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ABSTRACT 
 

In this paper, the authors introduce a lightweight dataset to interpret IoT (Internet of 

Things) activity in preparation to create decoys by replicating known data traffic patterns. 

The dataset comprises different scenarios in a real network setting.  This paper also 

surveys information related to other IoT datasets along with the characteristics that make 

our data valuable.  Many of the datasets available are synthesized (simulated) or often 

address industrial applications, while the IoT dataset we present is based on likely smart 

home scenarios.  Further, there are only a limited number of IoT datasets that contain both 

normal operation and attack scenarios.  A discussion of the network configuration and the 
steps taken to prepare this dataset are presented as we prepare to create replicative 

patterns for decoy purposes. The dataset, which we refer to as IoT Flex Data, consists of 

four categories, namely, IoT benign idle, IoT benign active, IoT setup, and malicious 

(attack) traffic associating the IoT devices with the scenarios under consideration. 
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1. INTRODUCTION 
 

Internet of Things (IoT) remains one of the most vulnerable components of computer networking 

due to the vast number of expected interconnected and relatively low-cost devices. It is well 
documented that the need for cost-constrained IoT creates challenges for secure and privacy-safe 

products.  Proprietary or non-standard offerings of IoT also add complexity since it is difficult to 

assess the security without wide access and open technical specifications for testing by experts. 
The closed nature of the design may inhibit the security community in guiding the vendor or 

announcing the vulnerabilities in the design and to propose stronger protection. Therefore, there 

is a need to evaluate security from proposed datasets that may be used to architect security 

programs. 
 

In this paper, a measured dataset is introduced that offers a simple, yet comprehensive, approach 

to evaluate IoT data traffic for security purposes. The dataset is made available on an open-source 
platform. It provides network traffic events associated with the source and destination resources 

and the dataset comprises different scenarios using a reduced number of devices in a real network 

environment that may be typical for home use.  The intention is to make available a quality 

dataset with a manageable number of packet events so that the analysis can be performed 
efficiently with limited computing resources.  Unlike other datasets we examined, our IoT Flex 
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Data provides a reduced amount of traffic events in a realistic home IoT deployment setting, 
making it easier for researchers to assess with less computing resources. 

 

Our proposed dataset captures IoT network traffic for 1-hour, 5-hour, and 10-hour uninterrupted 

intervals.  As a result, the datasets are simpler to view in network diagnostic platforms, including 
Wireshark, Zui (formerly BRIM), and even excel spreadsheets, therefore avoiding frequently 

encountered constraints used when collecting and assessing data.  

 
There are many IoT datasets that have been constructed and are available for viewing on open-

source platforms.  We provide an overview of references and surveys that mention or describe 

these alternatives.  In general, datasets can be classified as being obtained in two general ways:  
1) using real network traffic either from testbeds of IoT devices or historical recording of 

empirical network traffic in large-scale deployment or 2) synthesized data that is captured using 

computer simulation resources, imitating the device traffic.  Our approach is categorized as a real 

network IoT dataset capture and the intention is to limit data events along with time duration so 
that deceptive characteristics of the environment can be implemented to improve security. 

 

The value of any dataset, especially for cybersecurity objectives, is often based on certain 
parameters.  Earlier works have demonstrated the importance of availability, quantity, and quality 

of the datasets. [1] It is worth noting that quantity of data, or the larger size of the dataset, may 

more likely contain representative samples. This may not necessarily suggest that a single large 
number of sequential events is preferred; instead recording more scenarios with limited events for 

each may be just as valuable. [2] 

 

A discussion of the network configuration and the steps taken to prepare our dataset is presented. 
The dataset consists of four categories, namely, IoT benign idle, IoT benign active, IoT setup, 

and malicious (attack) traffic associating the IoT devices with the scenarios under consideration. 

For each scenario, except for IoT setup, three uninterrupted (1-hour, 5-hour, and 10-hour) 
datasets are recorded in PCAP (packet capture) format.  
 

