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ABSTRACT  
 
The Prony method for approximating signals comprising sinusoidal/exponential 

components is known through the pioneering work of Prony in his seminal dissertationin 

the year1795.  However, the Prony method saw the light of real world application only 

upon the advent of the computational era, which made feasible the extensive numerical 

intricacies and labor which the method demands inherently. While scientific works (such as 

Total Least Squares method) exist , which focus on alleviating some of the problems arising 

due to computational imprecision, they do not provide a consistently assured level of highly 

precise results. This study improvises upon the Prony method by observing that a 

better(more precise) computational approximation can be obtained under the premise that 

adjustment can be made for  computational error, in the autoregressive model setup in the 

initial step of the Prony computation itself. This adjustment is in proportion to the deviation 
of the coefficients in the same autoregressive model. The results obtained by this 

improvisation live up to the expectations of obtaining consistency and higher value in the 

precision of the output (recovered signal) approximations as shown in this current work. 
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1. INTRODUCTION 
 

The Prony method is an effective observation on the transformation of an exponential expression 

to a mathematically convenient and tractable polynomial form. 
 

The cornerstone of the method is to setup the autoregressive model where the subsequent values 

of the input signal (are assumed to) depend regressively on the prior values and then solve the 
model (by dividing the Toeplitz matrix with the input signal and obtaining the remainder) to 

obtain the auto regression coefficients(a). 

 
The characteristic polynomial summing the auto regression coefficients(a) is then solved to obtain 

the roots. The roots obtained directly provide the value of the damping factor and frequency of 

the output approximating signal. The roots obtained are then also, used (in the form of knowns) to 
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again setup and solve the original autoregressive model  to obtain the Amplitude, and phase,  of 
the approximating (or smoothened for lack of a better term) output signal. As obvious the 

procedure described above is mathematically(computationally) intensive and precise only up to 

the precision allowed for in the computational process. 

 
Thus, the Prony method was practicable only with modern computers came to aide. This made the 

computing task easier however introduced a limit (albeit smaller than manual computation) on the 

precision to which the resultant (approximating) signal resembled the original input signal. 
 

In this current work, the author makes the empirical premise that the computer introduces an 

imprecision proportional to the variance of the signals’ autoregression coefficients and therefore 
can be thus corrected to yield a more precise output estimate of the Amplitude, frequency, 

dampener, and phase.  

 

2. CONTEXT OF CURRENT WORK IN REGARD TO RECENT LITERATURE OF  

RELATED WORKS 
 
In the recent (century) time frame (~2014,2022) there have been various attempts to comprehend, 

adapt, implement, and optimize the Prony method with modern electronic and computing 

platforms doing the heavy duty tasks. These adaptations take the form of varying the parameters 
in the core Prony Algorithm (with optimization in perspective)[7], generating usable intermediary 

output byproduct from the core algorithm (for use in related settings and contexts)[5], evaluating 

the utility of the transformative power (in the co-domain) of the algorithm for ease of scientific 

analysis[6]etc.  However, the objective of  this present work is more subtle and profound, in that 
the adaptation proposed here-in has wide-reaching consequences (in terms of results) in critical 

applications across diverse domains and application functional areas. 

 

3. SCOPE  AND SIGNIFICANCE OF WORK 
 

This work is focused on obtaining reliable bounds in the computational  precision of the output 

from the Prony method. The bounds so obtained are significant in the practical application of the 
method owing to the requirement that, for the diverse domains in which the method is applied, 

such as biomedical engineering, power systems etc. the level of precision significantly impacts 

the ends for which the method is used , for example the monetary cost effectiveness in the case of 

power systems and the effectiveness of diagnosis in the case of bio-medical engineering. The 
work is unique in that though works with similar objectives exist , the particular premise and 

methodology described are not found in existing literature. 

