicious
one.

Data poisoning is the most common of the poisoning attacks and can lead to
false predictions and biased decision-making. In traditional batch or offline learning
models, data poisoning attacks on the training dataset (such as label flipping or
data cleaning) occur through data injection attacks, such as SQL injection, that
introduce or modify database training data, or data modification attacks, such
as impersonation attacks that exploit vulnerabilities in authentication protocols to
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spoof another user, or privilege escalation attacks to gain higher levels of access than
intended. Injection attacks are deterred by encryption, data integrity checks and
continuous monitoring for anomalous data patterns, while solutions for modification
attacks focus on zero-touch networks where devices are automatically configured,
provisioned, managed and maintained, and strong authentication methods and least
priviledge principles are implemented.

In AI systems relying on online learning, where models are continually updated
with streaming data, vulnerabilities may also arise from Man-in-the-Middle attacks
or selective packet dropping attacks, both of which tamper with the data stream
used for model training. To mitigate these risks, it’s advisable to employ strate-
gies like adopting a zero-trust architecture and implementing intrusion detection
systems equipped with anomaly detection capabilities.

Algorithm poisoning attacks typically occur in distributed learning contexts
like federated learning. In this case, backdoor attacks may manipulate weights in
local models, or a node may send a compromised model update to the central
server. DoS attacks can render nodes unavailable during federated updates, intro-
ducing bias into the model. Slow DDoS attacks masquerade as legitimate traffic
while draining resources and causing service disruption. To counteract threats, ma-
chine learning models can identify malicious users, and blockchain technology can
authenticate users.

Model poisoning attacks involve modifying learning algorithms through logic
corruption attacks, often initiated through black-box adversarial attacks. Defensive
measures include AI anomaly detection.

Evasion attacks during AI operation involve miss-classification adversarial at-
tacks, where the adversary carefully crafts imperceptible perturbations in the input
data, forcing the AI model to misclassify the perturbed samples. Defensive measures
include robust data validation, diverse datasets, data authenticity verification, and
continuous monitoring.

Table 2 provides a summary of security attacks, linked with the 6G security
challenges and mitigation strategies.

3 Trust challenges and attacks

Trust plays a pivotal role in facilitating interactions among independent entities, es-
pecially in machine-to-machine (M2M) interactions, where it influences connection
establishment for data or service exchange. This aspect is particularly beneficial
for enhancing security in distributed networks like 6G where dynamically deployed
nodes, belonging to different stakeholders, autonomously establish connections with
one another.

Computer Science & Information Technology (CS & IT)                                             101



Table 2. Security attacks, challenges and mitigation strategies in 6G

Attack Challenges Mitigation strategy

P
o
is
o
n
in
g Data

Poisoning

In dataset learning:
Data injection (SQL)
Impersonation
Priviledge escalation

Containers
SDN construction
Complex security

Encryption
Data integrity checks
Strong authentication
Least privilege principle
Anomaly detection

In online learning:
Man-in-the-middle
Selective dropping

Physical tamp.
Heterogeneities
User interfaces
Computational pow
Security protocols

Intrustion detection
Zero-trust architect.

Algorithm
Poisoing

Backdoors
DoS (Slow DDoS)

Open Interfaces
Interoperable

Intrusion detection
Blockchain

Model
Poisoning

Corruption
Black-box adversarial

SDN construction
Complex security
Powerful attacks

Anomaly detection

E
va
si
o
n

Miss-classification adversarial

Physical tamp.
Computational pow
Complex security
Open Interfaces
Powerful attacks

Robust data validation
Use of diverse datasets
Verify data authenticity
Anomaly detection

3.1 Challenges for trust models in 6G

The advent of 6G brings forth a landscape characterized by unprecedented con-
nectivity, ultra-low latency and heightened device density levels. Trust in 6G ex-
tends beyond conventional security concerns, incorporating dynamic considerations
such as distributed architectures and AI-based decision-making approaches. The
6G landscape needs robust reputation mechanisms to establish and maintain trust
among network entities. This requires trust frameworks to continuously assess trust
values for all participating entities and update these values using information ob-
tained from Quality of Service (QoS) measurements. The design of a reputation
system can take different approaches. For example, it can be based on (1) a unified
set of reputation values that apply universally to all network entities [16], or (2)
a fully distributed scheme where each entity maintains its own list of reputation
values specific to its peers [27].

