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Abstract. Applying reinforcement learning agents to the real-world is important. Designing the
reward function has problems, especially when it needs to intricately reflect the real-world or
requires burden human effort. Under such circumstances, we propose a semi-reward function. This
system is intended that each agent can go toward an individual goal when a collective goal is not
defined in advance. The semi-reward function, does not require sophisticated reward design, is
defined by ‘not allowed actions’ in the environments without any information about the goal. A
tutorial-based agent can sequentially determine actions based on its current state and individual
goal. It can be learned through a semi-reward function and toward its own goal. For the combination
of these two, we constructed training method to reach the goal. We demonstrate that agents trained
in arbitrary environments could go toward it own goal even if they are given different goals in
different environments.

Keywords: Reinforcement Learning, Reward Function, Reward Engineering, Transformer-based
Agent, Goal-based Agent

1 Introduction

Reinforcement Learning (RL) has demonstrated utility in addressing numerous real-
world problems [1][2], yet many issues remain unresolved. One particularly chal-
lenging aspect is the application of transfer-trained policies or agents to real-world
scenarios [3]. This difficulty often stems from the dichotomy between the need for
accuracy and the multifaceted nature of reality, i.e., the multiplicity and complex
interconnectivity of factors in the real world pose inherent limitations to accurately
designing models or reward functions.

A prominent concern lies in the design or engineering of a reward function [4], given
that accurately reflecting a real-world reward system in the design of a reward func-
tion proves exceedingly challenging. Despite recent remarkable achievements in RL
and reward modeling, further efforts are still required to enhance these aspects
[5][6]. Another challenge arises from the difficulty in uniformly generating goals
within the environment. Even in identical environments, agents may need to pursue
different goals, and multiple goals may be attainable. Strategies such as subdivid-
ing goals into sub-goals or training multi-agent systems to interact within the same

environment are being explored, However, this factor underscores the challenge of
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transferring agents to real-world applications.

In this study, we introduce a semi-reward function! to alleviate the design burden
associated with reward functions and goals. In contrast to conventional methods
that primarily concentrate on learning the value of actions or behaviors upon goal
attainment, this semi-reward function aims to train agents to pursue their goals
exclusively by imposing penalties. Instead of specifically crafting rewards, this ap-
proach generally constrains undesired actions while imparting information about
the goal, thereby reducing design complexity.

Nevertheless, agents still necessitate a model capable of receiving goal information
as input and predicting appropriate actions based on it. Therefore, we propose a
tutorial-based agent model that can learn according to a new reward function and
advance toward its goals. This model undergoes training based on environmental
observations and its own objectives, striving to navigate toward its goal from the
current state within the same constraints.

Our contribution is original system of reward function and agent. Building upon
partial observations, we propose an agent model wherein different agents can pur-
sue their own unique goals, as well as a methodology to train them. Furthermore,
we showcase the capability to deploy a trained agent in a previously un-seen envi-
ronment.

2 Methodology

2.1 Related works

RL can be approached in various ways, with the two primary methodologies being
value-based and policy-based [7]. Value-based RL entails estimating the values of
actions or states themselves, given a state, and then performing actions based on
this estimation. It is a fundamental learning method in RL, with models like Q-
learning demonstrating success [8][9][10]. However, one limitation is the potentially
extended duration required to estimate actions for all situations. In contrast, policy-
based RL focuses on learning policies for selecting sequential actions in different
situations [11]. Among these methods, a prominent policy optimization algorithm is
Proximal Policy Optimization (PPO) [12]. PPO updates the policy while constrain-
ing its scope, facilitating the learning of stable policies across diverse scenarios and
making it widely applicable in various domains.

Offline RL represents a form of RL where learning is conducted from generated
trajectories without direct interaction with the environment [13]. In this approach,
trajectories comprising sequential states and actions experienced by either an ar-
bitrarily generated policy or a sufficiently trained expert interacting with the envi-

! https://github.com/Dong-geonL.EE/Semi-reward-Function-Problems
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ronment are stored in a buffer. Subsequently, the learning target utilizes only the
trajectories stored in the buffer to refine the policy. Representative cases include
[14] and [15]. One advantage of offline RL is its capacity to learn policies within a
short timeframe without direct interaction with the environment. However, a draw-
back lies in its high dependency on generated data, posing challenges in adapting
to unseen environments easily.