2. OBJECTIVE AND GOALS 
 

The IoT Flex Dataset initiative is motivated by our desire to start small and expand the network 
with different devices and scenarios as our security research evolves.  Initially, we were focused 

on invoking open-source datasets, but challenges with this approach became evident. This 

included the following:  

 
1. Several datasets were too large to ingest in our collection tools.  Even when datasets were 

compressed and downloaded, commonly used spreadsheet programs, such as excel have 
default limits of 65536 rows (events) or if increased may cause processing issues. Also, there 

are challenges with extracting datasets into PCAP viewing tools, such as Wireshark, without 

manipulation (trimming/splitting of data and other adjustments).  We also observe that there 
were “labelled” datasets that were incompatible with viewing on platforms at the “flow” level 

(as opposed to packet level) unless certain parameters were superimposed, making the 

assessments more cumbersome.    

 
2. Some datasets provided only limited descriptive information about the setup, devices 

deployed, and/or the scenarios in use.  For instance, there were cases where Internet 
addressing changed during dataset captures, perhaps because of dynamic protocols in the 

network or other reasons which made continued assessment of the events difficult to 
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interpret.  In some of our attempts, we also had difficulty reaching authors or owners of the 
datasets to understand more about the scenarios.    

 
3. There was difficulty with superimposing techniques, tactics, and procedures on original 

datasets to determine effects.  In our case, this was perhaps the most conspicuous concern. 

Since access to the underlying network implementation can be restricted, the ability for 

adjustments (adding security solution algorithms) may be impeded. Augmentation of a 
countermeasure requires meticulous implementation and planning that further complicates 

the effort without control of the network.  

 

These factors are not intended to negatively critique any dataset. In fact, we found all the datasets 
of value for their intended purpose.  For our initiative, it became evident that a smaller, more 

contained dataset may have appeal.  Also of importance is to make sure that the dataset is well 

documented, available widely, and easy to deploy.  Hence our commitment to develop a dataset 
starting from scratch and keeping it lightweight for limited computing resources.  

 

It is worth noting our goal using the proposed dataset is to assess security improvements.  We 
evaluate scenarios of both benign (normal) traffic compared to conditions where IoT devices are 

under attack (malicious) traffic.  Based on the comparison, IoT device characteristics, as 

portrayed with traffic patterns, can be reviewed and security solutions can be superimposed.  Our 

ultimate objective is to impose a strategy that demonstrates improved security posture with 
reduced attack risk.  Our goals are twofold:  

 

1. Provide a simplified, lightweight set of data that can be interpreted with a high degree of 
significance and without excessive / heavy statistical processing.  

 

2. Establish relationships between different scenarios of IoT device usage in a representative 
home environment.  

 

Our expected differentiators include:  

 
 IoT real devices (not virtualized)  

 Manageable dataset (Shorter intervals and balanced events)  

 Specific attack scenarios that can be easily identified  
 Limited devices for easier analysis of addresses and communications  

 Expandable - ability to overlay security measures for evaluation and result comparison 

 

3. FLEX DATA COLLECTION 
 
This section provides background on the data acquisition process.  An overview is provided of 

our real network testbed and of the seven IoT devices that are deployed. The intention is to add 

replicated devices for security improvement measures as our research continues.    

 

3.1. IoT Network Implementation 
 
The IoT Flex Data is derived from a network of purchased IoT devices which are a smart camera, 

smart plugs, smart light bulbs, and Amazon Alexa devices. All are connected to the Internet for 

typical consumer use scenarios from the home network.  Additionally, a virtual machine running 
on a hosted computer is configured to inject attack events on the IoT devices.  Two classifications 

of traffic events contribute to the dataset.  1) traffic during normal operation and 2) traffic during 

an attack.   Both normal and attack classes of events are recorded using Wireshark traffic 
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monitoring off a switch with a mirror-port enabled attached to the wireless access point where the 
IoT devices are deployed.  

 

When setting up the smart home IoT configuration, it became obvious that provisioning for all of 

the devices provided two options, either Bluetooth (a protocol for short-distance radio frequency) 
or IEEE 802.11 Wi-Fi connectivity. No other lower-layer network access option was available. In 

the implementation, Wi-Fi access is enabled with the radio frequency (RF) band determined by 

the capabilities of the IoT device, usually communicating over the 2.4GHz band.  The local area 
segment containing the devices is covered using Ubiquiti Networks Access Point to extend 

Internet traffic from the interior router to the wireless network as illustrated in Figure 1. 

 

 
 

Figure 1. Network Implementation to Produce IoT Flex Data 

 

To separate the IoT network environment from the other portions of the home network, Virtual 
Local Area Network (VLAN) tagging was used which enabled traffic monitoring for IoT devices 

of interest.    

