
David C. Wyld et al. (Eds): DMSE, CSEIT, NeTCoM, SPM, CIoT, NCS, NLPD, ArIT, CMLA – 2024

pp. 115-125, 2024. CS & IT - CSCP 2024 DOI: 10.5121/csit.2024.141409

A VIRTUAL REALITY TRAINING

SIMULATION TO ASSIST IN HIGH-FIDELITY

BASEBALL BATTING USING OCULUS QUEST

2 AND UNITY ENGINE

Brian C. Xu1, Robert Gehr2

1Flintridge Preparatory School, 4543 Crown Ave,

 La Canada Flintridge, CA 91011
2Computer Science Department, California State Polytechnic University,

Pomona, CA 91768

ABSTRACT

Often, people’s busy schedules and lack of equipment make it difficult for them to get solid

baseball training hours [1]. This paper seeks to remedy this issue by investigating the

efficacy of a virtual baseball training solution [2]. The solution proposed in this paper

involves developing a virtual reality baseball simulation aimed to accurately simulate an

environment where baseball hitting can be trained in a context that does not require access

to expensive baseball equipment or a huge time commitment. The baseball training solution

was successfully made in the Unity game engine and deployed to the virtual reality Meta

Quest 2 platform. One primary feature of this solution is the pitching mechanism where

pitches are thrown to the player accurately [3]. Another feature of this solution is the

ability to translate the player’s movements in real life to the player’s movements in the

simulation. The solution was tested in the following experiments: one to test the

improvements of player’s skills, and one to test the entertainment levels of different age

groups. After collecting data, we found that players did improve from our solution, and that

little kids/older adults enjoyed our solution more than teens and those in their 20s. Based

on the results of the data, we believe that further research in baseball training solutions

that utilize virtual simulations would be worthwhile. Future methodologies may improve

upon fidelity and accessibility.

KEYWORDS

VR, Baseball, Unity, Simulation

1. INTRODUCTION

Many people do not have access to baseball fields and batting cages or do not have time to go to

public training facilities; some students have to work part time and most kids cannot drive on

their own. This problem is significant because it not only prevents players from timing pitches,

but it also prevents players from swinging the bat and making adjustments based off where the

ball goes. Making adjustments is the most important part of hitting because it allows the player to

develop their perfect swing and to be able to use that swing consistently. In the long run, this

problem will affect many passionate baseball players who want to, but do not have the resources

to get better and achieve their goals of playing baseball at the next level [4].

http://airccse.org/cscp.html
https://airccse.org/csit/V14N14.html
https://doi.org/10.5121/csit.2024.141409

116 Computer Science & Information Technology (CS & IT)

Method A tried to improve baseball hitting skills by allowing players to face higher velocity and

to see higher pitching speeds, so that when it comes to game time, slower speeds will be more

hittable. However, because pitches come out of a machine, it lacks the randomness and

deceptiveness that a real baseball pitcher provides. My project tries improving on this by having

the VR pitcher generate pitches based on spontaneity: one does not know whether a fastball or an

offspeed pitch will be coming. Method B tries using technological training methods to improve

baseball hitting. Unlike our method, this method lets players swing a real bat at a baseball that

was projected onto a screen. However, because the ball stays on the screen while the player

swings in real life, there is a clear lack of depth perception that makes it hard to tell if the player

actually hit the baseball. Our method puts both the player and the baseball in the same world, just

like how it would be in a real baseball game. Instead of working on the techniques of swinging a

bat, Method C focuses on the physical side: lifting weights and conditioning oneself. The

problem with this is that without a solid swing, it doesn’t matter how strong one is; one will not

be able to hit the baseball. On the other hand, my method allows the player to directly perfect

their techniques.

Our solution is a virtual reality (VR) baseball hitting simulator that allows players to practice

hitting and to be able to face live pitching at home [5]. This solution solves many problems. One,

players will not be wasting time sitting in cars going to and back from the batting cages/field.

Instead, this lost time could be spent practicing more. Another problem our solution solves is not

being able to reserve a field. Because fields are limited and Little League/high school teams get

priority when practicing on them, it is hard for those who want extra practice to be able to do so.

