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ABSTRACT 
 
The internet, crucial for information exchange, operates on IPv6 and IPv4 protocols, which 

are vulnerable to DDoS attacks. Despite secure-edge advancements, these attacks still cause 

significant losses. This paper presents a Deep Neural Network (DNN) architecture to address 
these vulnerabilities. Model 1 integrates Recurrent Neural Networks (RNN) with Gated 

Recurrent Units (GRU), inspired by Ahmed Issa, while Model 2 employs Convolutional 

Neural Networks (CNN) with Long Short-Term Memory (LSTM). These models were tested on 

Mendeley, NSL-KDD, and Sain Malaysian datasets, achieving accuracies of 80%, 80% 

97.01%, 95.06%, 72.89%, and 64.94%, respectively. The objective is to verify the practical 

feasibility of these combinations to detect DDoS-attacks. The same architecture was 

implemented in Model 1 for further evaluation using NSL-KDD as used by Issa, Mendeley 

IPv4, and Sain Malaysian datasets. A new ICMPv6 datasets were deployed with different 

architecture layers on the proposed model resulting in promising accuracies of 99.36% and 

94.48%.  
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1. INTRODUCTION  
 
With the proliferation of cutting-edge technologies in computing domains like Cloud Computing 

and the Internet of Things, the incidence of Distributed Denial of Service (DDoS) attacks has 

surged significantly. This escalating frequency poses a substantial threat, rendering DDoS 

attacks among the most formidable challenges in the realm of cybersecurity [1]. This technology 
also opens up extensive avenues for various network attacks, specifically targeting critical 

services and causing system malfunctions in servers affecting the entire enterprise networks. 

Such disruptions lead to business paralysis, manifesting as downtime and resulting in significant 
financial losses. A denial of service (DoS) can be briefed as an attack inundates a server with 

traffic, rendering a website or resource inaccessible. In the case of a distributed DDoS attack, 

multiple computers or machines collaborate to flood a specific target with overwhelming traffic, 
exacerbating the impact of the attack [2]. Attackers meticulously investigate unprotected entry 

points, such as vulnerabilities in software or system configurations, and skillfully exploit them. 

Leveraging these entry points, they attempt to compromise the system by depleting its resources, 

thereby denying access to legitimate users. In alternative attack scenarios, malicious bots are 
deployed to inundate the target system with an overwhelming number of packets, ultimately 

leading to a server crash [3].  

http://airccse.org/cscp.html
https://airccse.org/csit/V14N14.html
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298                                                     Computer Science & Information Technology (CS & IT) 

 

1.1. Basic Attack Scenario of DDoS using ICMP/ICMPv6 Protocol  
 

There are different ways to launch DDoS attacks, Figure 1 provides one of them that outlines the 

steps involved in a threat attacker’s initiation of a DDoS attack. The attacker begins by exploring 
methods like phishing to infiltrate a system and install malware. Once control of a compromised 

machine is secured, the attacker distributes bots to other systems through lateral movement. With 

control over these systems, the attacker deploys command and control, using scripts to command 
Power Shell to unleash a flood of ICMP packets at the target server. This flood overwhelms the 

server’s resources, causing Distributed Denial of Service (DDoS) critical conditions, and 

preventing legitimate users from establishing connections due to resource depletion. [4]  

 

 
 

Fig.1. DDoS attack -Implementation of DDoS attack 

 

To avoid these ICMP attacks then one can argue to disable the ICMP packets. However, 
disabling ICMP will have adverse effects on network functionality and diagnostics where some 

of them are listed below:  

 
1. Troubleshooting: Disabling ICMP makes it harder to diagnose network issues. ICMP error 

messages provide valuable information about why a particular communication failed.  

2. Ping and Traceroute: Tools like ping and traceroute heavily rely on ICMP. Disabling 

ICMP will prevent accurate measurement of network latency and route tracing.  
3. MTU Issues: Path MTU discovery won’t function correctly if ICMP is disabled, 

potentially leading to fragmentation issues and degraded performance.  

4. Reachability: ICMP destination unreachable messages won’t be sent to find out whether 
communication between nodes or systems can communicate and also to test any issues in 

establishing a connection[5].  