There are two main approaches to applying a transformer in RL. The first approach
involves utilizing expert or human experience to generate demonstrations that are
then used in supervised learning to train a transformer [16][17][18]. Demonstrations
are used as labels, and the loss from them is used to train the transformer. Exam-
ples of this approach include the Decision Transformer [19] and Dreamer [20][21].
The second approach involves creating a world model for transfer learning, in which
transformers are instantiated in the form of agents. This approach entails generat-
ing a world model that represents real-world problems and creating a model capable
of learning features for transfer [22][23].

2.2 Problem Definition
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Fig. 1. Difference between classical RL and semi-reward function problems. In classical
RL, the reward function, which generates the reward signal, exists as part of the environment and
operates independently of the agent. In contrast, when applying a semi-reward function, the goal
information from the reward function shifts toward the agent, thereby defining agent-wise goals.
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This study addresses a scenario where goals are individually specified rather
than collectively defined. Specifically, we examine an environment with predefined
constraints such as input shape, objects, or disallowed actions. Upon encountering
this environment, each new agent pursues its own distinct goal, which is established
as one of the existing states within the environment. We denote this goal assigned
to each agent as an agent-wise goal.

Because the environment lacks knowledge of the goal, when goals are allocated on
an agent-wise basis, the environment cannot furnish a reward for successful goal at-
tainment unless additional information about each agent is provided. Consequently,
conventional reward functions prove inadequate. In an RL environment, the reward
function is crafted to guide agent learning [26][27]. Thus, agents learn based on tra-
jectories from episode inception to conclusion, guided by the reward signal.

Our novel reward function is termed semi-reward function. Diverging from a
conventional reward signal, as Fig.1l, the semi-reward function exclusively com-
prises information pertaining to penalties and maximum steps. In the case of goals,
agents set their objective as reaching their individual goal, and upon determining
that they have achieved their agent-wise goal, they receive a positive reward signal.
At this juncture, the environment facilitates agents in conducting simulations while
adhering to the constraints.

Pursuing an agent-wise goal entails training the agent toward its specific objective
[28]. The reward function plays a crucial role in dictating agents’ behavior within
the environment [29]. With the modification of the reward function, the need for
an agent aligned with the new function arises. Through the utilization of the semi-
reward function, the agent assimilates two categories of environmental information:
actions that contravene penalties and actions taken by the agent to achieve the goal.

2.3 Environment

The experiment utilized the MiniGrid environment [33], an RL library tailored for
goal-oriented tasks. MiniGrid facilitates 2D grid image simulations, emphasizing
environments conducive to agent self-control and comprehension of complex visual
observation.

Within MiniGrid, diverse subenvironments can be generated to fulfill various mis-
sions. These missions encompass objectives such as reaching a goal object, locating
a specific object of a particular color, acquiring a key within a room, or accessing ob-
jects in separate rooms via opened doors. The agent undertakes actions aligned with
the designated mission, interacting with a range of objects including doors, keys,
and boxes, while executing maneuvers such as turning left, turning right, picking
up objects, or toggling them. MiniGrid served as the environment for semi-reward
function experiments for the following reasons:
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1. MiniGrid offers extensive flexibility in object creation, enabling the designation
of agent-wise goals to states existing within the environment. In essence, to
furnish agents with a variety of goals for generalization, the environment must
encompass diverse states.

2. The environment and agent adhere to identical constraints regardless of the task
or mission at hand. Subenvironments within MiniGrid share commonalities in
actions, observations, and objects, constituting a cohesive framework conducive
to transferring trained agents across different subenvironments under uniform
constraints.

3. MiniGrid facilitates the provision of partial observations, a critical aspect for
addressing the challenge of agent-wise goals. To assess observations without ad-
ditional environmental context beyond the goal, the environment must present
disparities between the agent’s state within the environment and the observa-
tions provided.

Althogh theoretical RL uses information of both penalty and reward signal, practi-
cal RL environment is implemented with reward signal when agent reaches the goal,
otherwise zero rewards when agent reaches step limits or failure defined moments.
MiniGrid is one of that environment, for instance, in ‘LabaGap?’ reward is defined
as ‘a reward of ‘1 — 0.9 x (step_count/max_steps)’ is given for success, and ‘0’ for
failure’, and termination condition is defined as 1. the agent reaches the goal. 2.
the agent falls into lava. 3. Timeout (see max_steps).