With our solution, having somewhere to practice is no longer an issue. With our solution, one can

practice wherever they want, whenever they want, as long as they have their VR headset and their

laptop to connect to. We believe that this solution is effective because it directly addresses many

of the key factors that prevent people from practicing as well as provides a way for players to get

better.

The first experiment tested if the simulation actually helped the people who used it improve. This

experiment was set up in a batting cage, where there was access to machines. Participants first

swung according to pitches thrown from the machine. Then, they put on my VR headset and

swung according to pitches thrown from the simulation [6]. Lastly, they ended with more pitches

from the machine to see if they improved the amount of solid hits that they got. The most

significant finding was that on average, every single participant improved in the amount of solid

hits that they got. This data is important because it essentially answers the question of “Was my

project successful in helping others get better”, which the answer is yes. The second experiment

tested if the simulation gave joy to those who played it. For this experiment, there were more

participants and the age range varied greater for maximum results. From this experiment it was

discovered that little kids and older adults tend to have more enjoyable experiences than teens

and those in their 20s. This may be the case because all little kids think about having fun, and

anything that relates to playing will give them that joy. For teens and those in their 20s, they may

have enjoyed the game less because they are very busy with things like school and work, leaving

little room left for entertainment. Older adults may have enjoyed the game because they

developed memories of their childhood of having fun, and they probably wish to return to them.

2. CHALLENGES

In order to build the project, a few challenges have been identified as follows.

Computer Science & Information Technology (CS & IT) 117

2.1. The Pitching System

One major component in my program is the pitching system. I had to consider how I might be

able to simulate the behaviors of a real pitcher in my program. This includes the pitcher’s

delivery as well as the many different pitches that the pitcher has. Something that could

potentially cause problems is the fact that in real life, the pitches the pitcher throws are based off

of what the catcher and the coach calls for. In a simulation, this is not possible for the simulation

runs based on what the code says. A possible solution to this could be to research the order that

real pitchers throw pitches in, and then have the game pitcher copy that order.

2.2. Implementing Physical Forces

Another major component in my program is implementing physical forces. There were many

forces that I needed to utilize to accurately simulate a baseball pitch [7]. However, many of them

weren’t included in Unity’s physics system. For example, rotational forces and forces generated

by differences in air pressure that play a key role in defining the curved trajectory of baseballs as

they fly through the air were not normally taken into consideration in Unity’s default simulation.

As a result, to solve this problem, I had to determine how to integrate new force calculations into

the already existing Unity system in order to produce different baseball pitches that had not only

realistic behaviors, but that could also be thrown for strikes.

2.3. Connecting the Physical Movement

One final major challenge in my program is connecting the physical movement of the player to

the game. I had to consider how real life swings using the VR gear would translate into the bat

velocity produced in the game. To solve this issue, I will have to use virtual reality libraries

integrated with Unity and make sure that they are able to provide data from the user’s controller.

It will then be essential to implement this data in a manner that can be interpreted as physical

properties for the physics system to accurately resolve collisions between the baseball bat and the

baseball.

3. SOLUTION

The main structure of the program can ultimately be described by four systems running in parallel:

the player input system, the pitch generation system, the baseball force simulation system, and

the bat collision detection system. These four systems run continuously throughout the program’s

operation and continuously pass relevant output data to each other that is then interpreted

uniquely by each system in order for them to successfully fulfill their purposes. The player input

system continually gathers sensory input data from the virtual reality apparatus, which is used to

update the position and rotation of the player camera and the virtual baseball bat. The player

input system also continually outputs relevant position data to be continuously interpreted by the

bat collision system. In parallel, the pitch generation system manages a timer and generates a new

baseball pitch with unique parameters once that timer reaches zero. The pitch generation system

repeats this process continuously and passes on the pitch parameter data to the baseball force

simulation system with each pitch generation. Once a pitch has been generated, the baseball force

simulation system uses those pitch parameters to continuously simulate the magnus effect and

other relevant forces throughout the lifetime of the ball’s trajectory until it collides with an object.