 

4. FUNDAMENTAL PREMISE IN THIS ADAPTATION OF PRONY’S METHOD 
 

The implementation of the Prony’s method in MATLAB is described in [2]. As mentioned above, 

in this adaptation of the Prony method, the coefficients of the characteristic polynomial, 

computed in the first step autoregressive model are self-adjusted by a constant  multiple of the 
standard deviation of their own values and this assuredly compensates for the imprecision in the 

computation due to the computing device’s limitation in capacity to perform the computation to 

an arbitrary precision. 
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5. METHODOLOGY EMPLOYED IN THIS ADAPTATION OF PRONY’S METHOD 
 

Step 1 : 

 

This step consists of setting up an Auto Regressive Model with the random sample observations, 

where the assumption is that the observations are naturally organized such that the nth 
observation is linearly dependent on the n-1 pre-ceding observations thus yielding a model which 

regressively relies on computing the Toeplitz matrix set up to relate those observations in 

accordance with the above assumption. 
 

Step 2 : 

 
Solving the above auto-regressive model yields coefficients of the Prony characteristic 

polynomial which is pre-requisite to obtain the Amplitude and Frequency of the final 

approximating signal output as yielded by the polynomial roots. 

 

Step 3 : (Nuanced Prony method proposed by this work) 

 

Adjust the coefficients of the characteristic polynomial by a standard deviation of their own 
values. This work proves that this adjustment helps overcome the computational imprecision 

introduced due to limitations of the computing devices’ arbitrary precision arithmetic.  

 

Step 4 :Work with the adjusted polynomial coefficients to obtain the Amplitude and Frequency 
of the output signal components and also compute the damping factor and phase by yet another 

derivative system of equations obtained by substitution of obtained roots in the original equation. 

 
Step 5 : Compute the Precision Metric defined and observe that the nuance proposed here-in lives 

up to the expectation of yielding constant lower bound in the precision of the output signal 

approximation. 
 

6. DETAILS OF HARDWARE  AND SOFTWARE USED IN THE EXPERIMENTAL 

EMULATION 
 

Hardware Operating System Software Library 

PC 64 bit (AMD64) Windows 10 MATLAB R2024a 

 

7. DEFINITION OF METRIC TO QUANTIFY THE PRECISION OF THE 

RECOVERED OUTPUT SIGNAL 
 

To quantify the improvement in precision with this adaptation to the Prony method the following 
formulation (similar to [1]) is used as a measure of the comparative similarity in the input and 

output signals in both the unchanged Prony method and the adaptation introduced in this work. 

 
Precision Measure,  

 

PM = N – (norm(grecons[i]-g[i])/norm(grecons[i]-mean(g[i]))), 

 
where N=size(g[i]), g[i] = input signal vector, grecons[i] = reconstructed output signal vector, 

norm is the standard 2 norm, 

and mean is the usual mean definition.  
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8. EXPERIMENTAL RESULTS OF THE PRECISION MEASURE 
 

The results are divided into 3 distinct tiers based on the size of the input signal set vector, to the 

computation, as follows : 
 

Input Vector Size Coefficient Adjustment Factor Precision Measure Value  

(consistently for this adaptation of 

Prony method) (constant across several 
program runs) 

100 1*sigma(coefficients) 90 

1000 10*sigma(coefficients) 968.3772 

10000 100*sigma(coefficients) 9900 

 

The intuitive rigor behind the empirical constant results obtained above by experiment seems to 

be the fact that the amount memory required for the computer’s mathematical operations in terms 
of precision grows linearly with the variance of the values being computed itself. This is likely an 

aggregate manifestation of the optimizations of the memory architecture implementation. 
  

9. CONCLUSION AND FUTURE WORK 
 
This work has proven that with the adaptation of the Prony method set forth by the Author there 

is a consistent improvement of the Lower Bound in the recovered signal precision, thus 

improvising the Prony Method for advanced use in diverse and sensitive fields such as Bio-

Medical engineering and Electrical Power Systems. The Bio-Medical applications include 
improvement to disease detection by signal analysis as in [1]. 

 

There is scope for rigorous Stability Analysis (of recovered signal) with the adjustment founded 
by this work in place. 

 

Also, there is scope to apply this work in the realm of Quantum Computing to evaluate whether 

the same empirical results are upheld in that realm as well. 
 