 

This research paper mainly focuses on ICMPv6 DDoS attacks and to understand the ICMPv6 
header fields for Echo Request and Echo Reply messages, which are used in DDoS attacks 

besides TCP flood, UDP flood, SYN flood, etc.[33].,  Figure 2 shows the packet structures. 

ICMPv6 header contains information about the source and destination addresses, among other 
things like type, code, checksum, identifier, sequence number, and data specific to the ICMPv6 

message type.  
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Fig.2. ICMPV6 Echo-reply header [22]  

 

1. Type: Differentiates between Echo Request (128) and Echo Reply (129).  

2. Code: Always 0 for these messages.  
3. Checksum: Includes the ICMPv6 message and parts of the IPv6 header, ensuring data 

integrity.  

4. Identifier: Helps in pairing Echo Requests with their corresponding Echo Replies.  
5. Sequence Number: Allows tracking of individual Echo Request messages.  

6. Data: The payload data which is echoed back in the Echo Reply [22].  

 
Liu has provided the type code parameters in the statistical form as per the DDoS attack that is 

illustrated in Figure 3.  

 

 
 

Fig.3. DDoS ICMPv6 attack Type codes [23]  

 

Despite various intelligent intrusion detection systems (IDS) in place, they are still falling short 

of detecting such attacks due to the smart approach of the threat attackers when the packets are 
jumbled with Flag values that don’t have sequential values [6]. The threat actor employs stealthy 

intrusion tactics to remain undetected. Initially, they focus on crafting custom attack methods 

devoid of recognizable markers or leveraging vulnerabilities in network protocols and the target 

system[7]. For instance, they may manipulate out-of-order fragments to deceive scanning 
systems, ensuring their malicious activities go unnoticed and enabling successful compromise of 

the target server. In traditional detection methods primarily rely on signature/hash anomaly, time 

interval analysis, data mining, and packet flow examination. The Hybrid approach integrates 
combinations of these classifications for comprehensive detection either by using multiple ML 

techniques or DNN techniques or both. [8]. In addressing these challenges, numerous researchers 

have proposed diverse solutions, leading to promising outcomes. Among these, researcher 
Ahamad Issa introduced an intriguing approach, hybrid solutions that integrate CNN layers for 

automated input feature extraction and LSTM for sequence prediction[9]. This research proposes 

a similar model with a combination of a Recurrent neural network and a Gated recurrent unit that 

is used to process sequential data by maintaining a hidden state that captures information about 
previous inputs. This technique should determine the continuous flow of packets based on the 
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features trained and detect the DDoS attack avoiding the Gradient decent constraint by GRU that 
incorporates gating mechanisms that control the flow of information within the network[26]. The 

experiments are compared and evaluated with Ahamad Issa’s model results.  

 

1.2.Related Work  
 

With newly developed DDoS strategies, threat attackers aim to outperform typical DDoS 
countermeasures due to a lack of performance ability, scalability, complexity, and adaptability in 

large networks [10].  

 

(a) Ahmed Issa introduced an innovative deep learning classification approach by combining 
two widely used algorithms, CNN and LSTM. The model was designed with 7 layers of 

Deep neural learning network consisting of CNN 1D with Kernel, strides, in the CNN 

layer, Maxpooling 1D, with activation function Relu and Softmax for the output connected 
layers. His model was evaluated using the NSLKDD dataset that consists of 40 features 

with multiple attacks achieving an impressive accuracy rate of 99.20%. Figure 4 illustrates 

the Issa’s model architecture[9].  

 
 

Fig.4. Ahmed Issa Model Architecture (CNN with LSTM) [9] 

 
(b) Omar Elejla introduced an innovative method for the detection of ICMPv6 flooding DDoS 

attacks in IPv6 networks. This approach leverages deep learning and incorporates an 

ensemble feature selection technique, which utilizes chi-square and information gain ratio 
methods to identify crucial features for accurate attack detection. The model employs an 

LSTM network to train on the selected features, resulting in impressive detection accuracy 

rates: 87.1% for RNN, 99.4% for LSTM, and 99.11% for GRU [11].  