Other trust studies have also been carried out on 5G and beyond networks.
For instance, Benzäıd et al. [4] conducted an analysis of the trust landscape within
these networks, identifying key points where trust-related concerns could arise.
These concerns span various entities that users must place their trust in, including
communication, data, AI/ML models, NFV infrastructure and management and or-
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chestration components. Additionally, the study delves into emerging trust enabler
technologies such as blockchain, trusted platforms and behavior analytics.

Integrating AI technologies into 6G also leads to new trust considerations.
Goebel et al. [7] provide insights into the evolution of Explainable AI (XAI) ap-
proaches, spanning from early context-bound text-only explanations to more ad-
vanced multi-modal methods that offer textual justifications and attention visual-
ization. The trustworthiness of the AI model itself significantly impacts the value
of such AI applications.

Below we outline the main trust challenges of 6G networks [9, 11].

– Extreme-massive connectivity and sensing. 6G will bring unprecedented
connectivity demands, requiring closer collaboration with third parties and
seamless integration with multiple technologies.

– Training misleading. The reliance on advanced AI/ML models in 6G net-
works raises the risk of misleading training due to intentional data manipulation
by malicious entities, potentially compromising the reliability and trustworthi-
ness of AI systems.

– Data and infrastructure integrity. The integrity of data and infrastructure
in 6G networks is threatened by compromised software trust chains and inter-
face misconfigurations. Secure software components are critical to prevent the
integration of vulnerable elements, while misconfigured interfaces may result in
unintended data exposure, unauthorized access, or network instability, eroding
system trust.

– Trust quantification. Difficulty to reach an agreement with different parties
on unified terms to quantify and evaluate the trust among actors.

– Trust expansion. Expanding trust models in 6G networks involves addressing
challenges such as geographical diversity, multiple stakeholders, high network
speeds, massive number of flow setups, and numerous remote entities.

– Emerging technologies. Creating a distributed trust model primarily relies
on emerging technologies such as Distributed Ledger Technology (DLT), which
are still in their early stages, leading to ambiguity in technology governance,
regulatory uncertainties, and concerns about computational and communication
sustainability. Although numerous mitigating strategies exist, persisting secu-
rity concerns, including 51% attacks and transaction privacy vulnerabilities,
continue to demand attention.

Table 3 offers a concise overview of the trust challenges encountered in 6G
networks, elucidating their affiliations with particular network segments.

3.2 Attacks against trust models in 6G

In the emerging landscape of 6G networks, ensuring trust becomes paramount.
Following we delve into the intricate domain of trust-related attacks [4, 10]. For
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Table 3. Components related to trust challenges

Challenges IoT devices Edge/Cloud Virtualizat. Multivendor Massive

Extreme connectivity x x

Training misleading x x x

Integrity x x

Trust quantification x x

Trust expansion x x x

Emerging technologies x

each identified attack, we outline effective countermeasures to fortify the foundation
of trust in 6G environments [8, 28]. We also provide a concise overview relating
the trust challenges previously discussed to the identified attacks and mitigation
measures in Table 4.

In the scope of AI technologies, poisoning attacks represent a significant
attack vector. When this attacks occur in the training phase not only jeopardize the
system’s security (as discussed in Section 2) but also erode trust, as the accuracy
of results declines, undermining network performance and the confidence in the
system.

Similarly, evasion attacks driven by adversarial confidence-reducing exploits
further degrades trust, since the confidence of prediction if very low. The resilience
of AI systems can be improved training the models using a diverse set of adversarial
examples.

Within the same AI scope, exploratory attacks based on model extraction
attempt to illicitly obtain sensitive information from deployed machine learning
models. Adversaries seek to replicate targeted models, exploiting vulnerabilities
and internal architecture to execute unauthorized actions, potentially undermining
network trust. Mitigation strategies against such attacks involve injecting noise
into the execution time of the machine learning model to introduce variability and
hinder the precise extraction of model parameters.

Secure identity management also plays an important role in 6G settings. At-
tacks such as identity spoofing can have a significant detrimental effect on the
trust and authenticity of digital identities within a network. In this context, trust
is established through the verification of user identities, ensuring that parties com-
municating or interacting are who they claim to be. Identity spoofing disrupts this
trust by impersonating legitimate identities, leading to various security and privacy
risks. The adversary creates a false identity or impersonates a general role or de-
vice to deceive systems or gain access to resources. Countermeasures are based on
multi-factor authentication and strong verification processes.