3 Tutorial-Based Model

Consequently, there arises a necessity for a trainable agent capable of adapting to
a newly formulated reward function. Specifically, to employ a semi-reward function
effectively, agents capable of pursuing agent-wise goals based on provided observa-
tions and training methodologies conducive to achieving such goals are indispens-
able. Trained agents must possess the capability to ascertain the status of their
goals, including identifying relevant objects or tasks. In light of this, along with
observation outcomes, agents must discern the requisite actions to attain their ob-
jectives.

We advocate for a tutorial-based model to serve as the framework for these
adaptable agents. Analogous to attending tutorial sessions when delving into an
unfamiliar domain and subsequently delving into more advanced coursework, this
model empowers agents to undertake diverse missions predicated on their acquired
knowledge of objects and actions within a given environment.

The flowchart depicting the tutorial-based model is delineated in Figure 2. Within

% https://minigrid.farama.org/environments/minigrid /LavaGapEnv/
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Fig. 2. Diagram of tutorial-based model. In the tutorial-based model, the agent adopts a
transformer-based encoder-decoder architecture. The primary role of the agent is to predict the
optimal actions based on the partial observation provided by the environment and the agent’s
individual goal. The agent goes through two main stages: episodes and training, iteratively during
which it learns. Learning occurs akin to conventional deep learning approaches, using loss functions
for training.

the training paradigm, agents undergo iterative learning cycles alternating between
episodes and training stages. Here, an agent refers to an encoder-decoder structure
equipped with embedding layers, partitioned into an encoder responsible for pro-
cessing agent-wise goals and extracting pertinent information, and a decoder tasked
with determining actions based on the current observation input.

During the episode stage, the agent determines actions based on observations and
agent-wise goal information while maintaining frozen parameters. Beginning from
the initial state until the episode’s conclusion, the agent sequentially selects actions,
acquires observations, actions, rewards, and additional episode-related information,
storing these data in a buffer. Storage transpires on an episode-by-episode basis,
with the process persisting until the goal is reached or actions cease due to specified
conditions.

In the subsequent training stage, the agent parameters were updated on an episode-
by-episode basis. Leveraging the information stored in the buffer from the episode
stage, the loss value is computed, and backward propagation is executed. At this
juncture, the encoder, decoder, and embedding layers undergo upgrades.
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Algorithm 1 Algorithm to training method of tutorial-based model

Require: FEnvironment Env, Agent-wise goal Goal, Agent Agent, Total Steps T
embedded_goal = Agent.observation_embedding(Goal)
while steps < T do
Buffer = Agent.episode_buffer.__init__()
observation = Env.reset()
while not done do
action = Agent.predict(observation, embedded_goal
Env.step(action)
Buffer[t] = observation, action
t, step +=1
end while
Clip = Buffer.cliping()
for step in range(Clip) do
output = Agent.predict(Buffer[step, observation], embedded_goal)
loss = Agent.calculation_ loss(Buffer[step, reward))
masked_output = Agent.masking(action, output, loss)
loss.backward()
end for
end while

The iterative nature of the learning process, which was divided into two stages.
Analogously, it entails collecting offline data from the environment, storing it, and
iteratively computing losses and refining policies. The specific algorithm encapsu-
lating the tutorial-based model is outlined as Algorithm 1.

The entire training procedure is bifurcated into two stages to compute the loss
value utilizing the reward signal. Given the inherent delay in reward acquisition,
rewards are exclusively dispensed at episode terminations. Consequently, episodes
are conducted until their culmination, following which parameter updates occur.

3.1 Environment with Semi-reward Function

A key distinction lies in the origin of rewards: negative rewards are inherently pro-
vided by the environment, while positive rewards are determined by the agent.
Furthermore, in instances where an episode is prematurely terminated upon reach-
ing the maximum step limit (termed “truncated”), the most significant penalty
is imposed. This feature is designed to prevent the agent from becoming passive.
Initially, the agent learns through trial and error, experiencing failures and garner-
ing negative rewards enroute to its goal. Throughout this learning process, if the
penalty incurred from truncation exceeds that of negative signals, the agent may
opt for overly cautious actions.