 

A span port from a switch capable of providing mirroring was positioned next to the Wi-Fi access 
point and captured network traffic in the VLAN segment which contained the IoT devices’ 

communications.  Note that attempting to capture IoT device traffic over the RF would have been 

more cumbersome, predominately due to Wi-Fi encryption and radio channel protocols, including 
frequency hopping.   Monitoring of traffic in promiscuous mode was enabled on a packet 

diagnostic platform, Wireshark, to successfully capture events within the LAN segment. [3] 

 
The network setup does not constrain use of other normal activity in the home. Figure 2 shows 

how the partitioned IoT network is isolated from other elements.  It is worth noting that because 

the wireless access point is connected to a separate portion of the network, and our mirrored port 

is retrieving all traffic as seen by the wireless access point, the packet capture events (PCAP) 
contain ingress and egress traffic from the interface.  Therefore, if viewing the traffic on a 

network monitoring tool, device communications from other superfluous connections may be 

observed, although we used an anonymization tool to mask sensitive identifiers just in case there 
was any vulnerability.  The importance of keeping this traffic as part of the dataset is to make it 

appear as holistic and real as a network may be normally.  
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Figure 2. VLAN of IoT Devices in Wi-Fi Segment 

 

3.2. IoT Devices and Computing 
 

The deployment is based on four categories of IoT devices, ranging from a home security camera 

to lower traffic smart power plugs. A Wyze IoT high-fidelity video recording camera was 
selected with various controls to navigate the camera, control recordings, and/or listen (and 

observe) live or detected movements.  Two Amazon Alexa Echo devices were deployed with one 

being used as a baseline, while the other is used to interact with offered services accordingly.  
 

This paired solution was also implemented for Tuya IoT Lightbulbs and Tuya IoT plug outlet 

controllers.  The network provisioning with our five applications, offers a simple way to interpret 

IoT devices and to understand how different types produce traffic patterns in isolation.  We also 
observe how IoT devices interact with their peers or other types of IoT in the network. The 

implementation is simple, but expandable to other scenarios over time. Since the objective is to 

assess the smart home environment, the devices selected range from light traffic smart electrical 
plugs and controllable lightbulb to higher traffic home video cameras and Amazon Alexa 

interactive devices.  These devices are connected on a virtual local area network with Wi-Fi. 

Table 1 highlights the baseline devices selected for our simplified implementation.   
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Table 1. Baseline deployment of devices 

 
Device Vendor Assigned IP Address Hardware Details Software Details

UAP-AC-Pro Wireless Ubiquiti Networks 192.168.1.101

GbE Uplink  PoE  Wi-Fi 

802.11a/b/g/n/ac                   

2.4 and 5 GHz

802.1q VLAN

US-8-60W Port Switch Ubiquiti Networks 192.168.1.84 8 Port Switch (4 PoE)
Port Mirror Capable  Non-

Blocking

Unifi Dream Router Ubiquiti Networks 192.168.1.1

1 GbE WAN,  4x 1 GbE LAN                      

Dual-core Arm Cortex A53 

1.35 GHz Processor

IoT Smart Camera Pan v3 Wyze Labs, Inc. 192.168.100.11

15/30 FPS , 1080p Full HD  

CPU 1.5 GHz                                   

Wi-Fi 802.11 b/g/n                   

(2.4 GHz Wi-Fi only)                

MQTT Publish/Subscribe 

H.264 video codec

Alexa Echo Show Amazon Technologies Inc. 192.168.100.21 MediaTek MT 8163 Processor MQTT Publish/Subscribe

Smart AC Electric Plug #1 Tuya Smart Inc. 192.168.100.31
 Wi-Fi 802.11 b/g/n               

2.4 GHz only
MQTT Publish/Subscribe

Smart AC Electric Plug #2 Tuya Smart Inc. 192.168.100.32
 Wi-Fi 802.11 b/g/n               

2.4 GHz only
MQTT Publish/Subscribe

Smart LightBulb #1 Tuya Smart Inc. 192.168.100.41

A19 bulb, E26 Socket LED 

adjustable Wi-Fi 802.11 

b/g/n, 2.4 GHz only

MQTT Publish/Subscribe

Smart LightBulb #2 Tuya Smart Inc. 192.168.100.42

A19 bulb, E26 Socket LED 

adjustable Wi-Fi 802.11 

b/g/n, 2.4 GHz only

MQTT Publish/Subscribe

Alexa Echo Dot Amazon Technologies Inc. 192.168.100.219 MediaTek MT 8512 Processor MQTT Publish/Subscribe