Additionally, other identity-related attacks can be perpetrated by properly iden-
tified users or servers. Insider attacks are security breaches or malicious activities
initiated by trusted entities who have privileged access and knowledge of the net-
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work’s internal operations. Unlike external threats, insider attacks leverage their
legitimate positions or in-depth knowledge to exploit vulnerabilities, potentially
causing substantial harm to the network’s integrity, confidentiality and availability.
Mitigation strategies are based on zero-trust models.

In 6G, repudiation attacks can compromise transaction and communication
reliability and accountability by entities disavowing prior actions, leading to trust
issues. Mitigation involves deploying authentication, authorization, and logging
mechanisms to maintain clear audit trails and employing digital signatures and
cryptographic methods for non-repudiation.

The adoption of DLT solutions in the 6G landscape can be advantageous in
terms of data integrity and action tracking, but it could also introduce new attack
vectors. Regarding blockchain and smart contract-based solutions, re-entrancy at-
tacks pose a significant security risk. This threat involves an attacker making re-
peated calls or re-entering a vulnerable smart contract. This malicious activity
exploits the contract’s state, leading to unauthorized actions and potentially un-
dermining network trust. Effective mitigation of re-entrancy attacks necessitates
rigorous code auditing and comprehensive testing measures to identify and rectify
vulnerabilities.

Table 4. Trust attacks, challenges and mitigation strategies in 6G

Attack Challenges Mitigation strategy

Poisoning Training misleading Moving target defense and input vali-
dation

Evasion Training misleading Adversarial examples

Model extraction Data/infrastructure integrity Noise injection

Identity spoofing Massive connectivity,
Data/infrastructure integrity, Trust
expansion

Multi-factor authentication and strong
verification processes

Insider attacks Massive connectivity,
Data/infrastructure integrity, Trust
expansion

Zero-trust models

Repudiation Trust quantification, Trust expansion,
Emerging techs

Robust authentication, authorization
and logging mechanisms. Digital sig-
natures and cryptographic methods

Re-entrancy Emerging techs Code auditing

4 Privacy challenges and attacks

The privacy framework of 6G networks is influenced by various pivotal factors.
Next, we will delve into the primary challenges and vulnerabilities inherent in 6G
networks.
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4.1 Privacy challenges in 6G

In the 6G era, increased data generation, storage, and processing pose notable pri-
vacy challenges, incorporating sensitive information like precise location tracking
and behavioral predictions. The integration of 6G biosensing, which includes ac-
cessing intimate health data, escalates risks such as fraud, blackmail, intrusive mar-
keting, and pervasive surveillance. Furthermore, companies struggle to safeguard
sensitive data used in access control systems, where threats such as ransomware
attacks and corporate espionage jeopardise data integrity.

The complexity of networks and the diversity of applications in 6G will proba-
bly make data privacy preservation more difficult than ever [21]. Federated Learn-
ing (FL) and Privacy Enhancing Technologies (PETs) such as differential pri-
vacy (DP) [5], homomorphic encryption (HE) [25], secure multi-party computation
(SMC) [30], are appropriate technologies that will protect personal data, complying
with GDPR standards, and satisfying the needs for statistical models.

Federated Learning addresses the confidentiality issue by keeping datasets lo-
cally, yet the shared model updates are prone to privacy leakage, through model
inversion or membership inference attacks.

Differential privacy provides a privacy-preserving mechanism to guarantee a
level of privacy disclosure for local datasets by adding random noise [5]. The wireless
channel noise properties can be used as a privacy-preserving mechanism, and a DP
constraint using such random noise will cause no performance degradation with
respect to a non-private design as long as the signal-to-noise ratio is sufficiently
low [17]. Secure Multiparty Computation aims to protect a distributed computation
model from the inputs of communication parties while keeping those inputs private.
Homomorphic Encryption allows performing operations, such as search and query,
on encrypted data directly without decryption.

These four key technologies (FL, DP, HE and SMC) are the building blocks to
tackle the main privacy challenges of 6G networks [6, 18] listed as follows:

– Complex identity management: The advent of Internet of Everything (IoE)
will introduce personal IoT networks, including wearable devices and IoT de-
vices in offices and factories. The growing number of connected devices per
person will pose significant identity management challenges.