REFERENCES 
 

[1] Fernández Rodríguez et al. BMC Bioinformatics (2018) 19:451 https://doi.org/10.1186/s12859-018-
2473-y 

[2] 80 IEEE Transactions on Power Systems, Vol. 5, No. I, February 1990 INITIAL RESULTS IN 

PRONY ANALYSIS OF POWER SYSTEM RESPONSE SIGNALS J.F. Hauer Senior Member C• 

J. Demeure Member L.L. Scharf Fellow 

[3] Parameter Estimation in Electrical Power Systems Using Prony's Method Claudius Ortbandt et al 

2015 J. Phys.: Conf. Ser. 659 012013 

[4] https://amses-journal.springeropen.com/fourier-based-   computational-approaches-pdes 

[5] Research on Fourier and Prony analysis algorithm of inter-harmonic in power system Hong Lei 

https://www.sciencedirect.com/science/article/pii/S2352484722004528 

[6] Online identification and suppression of low frequency oscillation in power system based on 

WAMS(Conference Paper) https://www.scopus.com/record/display.uri?eid=2-s2.0-
84897735036&origin=inward&txGid=c7699b92fff1ead1b2030efc1fc825f7 

[7] A Fault Signal Processing Method Based on An Improved Prony Algorithm 

https://www.frontiersin.org/journals/energy-research/articles/10.3389/fenrg.2021.831347/full 

 

 

 



Computer Science & Information Technology (CS & IT)                                              225 

APPENDIX A - MATLAB CODE OF MODIFIED PRONY METHOD 
 

%Code 1 Polynomial Implementation 

function [Amp,alfa,freq,theta]=polynomial_method (x,p,Ts,method) 

% method: 'classic', 'Is' or 'tls' (case insensitive) 

% define the solving methods 

CLASSIC = 0; 

LS = 1; 

TLS = 2; 

 

N = length(x); 
 

if strcmpi(method,'classic') 

if N ~= 2*P 

disp ('ERROR: length of x must be 2*p samples in classical method.'); 

Amp = []; 

alfa = []; 

freq = []; 

theta = []; 

return; 

end 

else solve_method = CLASSIC; 

end 
 

%% step 1 

 

T = toeplitz(x(p:N-1) ,x(p:-1:1)); 

 

switch solve_method 

case {CLASSIC, LS} 

a = -T\x(p+1:N); 

 

case TLS 

 
a= tls(T,-x(p+1:N)); 

 

end 

 

%% step 2 

c = transpose([1; a]); 

r = roots(c); 

 

rprim = r - (std(r)/n); 

%rprim = r - std(r); %TBTD 

 

alfa = log(abs(r))/(2*pi*Ts); 
 

% In case alfa equals to +/-Inf the signal will not be recovered for n=0 

%(Inf*0 = Nan). Making alfa = +/-realmax that indeterminance will be solved 

alfa(isinf(alfa))=realmax*sign(alfa(isinf(alfa))); 

 

%% step3 

switch solve_method 

case CLASSIC 

len_vandermonde = p; % exact case (N=2p) find h with p samples 

case LS 

len_vandermonde = N; % overdetermined case (N>2p) find h with N samples 
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case TLS 

len_vandermonde =N; % overdetermined case (N>2p) find h with N samples 

end 

 

Z = zeros(len_vandermonde,p); 
for i=1:lenght(r) 

 

z(:,i) = transpose(r(i).^(0:len_vandermonde-1)); 

end 

 

rZ = real(Z); 

iZ = imag (Z); 

% here Inf values are substituted by realmax values 

rZ(isinf(rZ))=realmax*sign(rZ(isinf(rZ))); 

iZ(isinf(iZ))=realmax*sign(iZ(isinf(iZ))); 

 

z = rZ+1i*iZ 
 

switch solve_method 

case {CLASSIC,LS} 

h = Z\x(1:len_vandermonde); 

case TLS 

% if exists nan values SVD won't work 

indeterminate_form = sum(sum(isnan(Z) | isinf(Z))); 

if (indeterminate_form) 

Amp = []; alfa = []; freq = []; theta = []; 

return; 

else 
h = tls(Z,x(1:len_vandermonde)) 

end 

end 

Amp = abs(h); 

theta = atan2(imag(h),real(h));  