(c) Saif conducted a comprehensive comparative analysis between GRU and. They employed 
traditional machine learning classifiers such as Naive Bayes (NB) and Sequential Minimal 

Optimization (SMO) in their evaluation. The study utilized the CICDDoS2019 dataset, 

where feature extraction was performed on numerical types across 13 categories that 
represented various DDoS attacks based on protocols including NTP, UDP, DNS, LDAP, 
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NetBIOS, SNMP, SYN, Web-DDoS, TFTP, etc. They achieved impressive results with an 
accuracy of 99.91% with the GRU model, surpassing the performance of the RNN model 

in the comparison [12].  

(d) Kumar conducted a comprehensive comparative analysis of different Deep Learning 

techniques including LSTM, Bidirectional LSTM, Stacked LSTM, and GRU. The study 
utilized the CICDDoS2019 datasets, with pre-processing involving standardization for 

numerical values and label encoding for class values. The dataset was divided into 80% 

for training and 20% for evaluation. Notably, the stacked LSTM technique outperformed 
others, achieving an outstanding result of an accuracy rate of 99.55% [13].  

(e) Tian developed a DDoS detection classification algorithm tailored for low-traffic 

networks, leveraging federated learning. His approach incorporated LwResnet-FL and 
DCNN LSTM, achieving an impressive accuracy of 99.20%. To validate the model, he 

compared it with Random Forest, AE-DNN, and RNN, ensuring robust performance 

across various evaluation metrics [14].  

(f) Ullah proposed a comprehensive intrusion detection system leveraging binary and 
multiclass classification CNNs across 1D, 2D, and 3D data. The model was designed to 

detect intrusions in Internet of Things (IoT) environments. His model was validated using 

diverse datasets, including intrusion detection datasets. The results demonstrated 
impressive performance, with the CNN 1D model achieving an accuracy of 99.74%, the 

CNN 2D model achieving 99.42%, and the CNN 3D model achieving 99.03% [15].  

 

1.3. DNN Techniques 
 

Deep learning is a subset of machine learning, characterized by several notable distinctions. It 
requires extensive datasets for robust data. Additionally, deep learning automates the extraction 

of features from data. Unlike traditional machine learning approaches that often require problem 

decomposition into subproblems, deep learning directly addresses the main task at hand. In this 
study, two deep learning techniques, RNN and GRU are integrated to devise an innovative 

combination[10].  

 

1.3.1. Recurrent Neural Network 

 

RNNs encompass two key architectures:- feedforward and bidirectional propagation. RNNs 

process data inputs iteratively, with outputs relying on past computations. In feed-forward RNNs, 
learning progresses sequentially, with each output feeding into the subsequent hidden layer node, 

retaining essential information for future tasks[26]. Conversely, bidirectional RNNs employ two 

hidden layers operating in opposing directions, accessing both preceding and succeeding states, 

thus enriching hidden layers with contextual information. RNNs find extensive utility across 
various domains like image processing and speech analysis, excelling in sequential data handling 

due to their recurrent architecture. Computational processes involve input vectors guided by 

equations, activation functions, and adjustments to weights via backpropagation. Despite their 
strengths, RNNs face challenges like the vanishing gradient problem, stemming from diminishing 

weight updates over time [18].  

 

1.3.2. Merits of RNN 

 

Due to their ability to process one input at a time, RNNs are suitable for real-time applications 

like online object recognition that can be applied to identify the attributes of malicious packets. 
RNNs can process input sequences of varying lengths, making them versatile for different types 

of sequential data, such as threat attackers trying to change the packet length text and packet 

series with missing or obfuscation values. RNNs can be used for various tasks related to the 
flow of packet data, network traffic, protocol identification, packet analysis, and more. 
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However, conventional RNNs have weaknesses in capturing extended dependencies because of 
the vanishing gradient problem, which can make them struggle with retaining information from 

distant past time steps. To address these limitations, more advanced RNN architectures have 

been developed, such as LSTM networks and Gated Recurrent Units GRUs. These architectures 

incorporate gating mechanisms that enable the network to control the flow of information and 
gradients, making them better suited for capturing long-term dependencies [24].  