Other environmental components remain unchanged. The agent initialization method,
state transitions, and provision of partial observations to the agent remain consis-
tent. However, a conceptual shift is required for agent-wise goals. In classical RL,
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Fig. 3. Components of the semi-reward function at a scale of [-1, 1]. This figure illus-
trates the representation of a semi-reward function within a specific range. Rewards resulting in
outcomes less than 0 are designated as negative rewards, while those greater than 0 are termed
positive rewards. Negative rewards are assigned when the agent takes actions not permitted by
the environment, whereas positive rewards are self-assigned by the agent upon reaching its goal.

it is presumed that no environmental information is provided to the agent. Con-
versely, setting agent-wise goals necessitates furnishing fundamental information
about the environment’s objects. Endeavors such as attempting to catch fish while
scaling mountains should be avoided.

3.2 Agent

The agent for the semi-reward function is constructed based on a transformer archi-
tecture [34]. Several factors influenced this choice. Firstly, it necessitates the ability
to generate agent-wise goal information and convey it effectively to the agent. This
entails a model capable of accommodating diverse inputs, observations, and goals
in varying formats. Moreover, transformers excel in handling long-term dependen-
cies and facilitating parallel processing of inputs. They are extensively utilized in
pretraining and transfer-learning scenarios.

The agent determines suitable actions for the current state by assimilating both
partial observations and its own goal. Action determination is facilitated through
an encoder-decoder model. Optimal actions are those that adhere to environmental
constraints within the given observation and facilitate progress toward the agent-
wise goal.

The encoder, serving as a context extractor, receives input information pertaining
to the agent-wise goal at each action prediction step. This process is independent
of observations and is engineered to accommodate distinct goals for each agent. On
the other hand, the decoder employs the contextual information extracted by the
encoder and the partial observation at each step to ascertain the optimal action.

The scalability of the agent is achieved by adjusting the numbers of encoder and
decoder layers, allowing adaptation to the complexity of the environment, missions,
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and goals. This scalability enables the agent to navigate diverse environments ef-
fectively. Typically, as the environmental size increases, along with the number of
feasible actions and discoverable objects, additional layers become imperative to
ensure robust performance.

Action Prediction The output of the decoder represents the predicted value
for each action. For instance, in an environment offering three available actions,
the decoder’s output size is (1x3), with each number denoting the predicted value
for each action based on the agent-wise goal and observation. During the episode
stage, this output serves as a weight for each action post-application of the softmax
function, thereby stochastically determining the actions.

Stochastic action selection is integral to the transformer architecture’s utilization. It
prevents consecutive selection of the same action during action prediction directly or
in a greedy manner. Stochasticity fosters exploration by introducing opportunities
to choose novel actions, even in analogous situations. Furthermore, it substantially
amplifies differences in output values among actions.

Observation Embedding The input shape to the transformer is a 1D vector.
Consequently, it necessitates an embedding process to convert the 2D partial obser-
vation provided by the environment into a 1D vector format. This embedding pro-
cess, termed observation embedding, serves to transform each step performed within
an episode into a format compatible with single-token input. Post-embedding, each
scene within a step is converted into a singular vector, subsequently fed into the
decoder. To facilitate this, we established an embedding layer concurrently trained
with the transformer. This embedding layer functions to input observations for ac-
tion prediction within an episode or to input the agent-wise goal into the encoder.

Agent-wise Goal To establish agent-wise goals, we employed a methodology
wherein the agent’s desired state is translated into goal information for input. The
most straightforward approach entails converting the agent’s position within the
observation into the position of the object it aims to reach. For instance, when pre-
sented with a 7x7 partial observation and the agent’s position is (3, 6), we substitute
the agent object with the goal object at that specific position.

3.3 Loss

Labels are not employed in the training process of the tutorial-based agent. In
supervised forms of RL, such as imitation learning and offline RL, loss calculation
involves computing the disparity between the predicted output and the label values
of the data. However, in models targeting agent-wise goals, generating trajectories



258 Computer Science & Information Technology (CS & IT)

using labels is impractical, rendering the conventional loss calculation method in-
applicable. Instead, a tutorial-based agent derives loss based on the reward.

If RE represents the reward for episode E, the loss at step t can be calculated as
follows:

Ry = —Rp x oY
Ly = (Ry)?

where « is a hyperparameter determining the decay rate, and T is the total number
of steps performed int the episode. In the first step, the sign of Rp is inverted
so that episodes receiving negative rewards yield positive losses, and vice versa.
Furthermore, the decay rate, escalating to the power of the gap between the total
number of steps and the current step, is multiplied. This amplifies the loss for steps
nearing the episode’s conclusion, reflecting the typical observation that rewards
tend to escalate as the goal is approached.