It is this relationship between inputs and outputs of these continuous systems that define the

general process of this program.

118 Computer Science & Information Technology (CS & IT)

The Player Input System - The purpose of this component is to take in the data of the player

swinging the bat, and to transfer that data to the computer, so that the player can interact with the

simulation. The player input is received through the VR device and the data is handled by Unity’s

XR toolkit library. From there, the data goes through the other systems of the game, including

baseball to baseball bat collision detection and player camera and player hand position

adjustments.

This component requires a special concept, which is VR. Instead of pressing keyboard buttons,

data is gathered by just moving around one’s body.

Figure 1. Screenshot of the VR system

Figure 2. Screenshot of code 1

Fortunately, the scripts inside the XR toolkit library handled all the integrations of the VR

headset with Unity [8]. Above are shown three essential scripts relating to the XR toolkit: XR

Origin, Input Action Manager, XR Controller (Action-based) [9]. The XR Origin script takes in

references to VR related game objects in the 3D scene, including the player’s camera and the VR

control rig [10]. This allows the important data from these game objects to be passed into the XR

origin backend. The Input Action Manager is responsible for defining the relationship between

particular input patterns from the player and converting them into particular outputs into the

program. This script takes in an Input Action Asset that defines these inputs and outputs. We

used the default Input Action Asset, giving expected behavior in the program relating to the

player’s movements. Lastly, the XR Controller script functioned similarly to the Input Action

Manager, holding references to input action data in order to determine the appropriate output with

respect to the player’s input through the controller.

Computer Science & Information Technology (CS & IT) 119

The Pitch Generation System - The purpose of this component is to facilitate the continuous

generation of new pitches to be thrown towards the player. In order to create this system in a

simplified way, we distilled the concept of the human pitcher into two simple concepts: a timer

and a single action of initiating a pitch. As a self-contained system, the simulated pitcher begins

by generating a random value in seconds and decreasing that value over time. Once this value

reaches less than or equal to zero, a new pitch action is initiated by the pitcher, and the timer

resets to a new random value in seconds. Additionally, the pitch system includes the concept of

pitch presets with a random preset being applied to each pitch action. These pitch presets change

the nature of the pitch; for example, fastballs, curveballs, and sliders. These pitch preset values

are passed into the force simulation system, which is how they take effect on the pitch.

Figure 3. Screenshot of the system 1

Figure 4. Screenshot of code 2

Example one displays the full update loop of the pitcher script. As we can see, the update loop

consists of two steps: 1) updating the timer (decreasing over time), and 2) checking when the

timer reaches zero, and initiating a pitch if it does, and resetting the timer. This process repeats

throughout the duration of the simulation, causing a continuous stream of pitches towards the

player. Lastly, in example two, we see another function that lives in the pitcher script that is

responsible for spawning a new baseball instance into the simulation and passing the random

pitch preset data into the ball. While this function does not appear in the update loop of example

one, it is indeed called inside this update loop through the Unity animation system. When

animation.SetTrigger(“Start Pitch”) is executed in the UpdatePitch function, it begins an

animation which will eventually call the SpawnBaseball function at the appropriate point in the

swing animation using a Unity Animation Event.

The Baseball Force Simulation System - Unlike the continuous pitch generation system, the

Baseball Force Simulation System comes into play intermittently when a new baseball is

120 Computer Science & Information Technology (CS & IT)

spawned, and deactivates under certain conditions. The logic of the Baseball Force Simulation

System primarily lives inside the baseball script. This script is a component of the spawned

baseball object and is where all the pitch data is passed to. The primary function of the baseball

script is to update and apply the forces of the baseball based on the unique pitch parameter data

that it was given. In order to create a pitch that behaves realistically, the baseball force simulation

system accounts for air pressure forces generated by the fast rotation of the ball in the air. These

forces are known as the Magnus Effect. For every frame of the ball’s trajectory before it collides

with an object, a new magnus force and drag force are calculated based off of the pitch

parameters, giving realistic and unique pitch trajectories. There are two conditions that terminate

an instance of the baseball force simulation system: when the baseball hits a surface or comes

into contact with the baseball bat. Once the baseball makes contact with the baseball bat, the

special force simulation system is deactivated and the new trajectory is handled by Unity’s built

in rigidbody system.