 

1.3.3. Gated Recurrent Unit 

 

It is a formidable asset in handling sequential data tasks like language modelling, speech 

recognition, and time series prediction. At its core, it maintains a hidden state vector that evolves 
with each time step, influenced by both the present input and the preceding state. Key to its 

functionality is two gating mechanisms: the reset gate, which determines what to discard from 

the prior state, and the update gate, regulating the infusion of fresh state information. These 

gates strike a delicate equilibrium between assimilating new data and retaining pertinent 
historical context, effectively addressing the challenge of capturing distant dependencies while 

mitigating the vanishing gradient predicament[19].  

 

1.3.4. Merits of GRU  

 

It has a simpler structure compared to LSTMs, with fewer gates (reset and update gates) and no 
separate memory cell. This makes them easier to understand and implement. Due to the 

simplified architecture, GRUs have fewer parameters than LSTMs. This can lead to faster 

training times and reduced computational resource requirements. GRUs are generally faster to 

train compared to LSTMs because of their reduced complexity. This efficiency can be crucial 
when working with large datasets or when computational resources are limited. Above all their 

simplified architecture, fewer parameters, and effectiveness in handling dependencies contribute 

to their popularity and utility in various applications[25].  
 

2. PROPOSED MODEL  
 

The proposed model represents a hybrid approach merging RNN and GRU components into a 

unified architecture comprising nine layers which is illustrated in Figure 5. This integration aims 
to enhance the efficacy of DDoS attack detection. This architecture fusion is detailed further in 

the subsequent paragraph.  

 

 
 

Fig.5. Model Architecture 
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Normally in each model Input Layer (IPL) and output layer (OPL) are present. In between there 
exist hidden layers of the model designed by arranging them depending upon the chosen 

algorithms and respective activation function Relu at the required layer. The 14 parameters are 

the network attributes used to improve the output of the model. At any given time t, the current 

input is a combination of input at IPL(t) and IPL(t-1). The output at any given time is fetched 
back to the network to improve on the output.  

 

The model architecture starts with an initial input layer consisting of an RNN with a kernel filter 
size of 128, utilizing the Rectified Linear Unit (ReLU) activation function. Following this, a 

GRU layer is employed with 64 filters, maintaining sequential order. The third layer comprises a 

MaxPooling layer and a one-dimensional convolutional layer with a pooling size of 1. 
Subsequently, a Flatten layer reshapes the tensor into a vector, facilitating a seamless transition 

between connected layers, particularly interfacing with the dense layer. Dropout regularization is 

then applied, randomly deactivating 10% of neurons in a layer during training to mitigate 

overfitting.  
 

The final layer is a dense layer designed for classification tasks. The output of this dense layer 

typically undergoes a Leaky ReLU activation function, generating probabilities for each class, 
such as ”Normal” and ”Attack.” 

  

2.1. Model Learning   
 

During the training phase, the weights were adjusted using the back-propagation technique. This 

process utilized the Sparse Categorical Cross-entropy loss function to calculate error loss, which 
was then propagated backward across the network. All intermediate nodes between layers were 

interconnected, contributing their error values to the forward propagation. The entire network 

was enveloped by both forward and backward propagation mechanisms. For weight updating, 
the stochastic gradient descent optimizer for Adaptive Moment Estimation (ADAM) [20] was 

employed with a learning rate of 0.01, and parameter tuning set a minimum delta of 0.000001. 

To ensure effective training, the networks underwent 5 epochs, where each epoch involved one 

pass forward and backward of all data in the training set or a comprehensive training cycle with 
a batch size of 5000. This iterative process enabled the network to gradually refine its weights 

and improve its performance over each epoch.  