A loss function accommodating both negative and positive rewards is indispensable.
Conventional loss functions, like the mean squared error (MSE), often converge to
a single point, potentially impeding goal achievement if utilized directly. Therefore,
a novel loss function is requisite. To address both reward types, a loss function with
opposing signs and a symmetrical shape was adopted, primarily employing the cubic
form. Given the semi-reward function’s range of [-1, 1], employing a corresponding
loss function prevents loss divergence to infinity. Detailed alterations induced by
the loss function are delineated in the Appendix, as Figure 5.

3.4 Training Methods

During the training stage, parameter updates rely on information gathered in the
episode stage. This section elucidates the learning process during the training phase.
To update parameters via back-propagation of the loss, determining each param-
eter’s contribution to the output is essential. While storing parameter values for
every step is plausible, it imposes a considerable memory burden. Thus, in this
model, we adopt the parameter recalculation method.

Observations are stored in a buffer, with identical values re-inputted without pa-
rameter updates. Consequently, we obtain parameter values utilized for action pre-
diction. Employing this approach, we derive parameter values and solely update
parameters involved in predicting the action chosen at that step, while masking
other actions during the training phase.

Updating parameters at every step can potentially lead to divergence errors if the
training stage becomes overly protracted or if the size of the propagated gradients
significantly increases. Therefore, we opt for parameter updates by clipping the
episode and focusing on only a portion of the entire process. If the end-of-episode
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Fig. 4. Training methods for tutorial-based model. It is the process of updating the
agent’s parameters through rewards at the same step of the episode and training
stage. The agent recalculates the output paramter used for action prediction during the training
stage. After that, agent backpropagates the loss converted from the obtained reward. The agent
can reflect the contribution of the parameter in action prediction. Due to the delayed reward, is
should be noted that the episode and training stage do not occur simultaneously in the actual
learning process.

(EOE) step is smaller than the clipping step, the entire episode is stored in the
buffer. Conversely, if the EOE step surpasses the clipping step, only consecutive
steps up to the clipping size are utilized.

A notable departure from classical RL is that this model does not engage in random
action selection [27]. This is different from stochastic action selection at 3.2, be-
cause it means agent selects actions sorely randomly without transformer’s param-
eter calculation and action prediction. Random action selection is usually used to
implements exploration in RL environment. The process involves accumulating up-
dated parameters using loss, and exploration may impede parameter convergence.
However, it dose not mean that exploration not occur. From the initialization of
parameters and during action prediction and traninig stage, agent will experience
diverse actions at various states.

On the other hand, the necessity to design a semi-reward function for training the
tutorial-based agent is also intertwined with random action selection. If negative
rewards are excluded, leaving only rewards between 0 and 1, there exists a high
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likelihood that only the action initialized with the largest value will be consistently
chosen. In most instances, the reward attained in this scenario is zero, resulting in
a loss of zero throughout the entire training phase. Consequently, these parameters
remain unchanged.

4 Experiment

The purpose of this experiment was to observe the results when an agent trained in
a specific environment within MiniGrid was tested in a different subenvironment.
Different environments refer to variations such as changes in the size of the environ-
ment while maintaining the same mission or providing different missions altogether.
Through this, we aim to demonstrate that even without uniformly generating re-
wards in the environment, it is possible to train agents that pursue different goals
using semi-reward functions and a tutorial-based agent. The experiment compared
two models:

1. The first policy was trained using PPO [12] in the original MiniGrid environ-
ment. Policy was trained by Stable-baselines3? library [36].

2. The second model was a tutorial-based model, trained with the application of
a semi-reward function in the MiniGrid* environment.

In the existing MiniGrid environment, apart from scenarios involving specific ob-
stacles like obstacle objects and lava, a predefined reward is given upon completing
the mission. If the mission is not completed and the maximum number of steps is
reached, a reward of zero is assigned. However, we defined some additional negative
rewards as illustrated in the following examples:

— Attempting to execute a forward action while facing a wall.

— Attempting to interact with an object (e.g., a wall or floor) that cannot be
toggled.

— Attempts to drop an item without holding anything.

Additionally, as mentioned, a negative reward of -1 is assigned when reaching the
maximum step limit. Other penalties (such as obstacles, lava) are working same
with existing MiniGrid. The hyper-parameters used in expertiments are in ap-
pendix, as table 4, 5. Additionally, during episode generation, stochastic action
selection based on the output of the decoder is used. However, during evaluation,
the action with the highest parameter value was selected.