Desktop PC - DavidW-iMac Apple Inc. 192.168.100.232
Intel Quad Core i5 3.2 GHZ                

32 GB RAM

MacOS Monterey                   

Kali Linux                                

VMWare Fusion

Desktop - Network Monitor Dell Inc. 192.168.1.240
Intel Core i7 1.80 GHz              

64 GB RAM

Windows 11                

Wireshark v4.2.3       

TraceWrangler v0.6.7  
 

Note the replication of a secondary device is made available for the IoT lightbulb and smart 

electrical plug. They are used for comparison purposes.  Similar to a placebo, these added devices 

identify differences or any communications between the device’s broker under evaluation and the 
secondary device.  

 

3.3. Tools and Analytics 
 

Several software platforms are part of IoT Flex Data production.  They include the use of 

Wireshark, TraceWrangler, Kali Linux, and Zui/Zed (formerly BRIM) as summarized below:  
 

Wireshark [3] is a network packet analyser that presents as much detail as possible. The 

platform summarizes captured data in layers, such as seeing each bit flow over a physical 
medium or observing framed data at higher layers.  Wireshark is available as open source and is 

free. 

 

TraceWrangler [4] is a network capture file toolkit that supports PCAP as well as the new 
PCAPng file format, which is now the standard file format used by Wireshark. The most 

prominent use case for TraceWrangler is the easy sanitization and anonymization of PCAP and 

PCAPng files.  TraceWrangler is an open-source tool that we use to remove or replace sensitive 
data in the deployed network.  

 

Kali (NMAP, Hydra, HPING3) [5] is an open-source, multi-platform distribution focused on 
performing Internet security tasks, such as penetration testing, security research, computer 

forensics, reverse engineering, and vulnerability management. We implement Kali as a virtual 

machine on our desktop Mac to generate the various attack scenarios on the IoT victim devices.  

Three software packages that are used, include NMAP for scanning, Hydra for bruit force of 
credentials and HPING3 for denial-of-service attack scenarios.  
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Zui User Interface [6] (formerly known as BRIM) provides a search query language enabling 

filtering and analytics from captured data traffic.  Zui is used to analyse network traffic that was 

recorded by Wireshark in PCAP format which can then be examined at a connection (flow level) 

while also incorporating alerting as provided by intrusion detection systems, such as Suricata. 
 

Table 2 summarizes the software and tools used for the assessments, although some of the 

platforms, including R-Studio and Excel, extend beyond generation of the dataset and are focused 
on the analytics.  

 
Table 2. Software programs and platforms 

  
Purpose Software Description

Wireshark Records network traffic in PCAP format                                                                                                                                                                                                                  

Tracewrangler Anonymize/mask local MAC addresses

ZED/ZUI
Ingests PCAP and other formats.Compatibility with Zeek (Bro)  

Summarize/filter traffic at a connection layer

Intrusion Detection System

Security  alerting

Kali Linux 

HPING3 Denial of service and flooding

 NMAP Port and service scanning

Hydra Brute force credentials

R-Studio Versatile coding to summarize and graph results

Excel Summarize and tabularize results

Suricata

Attack Engine

Statistics/Analysis

Network Monitoring

Security Alerts

 
 

3.4. Data Capture Scenarios  
 
This section highlights the generation of the traffic scenarios, both benign (normal) traffic and 

attack (abnormal) event traffic representing expected attacks in a real network environment.  For 

the benign traffic production, we provide different time intervals and different activities.  For 
attack scenarios, duration of recorded traffic will vary depending on the type of attack being 

used.  A summary of the dataset scenarios made available are as follows and summarized in 

Table 3:  
  

Normal Traffic Scenarios:  

 

1. Startup activities for IoT lightbulb and IoT smart electrical plug.  This activity involved a 
short capture interval of several minutes as IoT devices under examination were enrolled 

and powered-on in the IoT network segment to record traffic patterns.  

 
2. All network IoT devices powered on, but without user-invoked activity (IoT idle/standby 

state).  Here, IoT traffic from devices were recorded for different durations: one hour, 

five hours, and ten hours.  The purpose was to achieve a baseline of events and how IoT 
device traffic may change between idle and activity.  The devices in the network that 

were recorded include the IoT Smart Camera Pan V3, Amazon Echo Show, IoT smart 

electrical plugs #1 and #2, and IoT smart lightbulbs #1 and #2.  