 
Model checkpoints were applied which are snapshots of the proposed model weights and 

parameters saved at specific points during training. The parameters used are from the Keras 

methods where the parameters are assigned are given below:  

 
• save_best_only=True: Saves only the model with the best performance based on the 

monitored metric. This parameter saves storage space and avoids saving models that do 

not represent the best performance during training. The "best" model is defined as the one 

with the optimal metric value (e.g., lowest validation loss).  
• save_weights_only=True: Saves only the model weights, not the entire model 

(architecture and optimizer state). This parameter saves space and time by storing only the 

weights, which can later be loaded into a model with the same architecture for further use 

or evaluation.  
• monitor='val_loss': Monitors validation loss to determine the best model. This parameter 

determines which metric to track to decide when to save the model. This parameter saves 

the occurrence when this metric shows the best performance of the lowest validation loss  

• mode='min': Saves the model when the validation loss is minimized. This parameter 
indicates that the model will be saved when the validation loss decreases and reaches a 

new minimum value.  
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• verbose=1: Provides basic information about when the model is saved. This parameter 

provides basic feedback during training about when the model checkpoints are being 
saved. [29][30] 

 

Early stopping is a regularization technique used to prevent overfitting and improve model 
generalization by halting training when the performance on a validation dataset starts to 

degrade. The parameters applied are:  

 

• monitor = val_loss: Tracks the validation loss of val_loss. This parameter provides the 
training process evaluated based on the model performance on the validation dataset with 

respect to metric i.e., accuracy in our case.  

• min_delta = 0.000001: Requires a minimum change of 0.000001 to consider the 

validation loss as improved. This parameter determines whether the change in the 
validation loss is significant enough to be considered for an improvement. Changes 

smaller than 0.000001 will not be treated for improvement.  

• patience = 3: Continues training for up to 3 more epochs without significant 

improvement. This parameter allows the model to continue training for a few more 
epochs after the last improvement, accounting for possible fluctuations or noise in the 

validation metric.  

• mode = min: Aim to minimize the validation loss. This parameter provides about the 

training to stop if the validation loss does not decrease by at least min_delta for the 
number of epochs specified by patience  

• verbose = 2: Provides detailed output.  In practice, common verbosity levels are 0, 1, or 

2. While verbose=>2 might not be standard, it typically means that lot of detailed 

information will be printed out during training.  

• restore_best_weights: Ensures that the model’s weights are set to the bestperforming 
epoch based on validation loss. This means when early stopping is triggered, the model's 

weights are set to those from the epoch with the best-observed performance on the 

validation set. This helps in achieving the best possible model state based on validation 

data. [28][31] 
 

Reduce- Learning Rate On Plateau is to fine-tune the model's training process and the parameters 

applied are:  
 

• monitor = 'val_loss': Observes the validation loss to Adjust the learning rate based on 

changes in the validation loss  

• factor=0.1: Reduces the learning rate to 10% of its current value. This parameter helps in 

reducing the learning rate when the monitored metric has stopped improving.  
• patience = 3: Waits for 3 epochs without significant improvement before reducing the 

learning rate. This parameter determines how many epochs to continue training without 

reducing the learning rate if no significant improvement is observed.  

• min_delta = 0.000001: Considers only changes larger than this value as improvements. 
This parameter helps to avoid unnecessary learning rate adjustments due to very small 

changes that might not be meaningful  

• mode ='min': Seeks to minimize the validation loss. This parameter ensures that the 

learning rate is adjusted when the validation loss does not decrease significantly.  

• verbose=1: Provides feedback on learning rate changes during training about when and 
how the learning rate is changed. [27][32]  
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3. METHODOLOGY  
 
Figure 6 illustrates the block diagram of an implementation of the method used for the proposed 

model. In section 1.3 RNN, GRU merits were briefed, and subsequent sections provide the 

details of the dataset, implement pre-processing techniques, present RNN-GRU model 

architecture, and conclude with an overview evaluation of the proposed model by comparing it 
with the results of the Ahmed Isaa Model (CNN-LSTM).  

 

 
 

Fig.6. Methodology flowchart  

 

3.1.1. Sain Malaysian Dataset 

 
Omar Elejila meticulously crafted ICMPv6 datasets, tailored to the network topology forming 

the cornerstone of his research endeavours. The data synthesis spanned a rigorous 2-hour 

window, meticulously capturing network activity, culminating in a dataset measuring 15.8 MB. 

A distilled subset of this traffic, condensed into a 2.8 MB Excel sheet, has already been curated 
to serve as training and testing datasets that contain 11 features depicted in Figure 7[11].  