As previously mentioned, each experiment involved training a model in one en-
vironment and subsequently transferring the agent to a different environment to

3 https://stable-baselines.readthedocs.io/en/master/index.html
* https://minigrid.farama.org/
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evaluate its performance. In all evaluations, the agents were compared based on the
average and variation of rewards from multiple episodes. It should be noted
that PPO has a reward value range of [0, 1], while OURS has a reward value range
of [-1, 1]. Difference of range is beacuse, as will be mentioned in 4.4, two models
are not appropriates in each others’ environments.

For the comparison two models, the higher average reward fundamentally means
the agent have more proper sequential actions to achieve goals in evaluation. In
usual, the high rewards’ variation means that there are not only successful episodes
but failure episodes in evaluations. On the contrary, if variation is shown around 0,
it means agents could reach the goal stably. For instance, if there are high average
reward around 1 and low std reward, it could be the result which agent could reach
the goal stably in every episodes of evaluations. Despite of difference range, two
agents could compared with this standards.

In the follow results, there are max steps of each agent in each sub-environments
and it sizes. Each max steps means that the minimum max steps of learning to
measure the performance; in other words, could reach the goal for any episodes
in evaluations. In this experiment, we would like to evaluate the performance of
completely learned agent. Therefore, we compared each agent with the average and
variation of rewards. However, change of average reward according to the steps in
training stage would shown either the performence of the agent and the stability of
learning. This aspect, in tutorial-based agent, is mentioned in ch 5. In conclusion,
cause of the instability in training stage, we evaluated tutorial-based agent in early
steps, therefore the max steps appears in difference.

4.1 Evaluation at Same Goal Object

First of all, the basic and simplest environment is used. In this part, the same
agent-wise goal is given in every agent and episode, but changed the size of the
grid of the environment. Basically, through a combination of semi-reward function
and tutorial-based agent, training an agent that performs the given mission was
possible. However, when evaluating the agent in the training environment itself,
the OURS agent obtained a lower average reward than the PPO agent, as shown
in Table 1.

The performance of the agent changes when the size of the environment changed.
Trained agents show different patterns at small sizes (5x5, 6x6) and large sizes (8x8,
16x16). In the case of small- sized grids, PPO agents show high performance, but
they cannot reach the goal at all in large-sized environments, whereas OURS agents
show consistent performance in all sizes. Conversely, in the case of large-sized grids,
PPO agents show consistent performance in all sizes, whereas OURS agents show
decreasing performance as the size decreases.
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Table 1. Evaluation results from same goal object environments. Agent is evaluated in
environments with the same goal object while only changing the size of the grid. The training
subenvironment is named ‘Empty’, where an empty grid space with a green box goal object is
provided without any obstacles. Each row represents the trained environment, and each column
represents the environment used in evaluation. The Initialization of agent’s start position was
randomly determined in OURS at all sizes and PPO at 5x5, 6x6, while for PPO at 8x8 and 16x16,
it was fixed.

Eval Env Empty
Training Method 5x5 6x6 8x8 16x16

Env (max steps) |MEAN| STD [MEAN| STD |MEAN| STD [MEAN| STD

55 PPO (5e4) [0.9613[0.0081(0.4893(0.4894| 0 0 0 0
OURS (1e5)[0.7075 [0.0811] 0.7525 {0.0986| 0.7615 {0.0663 | 0.4563 {0.1938

66 PPO (5e4) [0.9712(0.0097| 0.87 [0.2902] 0 0 0 0
Empty OURS (1e5)|-0.883 | 0.036 | 0.7413 |0.0812{ 0.6447 {0.5495| 0.6193 [0.5536

8x8 PPO (5e6) |[0.9568 [0.0244]|0.8613 {0.2874|0.9613| 0 |0.9762| 0
OURS (1e5)|-0.8965[0.0699| -0.874 {0.0463| 0.8481 {0.0506| 0.7638 {0.1209

16x16 PPO (5e6) |0.2928 0.4446|0.9318 [0.0444|0.9578 | 0 [0.9754| 0
OURS (2e5)| -0.18 [0.7981]0.3705 [0.6833] 0.7840 [0.0893| 0.5683 [0.5372

4.2 Evaluation at Different Goal Object

Table 2. Evaluation results from random goal object environments. The agent trains in
the same subenvironemnt used in 4.1, but evaluates in other subenvironments with same penalties.
In the training environment, the goal object is given as the same object in all episodes. However,
in the evaluation environment, a random object on random grid is generated, and the mission is to
locate that object. This subenvironment dose not exist in MiniGrid, PPO agents are also evaluated
in environment with semi-reward function.