 
3. All network IoT devices powered on with IoT camera, Amazon Echo Show, IoT 

lightbulb #1, IoT electrical plug #1 performing tasks (IoT active state).  Activities include 

turning the IoT lightbulb and IoT electrical plug on for exactly five minutes and then off 
for exactly five minutes for approximately 80% of each time-interval (one hour, five 
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hours, and ten hours) of event traffic recorded in separate files.  Similarly, user 
interaction was imposed on the IoT camera, such as listening to audio or observing video 

from the surveillance area, rotating video capture areas and setting up commands, such as 

activating movement sensors.  For Alexa Echo Show, the user involvement would be 

commands to ask about news, play music and turn-off after numerous separate episodes 
of listening.  

  

Attack Traffic Scenarios:  
 

4. Reconnaissance: Scanning is often an early sign of malicious activity, especially if it 

is originating from an unknown resource.  Using Kali Linux NMAP scanning, all 
devices on the network are identified including the ports (services) that may be 

open.  Service scanning, often associated with identifying open ports and associated 

device addresses, may be an early indicator to take preventive action.     

 
5. Bruit Force:  Using Hydra credentials are injected and tracked to demonstrate the 

traffic characteristics associated with recurring username and password attempts.  

 
6. Denial of Service:  Using Hping3, adjustable conditions are configured to flood the 

IoT victim device.  We attempt this on all devices separately to observe the 

overarching conclusion that may identify an attack is in process.   
 

Table 3. Real traffic data for IoT devices 

 

Scenario Duration Devices/Victim IP Address

IoT Smart Electric Plug 192.168.100.31

IoT Lightbulb1 192.168.100.41

Idle State

1 Hour
5 Hours
10 Hours

Active State 4 IoT Devices 192.168.100.11      

1 Hour
5 Hours
10 Hours

IoT Smart Electric Plug 192.168.100.31

IoT Camera Pan v3 192,168.100.11

All IoT Devices 192.168.100/24

192.168.100.21   

192.168.100.31     

192.168.100.41

192.168.100.0/24

Setup

Power-On

Benign

Attack

Denial of Service

Bruteforce

Reconaissance

All IoT Devices

IoT Camera, Alexa Echo Show, 

IoT Smart Plug#1, IoT 

Lightbulb#1)            

 
 
Attack methods for IoT continue to expand.  There are many different tactics that are associated 

with the hacker arsenal, and it remains difficult for organizations to stay current on defensive 

measures.  Some of the more significant IoT attacks include loss of confidentiality, protocol and 
application integrity attacks, authentication attacks, denial of service, access control attacks, and 

attacks on physical security. As our research continues, additional attack scenarios may be added 

to the available dataset we post on Kaggle.  
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4. RELATED WORK 
 
Based on our research, there are several surveys focused on IoT datasets for security.  As a result, 

a review of academic publications and a search for publicly available IoT datasets was 

conducted.  Searches of datasets were generated using web search engines and trade journal 

reviews, including IEEE Xplore, Google Scholar, along with data collection sites, such as SNAP 
(Stanford Large Network Dataset Collection), Kaggle, and GitHub.  [7] [8] [9] [10]  While there 

are many datasets available, several focus only on normal operation of IoT devices or, more 

frequently, on industrial sensors.  Other datasets were performed in a simulated environment and 
not using real IoT deployments.  Our findings also found that many datasets did not offer 

different scenarios, or a choice of duration.   

 

Two important surveys of IoT datasets were reviewed as a starting point.  De Keersmaeker, 
Francois et al. Compiled what may be perhaps the most inclusive survey with seventy-four 

datasets surveyed.  The authors point out the diversity of data in the field of IoT analysis.  The 

datasets in this survey are divided into several classifications and a summary of each of 
presented. [11]   Similarly, Alex, Creado, et al, identified forty-four IoT datasets that were made 

available publicly.  Several observations were made about limitations of existing datasets, which 

included the lack of documentation, less than realistic representation of IoT protocols and/or 
attack trends and lack of representative topologies. The author expressed a need to have a 

standard to discuss required attributes in dataset documentation. [12]     

 

From the survey articles, we attempt to narrow down related datasets aligned to our IoT security 
research efforts.  This focused listing in Table 4 attempts to notate representative attributes and 

security identifiers that we acknowledge as our IoT Flex Dataset was constructed. 