 

 



306                                                     Computer Science & Information Technology (CS & IT) 

 

 
 

Fig.7. Sain Malaysian Dataset features  

 

3.1.2. Mendeley Dataset 

 
The datasets, curated by Housman from Universitas Muhammadiyah Malang, contain IPv4 data 

used for research purposes. They focus on Distributed Denial of Service (DDoS) attacks within 

Software-Defined Networking (SDN), including ICMP, TCP, and UDP flood incidents. These 
attacks were simulated using the Mininet Emulator with Scapy, resulting in a 34.7 MB .pcap file 

capturing the traffic. The RYU controller was augmented to store attack information of up to 37.9 

MB. Comprising 25 features, these datasets are illustrated in Figure 8, detailing the features list 
of Mendeley datasets [16]  

 

 
 

Fig.8. Mendeley dataset features  

 

3.1.3. NSL-KDD (Benchmark) Datasets 

 

Mahbod Tavallaee describes the KDD dataset as a compilation of data from the DARPA’98 
Intrusion Detection System (IDS) evaluation program, totalling around 4 gigabytes of 

compressed raw TCP dump data spanning 7 weeks of network traffic. This dataset includes 

approximately 4,900,000 single connection vectors, each comprising 41 features and labelled as 

normal or an attack, with one specific attack type. The NSLKDD dataset, an extension of the 
original, incorporates multiple attack types and was utilized for the Issa Ahmed Model and 

Proposed Model. Further details on the features are provided in Figure 9 [17].  
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Fig.9. NSL-KDD dataset features  

 

3.1.4. LTVM – Datasets 
 
Virtual Dataset was generated on a single Laptop machine with an Intel i7 11th generation 2.30 GHz 

processor, 64 GB RAM, and a 2 TB hard disk. Within a VMware environment, four virtual machines were 

set up: one Linux machine (LVPC), two Windows machines (WVPC-1 and WVPC-2), and one Windows 

server (WVS). These virtual machines were interconnected through VMware network adapters on a single 

NIC card of the host machine. An ICMPv6 DDoS attack was launched using a Scapy script from two 

virtual machines (LVPC and WVPC-1) targeting the Windows server (WVS) to simulate an attack scenario. 

Network traffic, including normal activity and the ICMPv6 attack, was captured on the Windows server 

(WVS) using Wireshark, resulting in a dataset size of 18.3 MB (60,000 bytes/sec). The captured traffic was 

then transformed into an Excel sheet named scdtsets.csv, with a size of 58.2 MB. These datasets were 

utilized for the proposed Model analysis and the features are depicted in Figure 10.  
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Fig.10. LTVM dataset features  

 

3.2. Pre-Processing  
 

1. The final processed datasets that are treated as data points indicating rows and the features 

indicated by columns are fed to the input layer of the Model. These data points are then 

processed in the hidden layers based on the feature extracted. The output layer produces 
the result to identify if it’s an Attack that is assigned as 1 or Normal assigned as 0 based on 

the normalization done in prepossessing. 

2. The ICMPv6 datasets from Sain Malaysian University have been pre-processed. The first 
dataset includes 11 features, with a designated ”Class” column categorizing data into 

Normal and Attack. It contains 92,944 rows and 12 columns, resulting in a matrix 

dimension of 92,944 x 12. 
3. The NSL-KDD datasets consist of 42 features, with an additional ”Label” column for 

categorizing data into Normal, as well as four distinct types of attacks: DoS, Probe, R2L, 

and U2R. This dataset comprises 125,973 rows and 43 columns, resulting in a matrix 

dimension of 125,973 rows × 43 columns. The Mendeley datasets comprise 24 features, 
accompanied by an additional column named as  ”Label” for categorizing data into DDOS-

ICMP and NORMALICMP. It includes 140,000 rows and 25 columns, resulting in a matrix 

dimension of 140,000 rows × 25 columns. 
4. The Primary Dataset-1, upon extraction into the ”scdtsets.csv” file, demonstrated 

satisfactory quality. It includes 14 features, with an additional column named ”Class” 

introduced to categorize data into two classes: Normal and Attack. This dataset 
encompasses 100,130 rows and 14 columns, resulting in a matrix dimension of 100,130 

rows x 14 columns. 