Eval Env Random Object
Training Method 5x5 6x6 8x8 16x16
Env (max steps) |MEAN| STD [MEAN| STD [MEAN| STD |MEAN| STD
PPO (1e5) |0.7514|0.5841| -0.03 |0.9706|-0.4101{0.9010| -1.0 0
OURS (1e5)|-0.0342{0.9485| 0.104 |0.8956|0.7085 [0.5717|0.6235 |0.7548
PPO (1e5) |0.7604 | 0.587 | 0.9295(0.0242( 0.1651 |0.9514| -0.014 |0.9860
OURS (1e5)|-0.7478{0.5181| 0.101 [0.9015| 0.319 [0.8656| 0.454 |0.8348
PPO (5e5) |0.7442]0.5817|0.9280(0.0334| 0.7505 | 0.584 |-0.2124(0.9647
OURS (5e5)|-0.764 | 0.53 |-0.558 |0.7159]0.6019 [0.7359| 0.2475 |0.9138

5x5

Empty |6x6

8x8

The experiment in this part attempted to show whether the trained agent could
reach a different agent-wise goal in the new episode. For this purpose, the evalua-
tion environment has the same type of mission but a different agent-wise goal with
other types of goal object. The results are in table 2, similar to those at 4.1. The
performance reduction of the OURS agent is relatively small when evaluated on a
larger grid, but conversely, the reduction of the PPO agent was small as it went to
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the smaller sizes.

The OURS agent shows different results according to the grid size of the environ-
ment. Agents trained in relatively small-sized environments guarantee performance
even when transferred to large-sized environments. However, agents trained in rel-
atively large-sized environments show sharp performance reductions when trans-
ferred to small-sized environments. This is presumed to occurs because the agent
is given a fixed size of partial observations. In small-sized environments, the ma-
jority of observations will be padded, and only a very small portion will contain
information compared to the pattern of observation given in a large environment.

4.3 Evaluation at Other Subenvironment

Table 3. Evaluation results from three environments.The agent trained in one environment
was evaulated in multiple environments. There are a total of three evaluation environments, and
all objects and penalties in each environment were limited to those that could be experienced
in the training environment. The evaluation was conducted with the agent that obtained highest
average reward in the training environment. In the DistShift, on the 8x8 size grid, the version
varies depending on the position of obstacles.

. Eval Env Empty
Tr%‘;‘“f“g Method 5x5 66 88 16x16
(max stes) |[MEAN| STD [MEAN| STD |[MEAN| STD [MEAN| STD
ROW2 PPO (5e6) [0.0911(0.2973 0 0 0 0 0 0
OURS (1e5)|-0.537 [0.6582{-0.8245(0.0387| 0.6582 |0.5339| 0.6933 |0.1167
2owal PPO (5¢6) | 0 0 0 0 0 0 0 0
OURS (1e5)|-0.8335(0.0405(-0.9001{0.0622| 0.4672 |0.7283| 0.5735 {0.5046
Eval Env DistShift
Method ROW 2 ROW 4
(max steps) MEAN STD MEAN STD
ROl PPO (5¢6) | 00536 0 0 0
Dist OURS (1e5) 0.7536 0.0163 0.7671 0.0447
Shift | - PPO (5e6) 0 0 0.9607 0
OURS (1e5)|  0.6031 05272 0.7716 0.048
Eval Env LavaGap
Method 5x5 6x6 7
(max steps) |MEAN| STD [MEAN| STD (MEAN| STD
ROwWal PPO (5e6) | 0 0 0 0 0 0
OURS (1e5)|-0.406 [0.8233] -0.526 [0.7106{-0.7135]0.5364
ROwWal PPO (5¢6) | 0 0 0 0 0 0
OURS (1e5)|-0.925 [0.0361(-0.7393]0.5614| -0.964 |0.0278

In this part, the evaluation environment is different from the training environ-
ments, providing a different type of mission and agent-wise goal to the agent. For
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each environment, objects and penalities are limited to those that could be experi-

enced in the training stage. It is reasonable that the trained agent does not perform
well in the evaluation environment where there are more objects or situations that
have not been experienced before. In the case of OURS agents in the Empty, even if
they were trained in DistShift, which is a new type of subenvironments, they shows
similar results as in the 4.1. As a consequence, as in table 3, the tutorial-based
agent guarantees performance in a different environment if it has been experienced
before.