Figure 5. Screenshot of the system 2

Figure 6. Screenshot of code 3

Example one shows the data associated with a baseball instance. The data is split into three

categories: “Baseball Parameters,” “Pitch Parameters,” and “Advanced Physics Parameters.” The

Baseball Parameters contain general data about the baseball’s properties as they pertain to the

force calculations, as well as information regarding the theoretical air density value. The Pitch

Parameters represent the obvious information relevant to generating a baseball pitch– the speed

of the throw, and the angle at which it is thrown. Lastly, the Advanced Physics Parameters

represent the less obvious information relevant to the pitch– taking into account the spin on both

axes with which the ball left the pitcher’s hand, the angular velocity of the ball, and the

coefficients of drag and of the magnus force. All of these properties are taken into account in the

calculations of the Baseball Force Simulation’s update loop during the lifetime of the baseball.

Example two outlines the baseball instance’s update loop, which is represented by the contents of

the Update() and the FixedUpdate() function. Primarily, drag and magnus forces are calculated

Computer Science & Information Technology (CS & IT) 121

each frame in the FixedUpdate loop using the parameter data described above for as long as the

ball is not hit. Example three shows the details of the calculations of the magnus forces, showing

how the formulas are calculated pertaining to the parameter data.

The Bat Collision Detection System - The purpose of the Bat Collision Detection System is to

translate the movements of the bat through the player’s input into data that can be interpreted by

Unity’s physics system, and then inserting that data into the physics system so that baseball

collision are handled by Unity in a way that takes into account the player’s real life movements.

Ultimately, the Bat Collision Detection System converts the player’s movements of the baseball

bat from their real world behavior into velocity values that can be applied to colliders along the

length of the virtual baseball bat. Once the colliders of the baseball bat have been updated with

velocity values that are derived from real world arm movements, the Unity rigidbody system will

be able to take that high velocity into account when the simulated baseball collides with the

simulated bat, allowing for an accurate force to be applied to the ball in an accurate direction

based on the player’s swing.

Figure 7. The component

Figure 8. Screenshot of code 4

In the above code example, we can see the update loop of a single collider on the length of the

simulated baseball bat. Through the XR toolkit and by the nature of the baseball bat residing

within the hierarchy of the virtual VR controller, the baseball bat’s position and rotation are

already being updated accurately based on the player’s movements. These baseball bat colliders

reside under the same hierarchy and are therefore also updated by the player’s movements. In

order to convert these updated positions into usable data for the collision, we can see that the

updated loop is responsible for generating an accurate velocity vector for the capsule by

subtracting its previous position vector by its current position vector, effectively giving us the

rate of change of the collider’s position over time. Once this velocity has been calculated, we

122 Computer Science & Information Technology (CS & IT)

send it to be interpreted by Unity’s physics system by setting the rigidbody component’s velocity

to equal this new velocity.

4. EXPERIMENT

4.1. Experiment 1

The most important reason why I made this program was to create a way to help real life baseball

players improve their baseball hitting skills. And so, I decided to create this experiment which

would see if my simulation actually helped baseball players improve and get better.

To test whether or not my simulation actually helps baseball players, I will select baseball players

at random and take them to a batting cage. There, I will first have the participants swing five

times from pitches thrown from the machine to see how many solid hits they got. Then, they will

use my simulation and swing five times according to pitches thrown from the machine. Lastly,

they will take off my VR headset and swing five more times to the machine to see if the amount

of solid hits they got increased, which shows that they improved. The experiment is set up this

way because it is able to record both the data without using my VR and the data with using my

VR, without either affecting each other.

Figure 9. Figure of experiment 1

From my data, it can be seen that most of the participants improved with the usage of my VR

simulation. The lowest number of solid hits before VR was two, and that number moved to three

after using my VR simulation. There was one really good baseball player who had five solid hits

before using my VR, and that number stayed the same after using my VR, so it was hard to tell

whether or not the VR helped him. However, from the other results, I am confident that my VR

baseball simulator is able to help baseball players improve their batting skills.