 

Figure 11 illustrates the block diagram of the preprocessing of the above data sets and fed to the 
proposed model. 
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Fig.11. Pre-processing 

 

a. Cleaning: In case of any noise characters like commas, dashes, blank spaces, or any 

other special characters, they need to be removed.  
b. Data Transformation: This step involves transforming the data into a more suitable 

format for modelling. This may include scaling features to have similar ranges (Min-

Max or standardization scaling), transforming classified variables into numerical 
values (one-hot encoding or label encoding), or transforming numerical variables to 

make their distribution more Gaussianlike (e.g., log transformation).  

c. Feature Selection/Extraction: In some cases, not all features in the dataset are relevant 

to the model or contribute to its performance. Feature selection techniques like 
filtering methods or wrapper methods are used to opt for the most relevant attributes. 

In our experiments, the attributes are manually selected mainly focusing on the 

ICMPv6 header fields.  
d. Data Normalization: Normalizing the data ensures that different features are on a 

similar scale, which can help gradient-based optimization algorithms converge faster. 

Normalization techniques include scaling features to have zero as mean and one as 
standard deviation or scaling features to a fixed range (e.g., [0, 1]).  

e. Data Splitting: Finally, the dataset is split into training and test sets. The training set is 

used to train the model, tune hyper-parameters and evaluate model performance 

during training, and the test set is used to evaluate the final model’s performance. The 
dataset was divided into 80% for training and 20% for testing.  

f. Imbalanced Data: It is a situation where the classes in a dataset are not represented 

equally. To overcome this there are techniques like SMOTE, ADASYN, etc. to apply 
where they add synthetic samples nearly equal to the major category of the datasets. 

However, at this stage, the results seem to be good enough even though the generated 

datasets are imbalanced. In the later stages, this technique is also applied to test the 
difference and finally select the highest score. 

 

4. EXPERIMENTS RESULTS  
 

The requisite experiments were conducted in Google Colab using Python, leveraging its 
versatile libraries such as NumPy, Scikit Learn, Keras, TensorFlow, among others, in 

crafting the proposed model.  
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4.1. Evaluation Criteria  
 
Various performance metrics are employed to assess the accuracy of the Model, and their 

effectiveness relies on diverse parameters. Achieving optimal results confirms that the 

classifier is well-suited for its intended purpose. Key factors influencing performance 

include the selection of datasets, features, algorithm/technique type, formula choice, and 
training time. The outcomes are reflected in metrics such as True Positive (TP), True 

Negative (TN), False Positive (FP), and False Negative (FN). These metrics quantify the 

classifier’s output, with a higher count of True Positives signifying a better-fitting model 
and resulting in increased accuracy. [21]  

 

Accuracy can be defined as the ratio of the number of correct instances to that of total number 

of instances.  
 

Accuracy =  

 

However, this paper being a part of the research project these experiment results were 
mainly focused on the performance metric ”Accuracy”. While progressing in the research 

other metrics like Recall, Precision, F1 measure, etc will be used and their corresponding 

results will be included at later stage.  
 

4.2. Findings 
 
 Four distinct datasets outlined in the Datasets section were utilized for model development 

and deployment. Upon deployment, the CNN-LSTM model exhibited promising outcomes, 

achieving accuracies of 80%, 97.01%, and 72.89% on the NSLKKD, Mendeley, and Sain 
Malaysian datasets respectively. Similarly, the RNNGRU Model yielded satisfactory results, 

attaining accuracies of 80%, 95.06%, and 64.95% on the NSL-KKD, Mendeley, and Sain 

Malaysian datasets correspondingly.  

 
 Figure 12 illustrates the statistics and comparison of both models with the mentioned datasets.  

 

 
 

Fig.12. Statistical comparison of results related to 3 different data sets 
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Keeping these statistics in view the results varied significantly. This variability in results 

showed that the design of the models was robust enough to detect ICMPv6 datasets 

effectively and for evaluation newly generated datasets were used as a sample to find the 
robustness of RNN-GRU Model capability. Figure 13 shows a statistical view of results 

related to both models were deployed on newly generated datasets.  