– Eavesdroppers: With IoT applications managing increasingly sensitive data,
the threat of data theft by eavesdroppers has grown. IoT devices often lack
the resources for efficient encryption, and eavesdroppers, remaining undetected,
pose challenges to edge network security.

– User-generated data: In the context of edge intelligence, AI models are
trained using extensive user-generated data, including sensitive private infor-
mation, which is accessible to edge servers for model training and execution.
The servers can be honest but curious, inferring personal data that can be used
for other purposes beyond network traffic optimization.
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Table 5. Components related to privacy challenges

Challenges IoT devices Edge/Cloud Virtualizat. Multivendor Massive

Identity mgt x

Eavesdroppers x

User-gen data x x x

Containerizat. x

– MEC containerization: Containers are extensively employed in the edge net-
work. They offer several advantages, notably reduced startup time and decreased
resource utilization. However, it is crucial to acknowledge that containers do
not provide an equivalent level of isolation when compared to Virtual Machines
(VMs) used in cloud networks. Containers share access to kernel-based filesys-
tems, thereby posing security challenges. A potentially malicious container could
exploit this shared access to gain unauthorized entry into and potentially ex-
tract information from other co-hosted containers.

Table 5 provides a summary of the privacy-related challenges within 6G net-
works, clarifying their associations with the architecture 6G features.

4.2 Privacy attacks in 6G

Privacy attacks in 6G encompass a diverse array of malicious techniques and strate-
gies that threaten the confidentiality, integrity, and availability of sensitive data
traversing the network [3, 12, 19]. Our exploration also offers insight into effective
mitigation strategies aimed at fortifying the network’s defenses.

– Deception attacks are a form of cyberattack in which attackers manipulate or
mislead network components, services, or users into making incorrect decisions
or revealing sensitive information. In the context of 6G networks, where the
integration of emerging technologies like NFV, SDN, and MEC is prevalent,
deception attacks pose significant threats. Countermeasures are based on threat
intelligence sharing, security audits and technologies to create decoy assets and
traps within the network.

– Side-channel attacks compromise user security by exploiting publicly acces-
sible non-sensitive information, analyzing physical parameters like electromag-
netic emissions and execution time. Attackers can manipulate a cache’s content
or introduce faults, compromising cryptographic operations and extracting se-
cret keys. In network slicing, attackers can indirectly affect other slices, high-
lighting the need for strong isolation and avoiding hosting similar applications on
slices with similar hardware configurations. Countermeasures include avoiding
hosting applications on slices with similar hardware configurations and ensuring
strong isolation among slices.
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– Information disclosure exploits intercepting information by unauthorized en-
tities to compromise system security objectives like user traceability. This may
lead to the launch of other attacks. Mitigation strategies are based on robust
authentication and authorization protocols.

– Data Leakage attacks involve the unauthorized or malicious transfer of infor-
mation or data from one network slice to another. These attacks often target
shared Network Functions (NFs) and can undermine data privacy and network
security. To mitigate such attacks advanced trusting mechanisms are essential
such as trust and reputation models, computational trust, blockchain or zero-
trust security.

– Location tracking attacks exploit vulnerabilities of network slicing-enabled
networks to track the location of a target user. These attacks can be performed
in several ways, including, exploiting design flaws or misbehaving NFs, and
compromising network edge functions. The primary mitigation strategies in-
clude continuous NF behavior monitoring and rigorous design audits.

– Eavesdropping attacks involve malicious interception and monitoring of com-
munication between legitimate parties. These attacks are highly detrimental as
they compromise the confidentiality and privacy of transmitted data. To miti-
gate eavesdropping attacks, several strategies can be employed like end-to-end
encryption and intrusion detection systems.

– File injection attacks in the context of 6G involve malicious actors injecting
unauthorized files or data into the network with the intent of compromising the
privacy of the users. These attacks may include injecting malware (e.g., spyware)
or malicious code into legitimate data flows, leading to the leakage and exposure
of private information. File injection attacks are deterred by employing strong
encryption, data integrity checks, and continuous monitoring for anomalous
data patterns in network traffic.