 
Table 4. Listing of comparable datasets related to IoT Security 

 
Dataset Originator Affiliatiion Year

DARPA Off-Line Intrusion Detection Lippmann  et al.  [13] DARPA (Defense Advanced Research Projects Agency) 1998/1999

Bot-IoT Dataset Koroniotis et al.  [14] UNSW (University of New South Wales) 2018

UNSW-NB15 Moustafa et al. [15] [16] UNSW (University of New South Wales) 2019

CIC-IOT Dadkhah et al.  [17] CIC (Canadian Institute for Cybersecurity) 2022

Aposemat IoT-23 Garcia et al.  [18] CVUT (Czech Technical University) 2020

AIoT-Sol Dataset Min et al.  [19] Mahidol University, Thailand 2018  
 

1998/99 DARPA off-line intrusion detection [13]    
 

Among the earlier datasets identified was the 1999 DARPA work on intrusion detection focusing 

on computer networking in general.  The dataset was a real-world evaluation of computing 
devices and captures various attack type traffic, including denial-of-service, port scanning and 

other malicious intrusions. The dataset was crafted on a wired network infrastructure and had no 

focus on the emergence of IoT as this ecosystem evolved much later.  
  
IoT Botnet [14]  
 

The Bot-IoT dataset includes normal IoT network traffic along with a variety of attacks.  The 
dataset contains DDoS, data exfiltration, and service (port) scans, similar to our dataset.  This 

dataset is a very popular reference and is used frequently for simulated machine learning 

objectives.  However, the IoT endpoints are simulated so actual smart home devices were not a 
part of the data that would be deployed in the consumer market.  We also had limited ability to 
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add prevention mechanisms to determine how the attack scenarios can be reduced with an 
overlay security approach.    
  
UNSW-NB15 [15] [16]  
 
UNSW-NB15 was initially released in 2015. This dataset is comprised of normal and abnormal 

(attack) traffic events. Two servers were configured to distribute the normal network traffic and a 

third server was deployed to generate attack traffic. Both packet-based and flow-based features 
were extracted from the raw network packets using analytic platforms Argus and Bro (now called 

Zeek). Packet-based features are extracted from the packet header and its payload.  In contrast, 

flow-based features are generated using the sequencing of packets, from a source to a destination, 
traveling in the network. In our IoT Flex Data, we use similar flow-based features to capture the 

characteristics of IoT devices under both benign and attack scenarios.  We use real IoT devices in 

our configuration.   
  
CIC IoT Dataset [17]  
 

The Canadian Institute for Cybersecurity sponsored a project to generate IoT datasets profiling 
different IoT devices with different protocols, including IEEE 802.11 (Wi-Fi), Zigbee and Z-

Wave.  The objectives were to configure various IoT devices and analyse the behaviour 

exhibited.  The goal of the dataset was intended to analyse network traffic when devices were idle 
and then powered on.  Furthermore, the dataset captured network traffic of devices in active 

benign conditions and then under an attack scenario.  For this work, 40 IoT devices were used, 

and data was captured in a simulated environment for five days. The generation of CIC-IDS2017 

[9] was done in an emulated environment for 5 days.   
 

In comparison, our IoT Flex Data uses only seven IoT devices and curtails the duration to under 

ten hours.  While CIC IoT data is a very popular source for a dataset, our intention was to 
simplify the traffic load under examination.  

 

IoT-23 [18]  
 
IoT-23 was developed in the Stratosphere Laboratory at CTU University in the Czech Republic.  

It is one of the more recently released datasets of network traffic from Internet of Things (IoT) 

devices. It has 20 malware captures executed in IoT devices, and 3 captures for benign IoT 
devices traffic. It was first published in January 2020, with captures ranging from 2018 to 2019.   
Similar to our proposed work, IoT-23 data provides benign scenarios for a Philips HUE smart 

LED lamp, an Amazon Echo home intelligent personal assistant and a Somfy smart door lock. 
Also similar, the three IoT devices are real hardware and not simulated. In our work, we had 

difficulty superimposing defensive security measures that could be evaluated on this dataset.  