 

 
 

Fig.13. Statistical comparison of results using Generated ICMPv6 datasets. 

 
The Issa Ahmed model implementation has an accuracy of 94.47% using the combination of 

CNN-LSTM and 94.50% using the combination of RNN-GRU. The proposed model 

implementation has an accuracy of 99.36% using the combination of CNN-LSTM and 
94.48% using the combination of RNN-GRU. The   

 

 
 

Fig.14a. Graphical format of the results of Issa model and Proposed model. 

 



312                                                     Computer Science & Information Technology (CS & IT) 

 

Figures 14a and 14b display the performance graphs of the Isaa Model and the proposed 

model. With the exception of the RNN-GRU graph in Figure 14b, all other graphs 

demonstrate ideal performance in terms of Area Under Curve (AUC). Although the 
accuracy metric stands at 94.51%, indicating room for improvement, it reflects promising 

performance overall. When compared to the results of the Isaa Model, the Proposed Model 

shows superior accuracy, highlighting its effectiveness and advantage.  

 

 
 

Fig.14b. Graphical format of the results of Issa model and Proposed model 

 

5. CONCLUSION  
 

An endeavour has been undertaken to propose a model that combines Recurrent Neural 

Networks (RNN) and Gated Recurrent Units (GRU). The architecture of the model is 

elucidated and deployed across four distinct datasets. In the experimental section, the results 
are juxtaposed, accompanied by graphical representations illustrating the findings.   
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Fig.15. Statistical comparison of results of all datasets. 

 

Figure 15 depicts the comparison results and reveals discrepancies between the CNN-LSTM 
and RNN-GRU models across different datasets and employed Ahmed Issa model 

architecture and as well proposed model architecture. Additionally, the choice of CPU or 

GPU resources, particularly in platforms like Google Colab, impacts the reported results, 
with GPU computations often yielding higher performance closer to the CNN-LSTM model. 

Furthermore, variations in results are noted based on a number of features, type of dataset 

version, resources available, etc.  

 

5.1. Critical Evaluation 
 
Figure 16 illustrates the critical validation of the proposed architecture against state-of-the-

art methods, indicating a comparative performance gap when considering the IP version.  On 

observation, IPv6 related to the Omar Elejla model, when using RNN and LSTM, the 

proposed model, has the upper hand in the case of RNN. Further, techniques like SMOTE 
(Synthetic Minority Over-sampling Technique) or ADASYN (Adaptive Synthetic Sampling) 

could be employed to mitigate the imbalanced data problem between minor and major 

classes. These techniques are primarily used in binary classification tasks where imbalanced 
datasets can lead to biased models that underperform on the minority class.  
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Fig.16. RNN-GRU Validation. 

 
However, based on the accuracy 94.48% achieved on the face of it, when using ICMPv6 

datasets the RNN-GRU proposed model demonstrates robustness and effectiveness in 

detecting DDoS attacks. The RNN-GRU proposed model emerges as a viable option for 

cost-effective computing and data streams such as time series, packet flow attacks, natural 
language processing, etc. Its efficacy is contingent upon factors such as the selection of the 

activation function and optimization function.  

 

5.2. Future Research 

 

This research demonstrates that combining RNNs and GRUs effectively detects DDoS 
attacks, with RNNs managing immediate packet sequences and GRUs handling historical 

patterns. This hybrid approach not only identifies and mitigates network threats such as 

DDoS and insider attacks but also excels in contexts with sequential data, dynamic patterns, 
and long-term dependencies, like phishing detection, and enhancing email security. The 

RNN-GRU model, which uses RNNs for short-term traffic patterns and GRUs for long-term 

dependencies, improves network traffic prediction and capacity planning. It aids in real-time 
traffic analysis and anomaly detection, helping to distinguish between normal fluctuations 

and potential threats. Further research could refine dynamic bandwidth allocation, optimize 

routing protocols, and enhance overall network performance by adapting routes based on 

congestion predictions. This combination can be deployed in domains related to mobile 
health monitoring, video analysis, speech recognition, natural language processing, time-

series anomaly detection, object detection, real-time driving decision-making, and 

forecasting tasks such as stock market predictions. 
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