– Model inversion is a privacy threat where an adversary attempts to recover
sensitive information about a user or entity by analyzing the outputs of a ma-
chine learning model. This attack specifically aims to reverse-engineer the un-
derlying data that was used to train a model. In 6G networks, where machine
learning and AI-driven services are prevalent, this type of attack can have se-
rious privacy implications. An effective defensive approach involves exerting
control over the information disclosed through ML APIs, thereby limiting the
insights that attackers can gain. Additionally, to further mitigate the risk of
model inversion attacks, introducing noise to ML predictions can be employed
as a countermeasure. This added noise introduces uncertainty and complexity
into the attacker’s inference process, thereby enhancing the security and privacy
of the ML model.

– Membership inference attacks in the context of 6G networks are a privacy
threat where an adversary attempts to determine whether a particular user
or device is part of a targeted dataset or network group. This type of attack
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typically involves exploiting information leakage from ML or data processing
operations where an attacker tries to infer whether a user’s data was included
in the model’s training dataset. This attack can be used to reveal sensitive in-
formation about network participants and their activities. Mitigation strategies
include improving the anonymization of training data, employing differential
privacy mechanisms, and enhancing data access control to prevent unautho-
rized access to sensitive datasets. Additionally, ensuring that machine learning
models do not overfit to individual users data can help mitigate this type of
attack.

Table 6 provides an overview of privacy attacks, challenges and mitigation
strategies in 6G.

Table 6. Privacy attacks, challenges, and mitigation strategies in 6G

Attack Privacy challenges Mitigation strategy

Deception Eavesdroppers, MEC containeriza-
tion

Deception technology, threat intelligence
sharing and security audits

Side-channel Eavesdroppers, MEC containeriza-
tion

Principle of Least Privilege, separating
containers into virtual networks based on
their sensitivity, strong isolation of the
execution container

Information disclo-
sure

User-generated data AI/ML approaches can be used to learn
to identify the appropriate placement
policies to prevent hackers from gaining
access to sensitive information

Location tracking User-generated data, MEC container-
ization

Continuous NF behavior monitoring and
rigorous design audits

Data Leakage Eavesdroppers, User-generated data,
MEC containerization

Advanced trusting mechanisms (trust
and reputation models, computational
trust, blockchain or zero-trust security)

Eavesdropping Eavesdroppers End-to-end encryption, intrusion detec-
tion systems

File injection Complex identity management, User-
generated data, MEC containeriza-
tion

Strong encryption, data integrity checks,
continuous monitoring

Model inversion User-generated data, MEC container-
ization

Noise Addition, Differential Privacy

Membership infer-
ence

User-generated data, MEC container-
ization

Anonymization of training data, en-
hanced data access control

5 Conclusions

The transition to 6G networks represents a revolutionary advancement in com-
munication capabilities, marked by the seamless integration of virtual realms with
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connected intelligence, enabling applications like multisensory extended reality and
wireless brain-computer interactions. This technological leap, offering blazing-fast
data rates, ultra-low latency, and unparalleled reliability, is underpinned by the per-
vasive role of artificial intelligence (AI). However, amid this transformative poten-
tial, it also unveils an intricate and expansive threat surface, demanding innovative
security solutions. This evolving security landscape must address the challenges of
a highly interconnected, heterogeneous network enriched by cloudification.

On one hand, attacks on the AI models governing the functionality of 6G net-
works are highly dangerous and challenging to detect due to the complexity of
transparency and explainability of this technology. On the other hand, malicious
users can also exploit AI to launch more sophisticated and targeted attacks and
to lower the barrier to entry for cyberattacks by automating tasks that previously
required technical expertise, which puts additional pressure on the system.

Regarding trust, the interconnected nature of networks with components from
multiple vendors poses a challenge to establishing trust. Establishing trust levels for
nodes utilizing AI is often complex and difficult because the results of AI are hard
to interpret, leading to a lack of transparency and explainability. Moreover, if they
are from third-party entities, establishing trust becomes even more complicated.

Finally, much of the intelligence of 6G networks will come from distributed AI
technologies, such as federated learning. Federated learning leverages distributed
data from mobile devices to train AI models collaboratively while safeguarding pri-
vacy and reducing resource consumption. However, the nature of federated learning
introduces privacy and security risks. Interactions among mobile devices in fed-
erated learning scenarios can be exploited for cheating attacks, low-quality local
model training attacks, and privacy breaches, posing significant privacy concerns.

In this article, we have explored the cybersecurity challenges in 6G networks,
emphasizing security, trust, and privacy concerns, and we have provided a classifi-
cation of network attacks stemming from the AI-centric architecture.
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