Instead, we preferred to generate results from a running network that would be easier to set up or 

replicate as opposed to generating specialized coding to adapt to this dataset that was available.  
  
AIoT-Sol Dataset [19]  
IoT-Sol dataset uses a real device network to incorporate attack techniques in the IoT datasets. A 
total of 17 attack types are selected, such as network attacks, web attacks, web IoT message 

protocol attacks, it also includes the typical attack types available in most IoT datasets, such as 

denial-of-service (DoS) attacks. It also contains a simulation of realistic IoT network traffic in a 
normal operation scenario.   
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5. PRELIMINARY REPRESENTATIVE FINDINGS 
 
As we begin to make statistical inferences of our data, there were several relevant observations 

that became evident.  We want to convey two of these findings and follow up later with more 

comprehensive details in another publication.   

 
First, it was observed that even when IoT devices were in a non-active state IoT devices were 

transmitting and receiving data outside our network environment.  It was expected that in an 

“idle” state there would be no traffic as no action was being taken by users of the devices.  
However, this was not the case; in fact, upon power-on of the IoT devices, traffic was noticeable 

to Amazon Web Services (AWS), perhaps because the cloud services that control/broker the 

devices which are then aggregated there. Upon further assessment, it became clear that the AWS 

environment contains the MQTT (Message Queueing Telemetry Transport).  Second, in the case 
of IoT lightbulbs and IoT power outlet devices, lateral communications occurred between active 

and idle devices; this was not initially expected either. 

 
With respect to attack-generated scenarios, data statistics clearly indicated interruption.  

Preliminary data shown below in Figure 3 depicts an IP address of the device where a Denial of 

Service (DOS) attack was performed using Kali Linux.   Specifically, the transmit and receive 
packet statistics show IoT Plug 1 device (192.168.100.31) unable to transmit due to traffic 

flooding. 

 

 
 

Figure 3. Representative Results From a Denial of Service Attack on IoT Plug 1 Device 

 

6. FUTURE WORK 
 

The proposed dataset is primarily motivated to continue future research around improving 
security for IoT networks.  We plan to overlay defensive mechanisms and observe the 

responsiveness of the devices.    

 
In the future, our plan is to expand the dataset offering to include traffic when defensive measures 

are invoked to counteract the attack scenarios.  Additionally, we intend to provide analytical 

results that would demonstrate an improved secure network posture with the selected defensive 

strategies.   
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Our work in general focuses on deception techniques with the objective of entangling intruders as 

opposed to attracting them once in the network.[20] In other words, implementations are 

deployed with proportional decoys throughout the environment so that the probabilistic outcome 

would be extremely low for the attacker to have succeeded in reaching authentic IoT endpoints 
altogether. Solutions in this regard have progressed to include enriched deception by being 

widely distributed and being capable of stealthy interactions with a better determination of the 

attacker’s intent and approach. 
 

As an attacker takes action and attempts to make lateral moves to other endpoints, alerts are sent, 

and deception is activated. At this point, decoys can be multiples of the real system resulting in a 
perceived larger number of devices than in use. The attacker’s attempt is directed to a trap server 

instead of the real assets that were targeted. With numerous deceptions invoked, the likelihood is 

significant that the intruder makes an incorrect decision and does not realize it. This compels the 

attacker to perform more work and leave more trails, positive characteristics for an investigation 
aligned with a defensive strategy. 

 

The deceptive elements are typically maintained in the virtual server(s) that spread the decoys 
across each family class of protection defined. The information attained from real-time forensics 

of the trap logs can be channelled to the management console for countermeasures. Figure 4 

depicts a generic representation of a deception solution as it relates to IoT. 
 

 
 

Figure 4. Deceptive View from Attacker Perspective 
 

7. CONCLUSIONS 
 
The objective of this discussion was to present and make available a realistic IoT network in a 

home environment that would be able to produce a lightweight dataset for use in academia, 

industry and for other purposes.  An attempt was made to be descriptive, yet concise, on the 
details of the IoT devices under consideration, the network configuration, and the software tools 

being used to investigate responsiveness under different scenarios. Network traffic of 

representative smart home IoT devices was recorded.  Our intention was to accurately describe 
the configuration and make the investigative durations manageable so it could be replicated and 

evaluated by others.  Our main contribution is to add perspectives from this data that may not 

have been entirely captured in the past and that may be easier to analyse than much larger 

datasets from the past.  
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