4.2. Experiment 2

The second reason for why I made this program was to help make the game of baseball more fun

for kids and even adults. Instead of having value only as a training tool, I intend for this program

to also have value as a source of entertainment. With this program, people can try something new

in their lives, and maybe even develop a passion for baseball.

To test whether or not my game is entertaining and gives joy to people who play it, I will

experiment with five age demographics: ages 7-12, ages 13-18, ages 19-25, ages 26-35, and ages

36-50. All the participants will have no background in baseball so that my data is not biased.

Furthermore, I will have each participant fill out a questionnaire at the end. The questionnaire

will ask them if they had fun playing and if they were able to enjoy their time. To prevent fake

Computer Science & Information Technology (CS & IT) 123

answers in the questionnaires, I will use a lie detector on each participant when they are filling it

out. By using a lie detector, I am able to produce 100% accurate data.

Figure 9. Figure of experiment 2

In the data, the average enjoyment percentage across all ages was 91%. The participants aging

from 7-12 had the most fun, while the participants aging from 19-25 and 26-35 had a lower

percentage. What surprised me the most was that the age group 36-50 had the 2nd highest

percentage. I didn’t expect older adults to enjoy a game made for kids, but the data proved

otherwise. I believe that this just shows that everyone still wishes to have fun, no matter what life

they are living.

5. RELATED WORK

The solution that this scholarly source gives to getting better at hitting a baseball is to face higher

pitching speeds as well as to just track a fast pitch [11]. By doing this, one can get used to faster

pitching speeds so that slower speeds in real games will seem easier to hit. Its limitations are that

the pitches come out of a machine, which is completely different from pitches that a pitcher

throws; the release point, the motion, the craftiness are all different. Something that my project

has that a machine doesn’t is the spontaneity of when the pitch will come out and the type of

pitch as well. For a machine, one needs a second person to put the ball in, and settings need to be

adjusted for different pitches to be thrown out. However, with my app, both of these problems are

solved for you.

This paper attempts to record the effectiveness of technological training methods to improve

baseball skills [12]. In the study, the solution to this goal is to utilize VE (Virtual Environment)

into the training of a select group of baseball players. The solution was for the participants to

swing a baseball bat at a simulated projected baseball that was projected onto a screen. The

results were that the participants who trained under the VE showed significantly greater

improvements as well as reached higher levels of competition. Limits of this solution include not

being able to see the bat come into contact with the baseball, and not being able to determine the

depth perception of the ball in relation to the player. For my project, because the player is also in

the VR world, the player’s swings do in fact come into contact with the pitch. Furthermore,

because the player’s eyes are the eyes of the batter in the VR world, it is easy to track the pitch,

just like how one would track a baseball pitch in a real baseball game.

This paper tackles the same problem that I do: how to improve baseball skills [13]. This paper

resorted to developing novel physical strength and conditioning methods, rather than developing

a technology-based training solution. They created a whole offseason workout routine to build

strength, which in turn, translates over to baseball in hitting the ball harder and pitching the ball

124 Computer Science & Information Technology (CS & IT)

faster. This solution is effective when the training regiment is implemented. However, because

this solution focuses only on building strength and not the actual techniques that baseball players

need to succeed, they will see improvements based off of their physical strength and endurance

only, instead of from their techniques and skill. My paper, on the other hand, focuses on the

techniques and the real-life skills of hitting a baseball, instead of the physical training on the body.

6. CONCLUSIONS

The first limitation of my project is how the pitcher is always accurate - in a bad way. Real life

pitchers are human, and make mistakes from time to time. However, my simulation does not take

this fact into account. All of the pitches that the pitcher throws in my simulation are strikes and

each one lands in the exact same spot every single time. I believe that I need to add more variants

to pitches and more room for error. For example, I would like to mix in pitches from time to time

that are actually balls and that the batter should not be swinging at. Furthermore, in addition to

adding “mistake” pitches, I also want to add randomness to the pitches, in order to make each

pitch type land in a new position every time, making the batter have to adapt in order to do well.