PPO agents show high performance in the environment where each agent is trained,
but not all of them reach their goals in other environments. However, in the case
of PPO, it is a method of optimizing policies rather than predicting the value
of observations. Thus, it is a method of learning how to reach the goal within
trained environment. Therefore, rather than interpreting that the PPO agent was
not trained well, it seems reasonable to conclude that predicting the value of ob-
servations and actions is more suitable to toward diverse agent’s goal.

In the case of the lavagap environment, OURS agent is either not achieving the goal
at all (ROW4), or not reliably reaching the goal (ROW2). Based on the results of
previous experiments, it can be assumed that this was mostly caused by the small
size of the evaluation environment compared to the training environment.

4.4 Combinations of Policies and Environments

The results of existing RL models’ learning and evaluation in a semi-reward function
environment were not recorded. Briefly to conclude, learning did not occur when
agent used existing learning methods. It could be assumed that this is occurred
becuase experiencing success in a semi-reward function environment is very difficult.
In existing RL, the learning method could be thought to focus on finding and
following the successful path first, since rewards are given when they are successful.
However, in the case of semi-reward, there are incomparably more cases where
learning is stopped before achieving success. Taking this into account, in order to
utilize the semi-reward function, a special agent such as a tutorial-based one is
required, and vice versa. Therefore, only comparative experiments were conducted
on agents learned with PPO algorithms.

5 Limitations

The tutorial-based agent with a semi-reward function exhibits the following limi-
tations:

1. The training agent displays instability. Instances occur during training where
parameters diverge to infinity or become trapped in local minima, hindering
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convergence. Moreover, there exists a notable variance in learning speed de-
pending on initial values. Instability may arise from the introduction of loss
through an external module, generated separately and input into the system
using a different method.

2. A distinct method is necessary to enable agents to autonomously assess their
goals. Currently, agent-wise goal setting is implemented by creating goals based
on the mission. Particularly for the 'DoorKey’ mission, it was divided into three
stages and provided sequentially to the agent at each state as sub-goals.

3. Adjustment of the maximum steps per episode is required. The current setting
is less than the typical maximum number of steps used. While training with
algorithms such as PPO, even if the maximum number of steps was higher,
the number of steps tended to decrease as the number of episodes increased.
However, this model fails to determine the optimal steps, and the number of
steps tends to remain consistent.

6 Conclusion

Utilizing a semi-reward function reduces the engineering effort required to define
only the disallowed actions in an environment. Additionally, under the same con-
straints, the tutorial-based agent can provide some guarantee of performance even
when transferred to new environments. With combination of semi-reward func-
tions and tutorial-based agent, the agent toward its own goal could be created and
trained.
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Fig. 5. Rewards in entire training process by loss functions. Average rewards during entire
training with differnet loss functions at same training environment. In experiments, we selects the

most stable loss functions.

Table 4. Manuscripts of hyperparameters used in tutorial-based agent.

Number of encoder /
decoder layers

The number of encoder/decoder layers in the tutorial-based agent. In
most experiments, maintaining the same number of layers increases
performance.

Small value for action masking

A small value is used for action masking when updating the parameters
during the training stage.

Maximum steps

Number of maximum steps in one episode.

Total steps

Total steps of entire learning process.

Learning rate

Learning rate.

Number of actions

Number of actions defined in the environment.

Size of observation embedding

The size of observation embedding input into the agent. Increasing
when size of partial observation increases contributing to performace
improvement.

Table 5. Hyperparameters used for training in Experiments.

Hvperparameters Empty RandomObj DistShift
YPeIp 5x5|6x6|8x8|16x16| 5x5 | 6x6 |8x8|16x16|row=2|row=4
Number of encoder layers 21314 4 213 1|4 5 4 4

Number of decoder layers

21314 4 |23 |4 5 | 4 | 4

Small value for action masking le-5 5e-5 |le-5|1le-6| 1e-8 le-7
Maximum steps 20[40[60| 100 | 50 [ 60 |80 120 | 80 | 100
Total steps leb 4eb leb 5ed| leb leb
Learning rate 5e-b 5e-7 5e-5
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