Another limitation of my project is that the tactile sensation of playing baseball in my simulation

does not match the sensation of playing baseball in real life. First off, the weight of the controller

is not similar to the weight of the baseball bat [15]. This difference is significant because it makes

swinging the virtual controller very easy and light, when in real life, swinging a 30 - 33 oz bat is

slower and takes more effort. Secondly, because the baseball is virtual, one does not feel the

contact point, and thus does not experience the feeling of squaring up a baseball. One last

limitation of my project is that it is not as immersive as real life, which may distract the player

because the player is in a different environment. An easy solution to this would be to just develop

the VR world so that it looks more realistic, either by implementing realistic features, or by

adding more details to make each component look better.

In conclusion, a training mechanism for baseball hitting practice was successfully created using

the Unity game engine and a VR headset. Based on the data of the experiments discussed above,

this training mechanism was proven to be effective. Those who trained with this VR training

solution showed improvements to real world baseball performance compared to those who did

not, which suggests that more developments towards training systems of this nature should be

pursued [14]. While the training system developed in this paper was successful, it leaves many

areas for future improvements in the realm of immersion, realism, and tactile sensation.

Additionally, there are some inherent limitations, such as the cost of equipment, that limit the

accessibility of this solution. As future solutions improve upon this one, accessibility would be an

important point of consideration.

REFERENCES

[1] Newton, Robert U., and Kerry I. McEvoy. "Baseball throwing velocity: A comparison of medicine

ball training and weight training." The Journal of Strength & Conditioning Research 8.3 (1994):

198-203.

[2] Gray, Rob. "Transfer of training from virtual to real baseball batting." Frontiers in psychology 8

(2017): 2183.

[3] Fleisig, Glenn S., et al. "Kinetics of baseball pitching with implications about injury mechanisms."

The American journal of sports medicine 23.2 (1995): 233-239.

[4] Rottenberg, Simon. "The baseball players' labor market." Journal of political economy 64.3 (1956):

242-258.

[5] Anthes, Christoph, et al. "State of the art of virtual reality technology." 2016 IEEE aerospace

conference. IEEE, 2016.

[6] Desai, Parth Rajesh, et al. "A review paper on oculus rift-a virtual reality headset." arXiv preprint

arXiv:1408.1173 (2014).

Computer Science & Information Technology (CS & IT) 125

[7] Fortenbaugh, Dave, Glenn S. Fleisig, and James R. Andrews. "Baseball pitching biomechanics in

relation to injury risk and performance." Sports health 1.4 (2009): 314-320.

[8] Gomes, Arlindo, et al. "Extended by Design: A Toolkit for Creation of XR Experiences." 2020

IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). IEEE,

2020.

[9] Kern, Florian, et al. "3D printing an accessory dock for XR controllers and its exemplary use as XR

stylus." Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology.

2021.

[10] Saxena, Ashutosh, Min Sun, and Andrew Y. Ng. "Make3d: Learning 3d scene structure from a

single still image." IEEE transactions on pattern analysis and machine intelligence 31.5 (2008): 824-

840.

[11] Kohmura, Yoshimitsu, et al. "Effects of batting practice and visual training focused on pitch type

and speed on batting ability and visual function." Journal of Human Kinetics 70.1 (2019): 5-13.

[12] Gray, Rob. "Transfer of training from virtual to real baseball batting." Frontiers in psychology 8

(2017): 2183.

[13] Klein, Brooks, et al. "Offseason workout recommendations for baseball players." Current Reviews

in Musculoskeletal Medicine 14 (2021): 174-184.

[14] George, Thomas R. "Self-confidence and baseball performance: A causal examination of self-

efficacy theory." Journal of sport and exercise psychology 16.4 (1994): 381-399.

[15] Nathan, Alan M. "Characterizing the performance of baseball bats." American Journal of Physics

71.2 (2003): 134-143.

© 2024 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

https://airccse.org/

	Abstract
	Often, people’s busy schedules and lack of equipment make it difficult for them to get solid baseball training hours [1]. This paper seeks to remedy this issue by investigating the efficacy of a virtual baseball training solution [2]. The solution pro...
	Keywords

